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Human serum uric acid concentration (SUA) is a complex trait. A recent meta-analysis of multiple genome-wide
association studies (GWAS) identified 28 loci associated with SUA jointly explaining only 7.7% of the SUA vari-
ance, with 3.4% explained by two major loci (SLC2A9 and ABCG2). Here we examined whether gene–gene inter-
actions had any roles in regulating SUA using two large GWAS cohorts included in the meta-analysis
[the Atherosclerosis Risk in Communities study cohort (ARIC) and the Framingham Heart Study cohort
(FHS)]. We found abundant genome-wide significant local interactions in ARIC in the 4p16.1 region located
mostly in an intergenic area near SLC2A9 that were not driven by linkage disequilibrium and were replicated
in FHS. Taking the forward selection approach, we constructed a model of five SNPs with marginal effects
and three epistatic SNP pairs in ARIC—three marginal SNPs were located within SLC2A9 and the remaining
SNPs were all located in the nearby intergenic area. The full model explained 1.5% more SUA variance than
that explained by the lead SNP alone, but only 0.3% was contributed by the marginal and epistatic effects
of the SNPs in the intergenic area. Functional analysis revealed strong evidence that the epistatically interacting
SNPs in the intergenic area were unusually enriched at enhancers active in ENCODE hepatic (HepG2,
P 5 4.7E205) and precursor red blood (K562, P 5 5.0E206) cells, putatively regulating transcription of WDR1
and SLC2A9. These results suggest that exploring epistatic interactions is valuable in uncovering the complex
functional mechanisms underlying the 4p16.1 region.

INTRODUCTION

Human serum uric acid concentration (SUA) is the outcome of
balancing production (primarily in the liver) against excretion
(mostly in the kidney) (1). High SUA (i.e. hyperuricaemia) can
lead to gout (2). SUA is a complex trait with estimated heritabil-
ity ranging from 40 to 70% (3–5). A recent meta-analysis com-
prising .140 000 individuals of European ancestry identified 18

novel loci in addition to 10 previous known that jointly explained
only 7.7% of the SUA variance, of which 3.4% was explained
by SLC2A9 and ABCG2 (6). The meta-analysis results reiterate
the ‘missing heritability’ issue (7,8) but reinforce the impression
that increasing the sample size is effective in discovering novel
loci but with decreasing effects (9–11). Gene–gene interactions
(epistasis)—a potential source of SUA variation, were not con-
sidered in the meta-analysis study (6). Tools for analysing
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epistasis at the genome-wide level currently can only handle
SNPs with precise genotypes (12–16) and thus are unable to
support meta-analysis of epistasis that requires imputed SNPs
with probability-attached genotypes.

In contrast to the great success in genome-wide association
studies (GWAS) (attributable mostly to meta-analysis) (9), the
genome-wide search for epistasis in individual GWAS popula-
tions so far has been disappointing in general (17,18). This
may not be too surprising because the power of detection of pair-
wise epistasis is a function of the interaction effect and sample
size as well as linkage disequilibrium (LD) between a genotyped
SNP and underlying causal variants at both loci (rather than one
locus in conventional GWAS). Overall one requires a much larger
sample size (18,19) than offered in each individual GWAS popula-
tion. The low power issue is amplified by the need to apply signifi-
cance thresholds derived from Bonferroni correction of billions of
multiple testswithconsensus thresholds (like5.0E208forGWAS)
not yet available (20). The high-density SNP coverage of the
genome that is essential to provide sufficient LD for detecting epis-
tasis is not available in most GWAS cohorts genotyped with older,
relatively low-density SNP chips (21–24), posing difficulties to
both detection and replication of epistatic signals. For example, in
our previous study of epistasis in SUA using small isolated popula-
tionsgenotypedbychipswith�300 000SNPs, interactions involv-
ingSLC2A9 were detected but could not be robustly replicated (25).

At least two additional approaches could potentially increase
power of detection of epistasis in single populations. First, to
detect interactions involving SNPs with important marginal
effects (marginal SNPs) based on a specific significance thresh-
old adjusted for a much reduced number of tests (14,21,26–29).
Second, to examine local interactions between neighbouring
SNPs in low LD, e.g. two SNPs located within 1 Mb on the same
chromosome and with an interaction P-value (Pint) of ,1.0E205
(21,24). Such local interactions may exist within a gene or
between neighbouring genes (30,31), and rather than capturing
functional genetic interactions could potentially capture variants
missing from GWAS via haplotype effects (24,32) and provide
new insights into the underlying molecular mechanisms (33,34).
Both approaches require no prior biological knowledge (23) and
thus can provide a useful view of interactions complementary
to conventional GWAS (24).

Here we used two large cohorts included in the GWAS
meta-analysis (6), i.e. the Atherosclerosis Risk in Communities
study cohort (ARIC) and the Framingham Heart Study cohort
(FHS) both genotyped with .500 000 SNPs, to re-examine epis-
tasis in SUA comprehensively. We used the ARIC samples with

European ancestry for discovery and the FHS cohort (excluding
samples in generation one) for replication. We performed full
pairwise genome scans for both cohorts using a fast tool
BiForce (12) and examined SNP interactions in three categor-
ies—with and without marginal SNPs and local interactions,
and using specific significance thresholds derived following the
procedures previously defined (21,24).

RESULTS

After careful data scrutiny and quality control (see Materials and
Methods), 514 662 SNPs and 9172 samples (4884 females) in
ARIC and 410 947 SNPs and 5538 samples (2951 females) in
FHS were used in subsequent data analyses (Supplementary
Material, Table S1). SNP positions quoted in this study are
based on the human genome build (UCSC hg19/NCBI 37.3).
Conventional GWAS identified 166 genome-wide significant
(P , 5.0E208) SNP associations in ARIC (Supplementary
Material, Table S2 and Fig. S1) and 75 in FHS (Supplementary Ma-
terial,Table S3andFig.S2), allocatedmostly to the SLC2A9-WDR1
(4p16.1) and ABCG2 regions (4q22) in both cohorts. These results
are in line with the meta-analysis (6). The lead SNP associated
with SUA was rs3733588 in both cohorts (Supplementary Material,
Tables S2 and S3).

Using the Bonferroni-corrected threshold of 3.8E213 for a full
pairwise genome scan in ARIC, we identified five significant epi-
static SNP pairs that were well replicated in FHS when both SNPs
were genotyped (as was the case for 3 of the 5 pairs, see Table 1).
Each of the five pairs involved at least one marginal SNP (Supple-
mentaryMaterial, Table S2) andhad noLD between the two SNPs.
All interacting SNPs were located in an intergenic area between
WDR1 and ZNF518B within the 4p16.1 region, where the top
four pairs of SNPs fell into a small window of ,30 kb implicating
a common epistatic signal upstream of rs3733588 (Fig. 1).

Using the genome-wide threshold of 5.9E210 for interac-
tions involving marginal SNPs (Materials and Methods), we
further identified 83 significant pairs of SNPs all mapped to
the 4p16.1 region, of which 45 pairs of interactions were directly
replicated (i.e. both SNPs were genotyped with Pint ,0.05) in
FHS (Supplementary Material, Table S4). The 48 directly repli-
cated SNP pairs (including the three in Table 1) were plotted in
Figure 1, showing they were scattered mostly in the intergenic
areas upstream of rs3733588.

A further assessment of local interactions (i.e. two SNPs
within 1 Mb with Pint , 1.0E205) found the whole 4p16.1

Table 1. Genome-wide significant (P , 3.8E213) SNP pairs in ARIC and replication in FHS

chr SNP1 pos1 SNP2 Pos2 Dist LD (r2) Pint Pint_FHS

4 rs4697924 10 124 239 rs731069 10 152 431 28.2 0.000 6.1E214 NA
4 rs4697924 10 124 239 rs747357 10 152 878 28.6 0.000 2.2E213 NA
4 rs4697926 10 124 567 rs731069 10 152 431 27.9 0.000 4.0E214 1.5E207
4 rs4697926 10 124 567 rs747357 10 152 878 28.3 0.000 1.7E213 1.2E207
4 rs11722989 10 126 139 rs6845818 10 208 794 82.7 0.002 3.1E213 6.9E204

chr—chromosome of a SNP pair; SNP1 (SNP2), pos1 (pos2)— name and position of the first (second) SNP; dist—distance in kb between two SNPs; LD (r2)— linkage
disequilibrium between two SNPs; Pint—P-value of the interaction test; Pint_FHS—interaction P-value of the SNP pair in FHS; NA—not directly replicated in FHS;
SNPs in bold were genome-wide significant in GWAS in ARIC.
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region was enriched with interaction signals (917) in ARIC
(Fig. 2) as well as FHS (Supplementary Material, Fig. S3).
Outside of this region, we also observed a strong local interaction
between rs2622621 and rs1564481 (both SNPs within ABCG2
with Pint ¼ 6.2E211, distance ¼ 30.3 kb, r2 ¼ 0.23), which,
however, was not replicated in FHS. Another SUA-associated
gene tagged by local interactions in ARIC was BCAS3 on
chromosome 17: rs9914370 (BCAS3)–rs758596 (TBX4) (Pint ¼
6.0E206, distance ¼ 522.5 kb, r2 ¼ 0.0) that was not replicated
in FHS either.

We then performed conditional tests of the 917 local inter-
action pairs observed in the 4p16.1 region in ARIC by fitting
the lead associated SNP rs3433588 (additive effect only) in the
background and found 27% of them with Pint ,0.05 across the
region (Fig. 2). All the top five SNP pairs in Table 1 and 38 out
of the 45 directly replicated significant SNP pairs (Fig. 1, Supple-
mentary Material, Table S4) passed the conditional tests, sug-
gesting they did not simply mirror the marginal effects of
rs3433588. Similar conditional tests of the remaining marginal
SNPs within the region also suggested multiple independent
associations (P , 0.05) that were generally in low LD with the
lead SNP rs3433588, except for several SNPs in relatively
long range (e.g. .100 kb) LD (0.5 , r2 , 0.6) (Supplementary
Material, Table S5 and Fig. S4).

Using the forward selection approach, we selected five inde-
pendent marginal SNPs (i.e. rs3733588, rs874432, rs4697695,
rs9291683 and rs11734783) capturing most marginal effects of
the region, where the first three are within SLC2A9 and the
latter two are intergenic between WDR1 and ZNF518B. Condi-
tioning on the five selected marginal SNPs, we still found

�10% (88 out of 917) of the 4p16.1 local interactions remained
significant (Pint ,0.05), including only one genome-wide signifi-
cant pair (i.e. rs4697708–rs16895984, conditional Pint¼ 0.047,
r2 ¼ 0.122) (Supplementary Material, Table S6 and Fig. S5). A
forward selection of the 10% significant local interactions led to
three independent SNP pairs all located between WDR1 and
ZNF518B (Table 2). The selected five marginal SNPs and three
SNP pairs jointly explained 6.0% of the SUA residual vari-
ance—1.5% more than that explained by the lead SNP alone
but only 0.3% was contributed by the two marginal SNPs and
three epistatic SNP pairs in the intergenic area with the remain-
ing 1.2% owing to the two additional SNPs in SLC2A9. Neverthe-
less, without conditioning on the five marginal SNPs, the three
epistatic SNP pairs could jointly explain 3% of the SUA residual
variance.

We further imputed the 4p16.1 region (i.e. 9 900 000–
10 400 000) in ARIC using the 1000 Genomes Project refer-
ence panel and tested whether the observed local interactions
reflect a single untyped variant. Fourteen imputed SNPs had
associations stronger than rs3733588, but the associations
were not substantially different (Supplementary Material,
Table S7). Using the forward selection approach described
earlier, six independent imputed SNPs were selected:
rs938558, rs4428284, rs4697695 (also typed), rs10489074,
rs4481233 (also typed) and rs16895984 (also typed), where
rs10489074 and rs16895984 are intergenic between WDR1 and
ZNF518B and the rest are within SLC2A9. Conditioning on the
six selected imputed SNPs, 45 local interactions remained sig-
nificant (Pint ,0.05) (Supplementary Material, Table S8),
most also appeared in Supplementary Material, Table S6

Figure 1. Genome-wide significant SNP pairs in ARIC (red) and their replication
(Pint , 0.05) in FHS (purple). Each horizontal line represents an interaction
between two SNPs located at the start and end of the line; two vertical lines
mark the 30-kb window described in the main text; y-axis: interaction P-values
in the 2log10 scale; x-axis: genomic location in base pair (UCSC hg19/NCBI
37.3); arrow bar showing transcription direction and location of the gene
(italic) below the bar; rs3733588 is the lead GWAS SNP.

Figure 2. Local interactions in the 4p16.1 region (red) and those remaining sig-
nificant (Pint , 0.05) in conditional tests on the lead SNP rs3733588 (blue) in
ARIC. Each horizontal line represents an interaction between two SNPs at the
start and end locations; two vertical lines mark the 30-kb window described in
the main text; y-axis: interaction P-values in the 2log10 scale; x-axis: genomic
location in base pair (UCSC hg19/NCBI 37.3); arrow bar showing transcription
direction and location of the gene (italic) below the bar.
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including the genome-wide significant rs4697708–rs16895984.
These results suggested there were local interactions independ-
ent to marginal effects.

The genome-wide significant local interactions in the 4p16.1
region (Table 1 and Supplementary Material, Table S4, 42 unique
epistatic SNPs) were analysed for enrichment of active regulatory
regions using an online tool HaploReg (35). We found significant
enrichments of enhancer regions inENCODE(36) HepG2(hepato-
cyte, 5.2-fold enrichment, P¼ 4.7E25) and K562 (blood erythro-
blast, 5.2-fold enrichment, P¼ 5.0E26) cell lines (Table 3). No
similar significant enrichments were seen for ENCODE enhancer
annotations for a variety of other ENCODE cell types (HUVEC
umbilical vein endothelial cells, HMEC mammary epithelial
cells, GM12878 B-lymphocytes, NHEK epidermal keratinocytes).
The significant enrichments of enhancers in HepG2 and K562 cell
lines were also observed in the analyses of GWAS marginal SNPs
in the 4p16.1 region in both ARIC (Supplementary Material,
Table S9) and FHS (Supplementary Material, Table S10).

Closer examination of the chromatin states predicted using
the software chromHMM (37) also suggested distinct enhancer
activity signals in the 4p16.1 region (the chromHMM category
plot, Supplementary Material, Fig. S6), including several strong
enhancers located in the two intergenic areas flanking WDR1
in the HepG2 cell line. Consistent with this, transcription factor
binding-site clusters and various other features of functionally
active HepG2 chromatin were also found in these intergenic
areas (Supplementary Material, Fig. S6). The intergenic area
between WDR1 and ZNF518B appears to be bound by transcrip-
tion factors and RNA polymerase II in cell lines including
HepG2 and K562 (Supplementary Material, Fig. S7). Similarly,

the intergenic area between SLC2A9 and WDR1 is actively tran-
scribed in multiple cell lines including HepG2 and K562, again
consistent with active enhancers in this region (Supplementary
Material, Fig. S8). Near the 30-kb window marked by the top
five SNP interactions (Table 1 and Fig. 1), we found strong chro-
matin interactions corresponding to the enhancers in the area in
the ChIA-PET (Chromatin Interaction Analysis by Paired-End
Tag Sequencing) data from the K562 cell line, including a chro-
matin interaction involving the transcription start site (TSS) of
WDR1 and mediated by RNA polymerase II (Supplementary Ma-
terial, Fig. S7). To investigate whether ChIA-PET interactions are
commonly enriched in other GWAS regions, we sorted 17 680
marginal SNPs currently available from the GWAS Catalog
(38) into 8817 regions each encompassing 25 kb and then
counted ChIA-PET interactions within a distance of 100 kb flank-
ing the middle point of each sorted region. We found ,4% (352
out of 8817) of the sorted GWAS regions had more ChIA-PET
interactions than the SLC2A9 region (i.e. chr4: 10080000–
10105000, with 96 ChIA-PET interactions). This empirical ana-
lysis places the observed SLC2A9 enrichment for interactions
within a small proportion of known complex trait loci identified
by GWAS.

We further examined local interactions in the 4p16.1 region in
ARIC female and male samples separately following the same
analysis procedure (Supplementary Material, Fig. S9). Local
interactions in the 30-kb window appeared relatively consistently
in both genders suggesting a common enhancer activity. The most
strikingdifferencewas that femaleshadverystrong(2log10Pint .
14) long range interactions between two WDR1 SNPs (rs4604059
and rs12498927) and two intergenic SNPs (rs7681212 and

Table 2. Statistical construction of the genetic structure of the 4p16.1 region

SNP1 pos1 SNP2 pos2 dist LD (r2) P-value Variance explained (%)

rs3733588 9 997 303 6.9E260 4.5
rs874432 9 920 606 1.4E210 5.5
rs4697695 9 915 850 3.1E204 5.7
rs9291683 10 324 160 4.6E203 5.7
rs11734783 10 240 663 1.4E202 5.9
rs731069 10 152 431 rs10939766 10 204 970 52.5 0.227 1.5E202 5.8
rs4698000 10 277 467 rs11943276 10 403 545 126.1 0.042 1.7E202 5.9
rs6813385 10 148 828 rs16894270 10 165 779 17.0 0.142 7.2E203 6.0

only additive effects considered for first marginal SNPs; SNP1 (SNP2), pos1 (pos2)— name and position the first (second) SNP; dist—distance in kb between two SNPs;
LD (r2)— linkage disequilibrium between two SNPs; P-value of a marginal SNP or interaction P-value of an epistatic SNP pair; Variance explained—SUA residual
variance explained accumulated; blank cells: no information required.

Table 3. Enrichment of ENCODE enhancers by genome-wide significant local interactions in the 4p16.1 region in ARIC

Cell type All enhancers Strongest enhancers
ID Description Obs. Exp. Fold P-value Obs. Exp. Fold P-value

HepG2 Hepatocellular carcinoma 9 1.7 5.2 4.7E205 5 0.6 8.3 3.4E204
HUVEC Umbilical vein endothelial cells 7 2.2 3.2 6.0E203 2 1.1 1.8 3.1E201
K562 Leukaemia 11 2.1 5.2 5.0E206 10 0.7 15.2 ,1.0E206
HMEC Mammary epithelial cells 7 3 2.3 3.0E202 2 1.2 1.7 3.4E201
GM12878 B-lymphocyte lymphoblastoid 5 2.2 2.3 6.6E202 5 0.8 6.2 1.2E203
NHEK Epidermal keratinocytes 7 2.7 2.6 1.7E202 4 1.2 3.3 3.1E202

Obs.: observed; Exp.: expected; Fold: fold of enrichmentcalculatedas Obs./Exp.; 42 unique epistatic SNPs from Table 1 and Supplementary Material, Table S4 used in
the enrichment analysis.
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rs11943276) near ZNF518B, which did not appear in males
(Supplementary Material, Fig. S9).

DISCUSSION

Using ARIC and FHS, we were able to detect genome-wide
significant epistasis in SUA (Table 1) based on a stringent
Bonferroni-corrected threshold (20). Additional searches focus-
ing on marginal SNP interactions with a relaxed significance
threshold found more significant epistatic signals, all within
the 4p16.1 region covering SLC2A9 (Fig. 1 and Supplementary
Material, Table S4). The significant epistatic signals identified
in ARIC were well replicated in FHS, either exactly as the
same SNP pair if both SNPs were genotyped (Fig. 1), or at the
regional level (Fig. 2 and Supplementary Material, Fig. S3)
(23–25,39).

The observations were reinforced by abundant and wide-
spread local interactions within the 4p16.1 region in both
ARIC and FHS (with �103 000 SNPs less than ARIC) (Fig. 2
and Supplementary Material, Fig. S3). The conditional analysis
results based on the lead SNP rs3733588 showed that a number
of local interactions and marginal SNPs were statistically inde-
pendent, supporting the hypothesis of multiple variants residing
in the region (Fig. 2 and Supplementary Material, Fig. S4). This
differs from the report of only one associated SNP within
SLC2A9 from the meta-analysis (6), i.e. rs12498742 that is
53 kb away from rs3733588, possibly because (a) rs12498742
did not pass the quality control in this study and (b) the
meta-analysis placed an additional requirement of SNP effect
size reduction (≤20%) to claim an independent signal in the
conditional tests.

To fully assess the impact of marginal effects on local interac-
tions in the region, we forward-selected five marginal SNPs as
the additive genetic background and still found a substantial
number of local interactions significant in the new conditional
tests, most involving at least one epistatic SNP located in the
intergenic areas flanking the WDR1 gene (Supplementary
Material, Fig. S5), suggesting there might reside some regula-
tory elements. We showed that these local interactions did not
reflect the effects of a single imputed SNP. The ‘final’ forward
selection model of the five marginal SNPs and three SNP pairs
further emphasized the intergenic area between WDR1 and
ZNF518B, covering the two marginal SNPs and all the three
epistatic SNP pairs.

Functional analyses provide strong evidence that the epistati-
cally interacting SNPs are unusually enriched at enhancers
active mainly in hepatic and precursor red blood cell types impli-
cated in SUA (Table 3). Despite the fact that many regions of the
genome may show enhancer activity in some cell type at some
time, identifying cell-type-specific enhancers by integrating
GWAS and epigenetic signals has become increasingly useful
for functionally studying complex traits (40). The HaploReg en-
richment test applied is a statistically rigorous approach for this
purpose that uses a rigorously defined genomic background
given all the SNPs genotyped (35). To our knowledge, the
present study is the first in applying this approach to elucidating
the biological basis of epistatically interacting loci and generated
testable hypotheses for follow-up functional work by experimen-
tal biologists.Particularly in the WDR1-ZNF518B intergenic area,

statistical interactions, enhancers, chromatin interactions between
TSS of WDR1 and the enhancers collectively suggest complex
mechanisms regulating SLC2A9 function, which may potentially
contribute to the SLC2A9-mediated effect on gender difference in
SUA levels (6). The observations that both intergenic areas flank-
ing WDR1 are actively transcribed with many transcripts overlap-
ping or adjacent to each other lead to the hypothesis that SLC2A9
andWDR1maybe co-transcribedor share transcription regulatory
machinery. The hypothesis is intriguing as SLC2A9 gene expres-
sion may be regulated by enhancers directly targeting SLC2A9
and/or indirectly regulated by other enhancer(s) via WDR1 tran-
scription. Further work is needed to test these hypotheses and
dissect the regulatory mechanisms.

In this study, we detected no genome-wide significant epistat-
ic signals other than those in the 4p16.1 region, reinforcing the
impression that single-GWAS populations are generally under-
powered for studying epistasis (24). Indeed, even in convention-
al GWAS, GCKR was the only locus other than SLC2A9 and
ABCG2 detected significantly in ARIC (suggestively in FHS).
Hence, at the level of single-GWAS populations, searching for
marginal SNP interactions and local interactions under relaxed
significance thresholds are perhaps more realistic approaches.
For example, local interactions also captured ABCG2 and
BCAS3 despite not being directly replicated in FHS. In fact, a
suggestive local interaction pair of rs2725227 and rs2725222
(distance ¼ 14 kb, Pint was 1.2E205 in ARIC and 9.6E203
in FHS) was near ABCG2, with both SNPs were located in
PKD2, a candidate causal locus of polycystic kidney disease
(41) and regulator of SUA levels (42).

Local interactions were not found for all GWAS loci, e.g. no
local interactions were observed in the GCKR locus at all in
this and our previous study of eight metabolic traits (24). Abun-
dant local interactions seem more likely to be seen in regions
with greater genetic heterogeneity, e.g. the human leukocyte
antigen (HLA) region for auto-immune diseases (43,44), the
11q23.3 region for lipid traits (24). We also observed local inter-
actions in other regions not harbouring associated variants across
the genome (results not shown) but concentrated on the 4p16.1
region in this study. Considering the difficulty in differentiating
haplotype effects from true interactions statistically (21,24),
future functional work is needed to decipher any haplotypes
like those in HLA (45) or real functional interactions (34,46,47).

In this and our previous studies of epistasis in quantitative
traits (21,24,25,39), the trait values used for testing epistasis
were the resultant residuals of a mixed model following an
adapted GRAMMAR approach (48) to correct for polygenic
effects and covariates including the first 10 principal com-
ponents computed from the genomic relationship matrix to
account for relatedness in samples. It is known that the
GRAMMAR approach is conservative in conventional GWAS
that consider only additive effects and the conservativeness
increases as population substructure and trait heritability
increase (48,49). While it is unclear whether the GRAMMAR
approach remains conservative in epistatic models, the adapted
GRAMMAR approach (i.e. accounting for relatedness simultan-
eously) seems to be not conservative in our previous study of
epistasis in SUA in isolated populations (25). Nonetheless, as a
precaution, one could allow additional epistatic signals out of
BiForce screening to enter the full model tests and apply
predefined thresholds afterwards. Such full model tests are
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essential to assess the screening results as BiForce uses approxi-
mate statistical tests for interactions and treats each pair of SNPs
independently (21).

In summary, pairwise genome-wide screening for epistasis in
SUA allowed us to detect abundant local interactions in the
4p16.1 region that highlighted the functional complexity of the
region and provided compelling insights into potential mechan-
isms regulating SLC2A9 functions.

MATERIALS AND METHODS

This study was approved by the institutional review board of the
West of Scotland Research Ethics Service of NHS in the UK. The
GWAS data of the ARIC and FHS study cohorts are provided by
the NIH Database of Genotype and Phenotype via specific Data
Use Certifications issued by the Data Access Committee of the
National Heart, Lung and Blood Institute. Both study cohorts
have been described in detail elsewhere (50–53). Only indivi-
duals with European ancestry of the two study cohorts were
used in this study. Both ARIC and FHS were approved by corre-
sponding local ethics committees and obtained written informed
consent from the study participants. ARIC was genotyped with
the Affymetrix 6.0 SNP chip and the FHS cohort with Affyme-
trix 500K and Affymetrix 50K SNP chips.

A common protocol was used to perform quality control of the
genotype data in both cohorts using the GenABEL package (54)
implemented in R (http://www.r-project.org/): individual call
rate at 97%, SNP call rate at 95%, minor allele frequency at
2%, P-value for deviation from Hardy–Weinberg equilibrium
at 1.0E210, false discovery rate for unacceptably high individ-
ual heterozygosity at 0.01. SUA in ARIC was corrected for sex,
age,bodymass index (BMI), serum creatinine, hypertension treat-
ment and sample centre. SUA in FHS was corrected for sex, age,
BMI, creatinine, hypertension treatment, renal disease status and
generation (SUA in generations 2 and 3 samples measured at their
second and first visit, respectively). To control relatedness, indivi-
duals that were outliers of the first three principal components
computed from the identity-by-state matrix constructed using
GenABEL were removed. In addition, subjects younger than
18 years old, or with BMI .50, or with creatinine beyond the
range of 3 SD of the population mean were removed from the
study. After quality control, 9172 (4884 females) and 5538 (2951
females) samples, 514 662 and 410 947 autosomal SNPs were ana-
lysed in ARIC and FHS, respectively (Supplementary Material,
Table S1).

Genome scans were performed for each cohort as follows: (a)
the identity-by-state matrix was reconstructed and the first ten
principal components were calculated and stored; (b) SUA was
adjusted for covariates correspondingly and normalized using
the GenABEL rntransform function and then adjusted for poly-
genic effects and the first ten principal components to account for
relatedness using the mixed model-based polygenic function
where the polygenic heritability was computed (Supplementary
Material, Table S1) and the resultant environmental residuals
(i.e. pgresidualY) were used as the actual trait values for associ-
ation tests (48); (c) conventional GWAS analyses (i.e. assuming
additive effects only) were performed using the GenABEL
mmscore function (49) and the consensus threshold (P ¼
5.0E208) (55) was used to identify marginal SNPs; (d) full

pairwise genome scans using BiForce that utilizes bitwise data
structuresandadvancedalgorithmstoallowhigh-throughputdetec-
tion of epistasis (12). Genome-wide significant thresholds were
derived based on the Bonferroni adjustment of actual number of
tests as previously described (12,21), i.e. with 514 662 SNPs and
166 marginal SNPs identified (Supplementary Material,
Table S2) in ARIC, the thresholds were 3.8E213 (P¼0.05/
(514662 × (514662–1)/2)) for SNP pairs identified from the full
pairwise genome scan and 5.9E210 (P¼ 0.05/((514662–1) ×
166)) for SNP pairs involving at least one marginal SNP. We
adopted the threshold of 1.0E205 for local interactions derived
previously based on permutation (24).

Significant epistatic SNP pairs were tested for replication in
FHS at the SNP level only for simplicity, i.e. claiming a replica-
tion of an epistatic pair only if both SNPs were genotyped and
with Pint , 0.05 in FHS (24). Conditional tests were carried
out by fitting one or multiple marginal SNPs as fixed effects in
the background and then each of other SNPs or SNP pairs indi-
vidually in the same way(s) as used in the genome scans and con-
sidering the SNP or SNP pair statistically independent if the
conditional P/Pint , 0.05. The forward selection approach was
used when multiple independent associations were available in
the conditional tests: to select the most associated SNP or SNP
pair (i.e. with the lowest conditional P/Pint), fit into the back-
ground and test the remaining, repeating until no more signifi-
cant conditional associations were found. Variance explained
was calculated using the polygenic function with marginal
SNPs or SNP pairs fitted as fixed effects.

We imputed the 4p16.1 region (from 9900 to 10400 kb) based
on 9172 samples and 260 typed SNPs in ARIC using IMPUTE2
(56) and the 1000 Genomes Project reference panel (phase1 inte-
grated variant set v3). We used SNPTEST (v2.5) (57) to test asso-
ciations of 2610 imputed SNPs (minor allele frequency .0.01)
with the same SUA trait in the frequentist additive model using
genotype dosages. We used PLINK2 (https://www.cog-genom
ics.org/plink2/) to take the best genotypes of the imputed SNPs
and then performed forward selection and conditional tests in R
as described earlier.

GWAS marginal SNPs and genome-wide significant epistatic
SNPs within the 4p16.1 region were analysed for enrichment of
ENCODE (36) cell-type-specific enhancers using the online tool
HaploReg (http://compbio.mit.edu/HaploReg) that tests enrich-
ment based on a rigorously defined genomic background (i.e. all
the SNPs genotyped) (35), with LD information (r2.0.8) from
the 1000 Genomes Project and a background set of Affymetrix
6.0 SNPs. ANNOVAR (58) and UCSC genome browser (59)
were used for functional annotation of SNPs within the region
to identify regulatory signals associated with these loci. Enlight
(http://enlight.usc.edu) was used to visually inspect the relation-
ship between LD and regulatory signals.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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