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Structural genomics of bacterial drug targets: Application of a 
high-throughput pipeline to solve 58 protein structures from 
pathogenic and related bacteria
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ABSTRACT Antibiotic resistance remains a leading cause of severe infections world­
wide. Small changes in protein sequence can impact antibiotic efficacy. Here, we report 
deposition of 58 X-ray crystal structures of bacterial proteins that are known targets for 
antibiotics, which expands knowledge of structural variation to support future antibiotic 
discovery or modifications.
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A ntibiotic-resistant bacteria remain a global threat, with millions of deaths attributed 
to decreased drug efficacy (1, 2). Amino acid variation across different bacterial 

species can impact antimicrobials targeting essential biochemical pathways. To support 
antimicrobial discovery or chemical modification of current antibiotics, the Center for 
Structural Genomics of Infectious Diseases (now the Center for Structural Biology of 
Infectious Diseases [CSBID]) established a high-throughput (HTP) structural genomics 
pipeline to expand the diversity of structures available for proteins that are known 
drug targets. A list of proteins representing known antibiotic targets was curated 
using DrugBank (http://www.drugbank.ca/). The protein sequences were used as queries 
to identify homologs in bacterial species with genomic DNA available in the center 
repository. Proteins sharing at least 50% sequence identity across 75% of the protein 
sequence were selected. In total, 630 targets from 47 bacterial species entered the 
pipeline.

All targets were subjected to automated analyses supporting protein expression 
construct design. The genes encoding the selected proteins or protein domains were 
amplified by PCR using genomic DNA as a template. The PCR products were cloned into 
pMCSG53 (PSI:Biology-Materials Repository, http://psimr.asu.edu) according to published 
ligation-independent cloning procedures (3, 4). This vector introduced a protease-cleav­
able, N-terminal hexa-histidine purification tag. The clones were transformed into 
T7-polymerase expressing Escherichia coli strains and tested for expression and solubility. 
Soluble proteins were purified by nickel affinity chromatography according to published 
protocols (5, 6), and concentrated proteins were set up as 2-µL crystallization drops 
in 96-well plates using multiple screens. Resulting crystals were cryoprotected, cooled,
and then screened for data collection at the Advanced Photon Source (APS) at Argonne 
National Laboratory.

In total, 24% of targets were purified, and 19% yielded protein preparations 
that entered HTP crystallization screens. Pipeline success rate from selection through 
structure determination was 7.6%. Forty-eight targets from 24 bacterial species 
produced high-quality crystals, yielding 58 structures (Fig. 1). The RCSB Protein Data 
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TABLE 1 Summary of bacterial drug targets with structures deposited to Protein Data Banka

PDB code Csbid
Ref #

Protein name Organism Resolution Ligandb

6nbk IDP07367 Arginase Bacillus cereus 1.91 Å –
6nfp IDP07164 Arginase Bacillus subtilis 1.70 Å –
5us8 IDP07200 Argininosuccinate synthase Bordetella pertussis 2.15 Å Adenosine
6e5y iDP07200 Argininosuccinate synthase Bordetella pertussis 1.50 Å AMP
6w2z IDP07475 Beta-lactamase class A Bacillus subtilis 1.50 Å Avibactam
9bzn IDP07519 Beta-lactamase class A Bordetella bronchiseptica 1.05 Å –
9bzq IDP07519 Beta-lactamase class A Bordetella bronchiseptica 1.47 Å Avibactam
9bzr IDP07519 Beta-lactamase class A Bordetella bronchiseptica 1.40 Å Clavulanate
6pua IDP07511 Chloramphenicol acetyltransferase Vibrio cholerae 2.00 Å –
5ux9 IDP07301 Chloramphenicol acetyltransferase Vibrio fischeri 2.70 Å –
6pxa IDP07301 Chloramphenicol acetyltransferase Vibrio fischeri 1.82 Å Taurocholic acid
6pu9 IDP07511 Chloramphenicol acetyltransferase Vibrio vulnificus 1.70 Å –
6b5f IDP07570 CobT Yersinia enterocolitica 1.95 Å –
6azi IDP07508 D-ala-D-ala-endopeptidase Enterobacter cloacae 1.75 Å –
6bz0 IDP07418 Dihydrolipoamide dehydrogenase Acinetobacter baumannii 1.83 Å FAD
6aon IDP07182 Dihydrolipoamide dehydrogenase Bordetella pertussis 1.72 Å FAD
6cmz IDP07673 Dihydrolipoamide dehydrogenase Burkholderia cenocepacia 2.30 Å FAD, NAD
6awa IDP07540 Dihydrolipoamide dehydrogenase Pseudomonas aeruginosa 1.83 Å FAD, AMP
5tr3 IDP07540 Dihydrolipoamide dehydrogenase Pseudomonas putida 2.50 Å FAD
5umg IDP07170 Dihydropteroate synthase Klebsiella pneumoniae 2.60 Å –
5usw IDP07359 Dihydropteroate synthase Vibrio fischeri 1.64 Å –
6bq9 IDP07285 DNA Topoisomerase IV Subunit A Pseudomonas putida 2.55 Å –
–5vh6 IDP07716 Elongation factor G Bacillus subtilis 2.61 Å –
6bk7 IDP07555 Elongation factor G Enterococcus faecalis 1.83 Å –
6b8d IDP07537 Elongation factor G Haemophilus influenzae 1.78 Å –
5ty0 IDP07381 Elongation factor G Legionella pneumophila 2.22 Å –
6n0i IDP07336 Elongation factor G Pseudomonas putida 2.60 Å –
5tv2 IDP07581 Elongation factor G Vibrio vulnificus 1.60 Å –
6b4o IDP07317 Glutathione reductase Enterococcus faecalis 1.73 Å FAD
5v36 IDP07311 Glutathione reductase Streptococcus mutans 1.88 Å FAD
6n7f IDP07597 Glutathione reductase Streptococcus pyogenes 1.90 Å –
5u1o IDP07224 Glutathione reductase Vibrio parahaemolyticus 2.31 Å FAD
5vdn IDP07394 Glutathione reductase Yersinia pestis 1.55 Å FAD
6aoo IDP07201 Malate dehydrogenase Haemophilus influenzae 2.15 Å –
6bal IDP07201 Malate dehydrogenase Haemophilus influenzae 2.10 Å L-malate
5vfb IDP07567 Malate synthase G Pseudomonas aeruginosa 1.36 Å Glycolytic acid
5ume IDP07318 MetF Haemophilus influenzae 2.70 Å FAD
6po4 IDP07178 Methylthioadenosine/SAH nucleosidase Haemophilus influenzae 2.10 Å –
5ue1 IDP07462 Methylthioadenosine/SAH nucleosidase Vibrio fischeri 1.14 Å Adenine
6muq IDP07205 Murein-DD-endopeptidase Yersinia enterocolitica 1.67 Å –
6c8q IDP07348 NAD synthetase Enterococcus faecalis 2.58 Å NAD
5wp0 IDP07110 NAD synthetase Vibrio fischeri 2.60 Å –
5uu6 IDP07628 Nitroreductase A Vibrio parahaemolyticus 1.95 Å FMN
6czp IDP07377 Nitroreductase A Vibrio vulnificus 2.24 Å FMN
6dll IDP07306 p-Hydroxybenzoate Hydroxylase Pseudomonas putida 2.20 Å FAD
5u2g IDP07344 Penicillin-binding protein 1A Haemophilus influenzae 2.61 Å –
5u47 IDP07211 Penicillin-binding protein 2X Streptococcus thermophilus 1.95 Å –
6blb IDP07228 RuvB Pseudomonas aeruginosa 1.88 Å ADP
5u63 IDP07488 Thioredoxin reductase Haemophilus influenzae 1.99 Å –
5uwy IDP07356 Thioredoxin reductase Streptococcus pyogenes 2.72 Å FAD
5utx IDP07222 Thioredoxin reductase Vibrio vulnificus 2.46 Å –

(Continued on next page)
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Bank (PDB) deposition code, protein name, source DNA, and refinement statistics are 
listed in Table 1. Of the 58 structures determined, 55 are reported here for the first time, 
with three structures published previously (7, 8). Structures were derived from proteins 
involved in antibiotic modification, cell wall maintenance, oxidative stress, and metabo­
lism.

TABLE 1 Summary of bacterial drug targets with structures deposited to Protein Data Banka (Continued)

PDB code Csbid
Ref #

Protein name Organism Resolution Ligandb

5usx IDP07222 Thioredoxin reductase Vibrio vulnificus 2.60 Å NADP, FAD
5vt3 IDP07222 Thioredoxin reductase Vibrio vulnificus 1.98 Å NADP, FAD
5v0i IDP07325 Tryptophanyl-tRNA synthetase Escherichia coli 1.90 Å Tryptophan, AMP
6dfu IDP07216 Tryptophanyl-tRNA synthetase Haemophilus influenzae 2.05 Å –
6cn1 IDP07215 UDP-GlcNAc 1-carboxyvinyltransferase Pseudomonas putida 2.75 Å UDP-GlcNAc
6nkj IDP07236 UDP-GlcNAc 1-carboxyvinyltransferase Streptococcus pneumoniae 1.30 Å –
5wi5 IDP07236 UDP-GlcNAc 1-carboxyvinyltransferase Streptococcus pneumoniae 2.00 Å UDP-GlcNAc
aAccess link for Data quality and refinement statistics 10.5281/zenodo.15224721.
b–, indicates no ligand.

FIG 1 Percentage of approved bacterial drug targets at each stage in the structure determination pipeline and representative X-ray structures. The pie chart 

shows the overall success rate of proteins in the structure determination pipeline from a total of 630 targets. Work was completed between 2016 and 2024. 

Twenty-five representative structures are depicted as cartoons: β-sheets are colored yellow, α-helices are teal, and loops are gray. Associated crystal variants, 

complexes with ligands, and homologous structures are annotated below each image, totaling 58 structures solved. The proteins were sorted according to their 

known function in bacteria. Associated ligands and crystallographic details are described in Table 1.
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Data collection and data quality information are available on the PDB. Structures 
of proteins grown in selenomethionine medium were solved by single-wavelength 
anomalous diffraction method, using the Automatic Structure Solution from HKL-3000 
(9) and Auto-build package from PHENIX (10). Structures of native proteins were solved 
by molecular replacement in the CCP4 suite (11). Diffraction data were used for structure 
solution using either the structure of the closest sequence homolog in the PDB in 
PHASER or the target protein sequence using MORDA and MRBUMP. Structures were 
refined using REFMAC5 (12) or PHENIX and visually corrected in Coot (13). Water 
molecules were generated using ARP/wARP (14), and ligands were fit into electron 
density maps in Coot. Translation–Libration–Screw groups were generated by the TLSMD 
server (15), and corrections were applied during refinement finalization. Models were 
validated using MolProbity (16).
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