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A B S T R A C T   

In photoacoustic (PA) reconstruction, spatial constraints or real-time system requirements often result to sparse 
PA sampling data. For sparse PA sensor data, the sparse spatial and dense temporal sampling often leads to poor 
signal continuity. To address the structural characteristics of sparse PA signals, a data interpolation algorithm 
based on extremum-guided interpolation is proposed. This algorithm is based on the continuity of the signal, and 
can complete the estimation of high sampling rate signals without complex mathematical calculations. PA signal 
data is interpolated and reconstructed, and the results are evaluated using image quality assessment methods. 
The simulation and experimental results show that the proposed method performs better than several typical 
algorithms, effectively restoring image details, suppressing the generation of artifacts and noise, and improving 
the quality of PA reconstruction under sparse sampling.   

1. Introduction 

Photoacoustic (PA) imaging is an emerging non-destructive testing 
technique based on the PA effect discovered by Bell [1]. By irradiating 
biological tissue with pulsed laser sources, the local temperature change 
caused by the absorption of short-pulsed laser irradiation can cause 
tissue elastic deformation, thereby generating sound waves [2]. Due to 
the differences in absorption characteristics of different tissues, the 
transformation of PA signals can reflect their distribution, so the internal 
structure of objects can be reconstructed based on the ultrasound signals 
generated by pulsed excitation. PA imaging has the advantages of high 
resolution of optical imaging and high imaging depth of ultrasound 
imaging, as well as good biological safety [3,4]. The complete process of 
PA reconstruction is shown in Fig. 1. According to the characteristics of 
the PA reconstruction process, it can be divided into three main parts, 
namely, data acquisition and processing, image reconstruction, and 
reconstructed image processing. Based on the different parts of the 
reconstruction process, the relevant algorithms can also be divided into 
three categories, namely, image reconstruction algorithms, image pro-
cessing algorithms, and data signal processing algorithms. 

In image reconstruction algorithms, traditional algorithms include 
direct back-projection (BP), and delay and sum (DAS), which estimate 
the original sound pressure distribution based on the spatial relationship 
between signal data and the reconstruction target [5]. However, these 
methods may generate artifacts in sparse sampling situations. The 
time-reversal (TR) reconstruction algorithm, proposed by Fink and 
Prada [6], is significantly different from traditional reconstruction al-
gorithms. It is a reconstruction algorithm that estimates the original 
sound pressure distribution by backward propagation of the temporal 
signal data [7]. The introduced artifact noise is weak, and fewer con-
straints are required for reconstruction [8]. 

Image processing algorithms mainly deal with the reconstruction 
results that have been obtained. Traditional image processing methods 
such as filtering, contrast enhancement [9,10], etc, have been applied in 
PA imaging for a long time. In recent years, methods such as dictionary 
learning and deep learning [11,12] have also been applied to 
post-processing of PA images and achieved good results. However, as 
post-processing methods, they have inherent limitations and cannot 
accurately restore lost information in the reconstructed images. 

As for data preprocessing methods, due to the similar characteristics 
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of PA data and CT data, methods such as wavelet transform and signal 
deconvolution derived from CT signal processing have also achieved 
good results in PA signal processing [13–15]. In addition to necessary 
preprocessing operations such as signal denoising and alignment, signal 
data interpolation is an important means to improve the quality of PA 
reconstruction. Traditional interpolation methods include nearest 
neighbor interpolation (NI), linear interpolation(LI), spline interpola-
tion(SI) [16–18], etc. These traditional methods treat signal vectors or 
matrices as sparse grids and estimate the possible signal values at the 
interpolation positions in the sparse grid by analyzing the relationship 
between the current element and its neighboring elements and fitting 
them with linear relationships. However, the relative relationship be-
tween signals is not always limited to the neighborhood, which mainly 
depends on the characteristics and sampling methods of different sig-
nals. Different from traditional algorithms, the New edge-directed 
interpolation (NEDI) [19,20] algorithm utilize the geometric duality 
between the covariance of low-resolution and high-resolution images to 
compute the values of pixels needed to be inserted in the high-resolution 
image, which can effectively discern the edge information of the image 
and achieve high-quality interpolation for signals with continuous edge 
features. Compressed sensing (CS) [21,22], which is also a typical 
nonlinear signal processing algorithm, it exploits the sparsity of signals 
to acquire their discrete samples through random sampling at a much 
lower rate than the Nyquist sampling rate, and then perfectly re-
constructs the signals through nonlinear reconstruction algorithms. 
Other methods such as support vector machines and deep learning [23, 
24] have also achieved good results in PA data processing, but they 
mainly use a large amount of data and parameters to fit the optimal 
solution, which is quite different from the method of estimating high 
sampling rate signals through analysis and calculation. 

Researchers have conducted in-depth studies on the causes of arti-
facts in the reconstruction process, and the results show that when the 
PA data is sufficiently dense, artifacts in the reconstruction can be 
significantly reduced [25]. Among the aforementioned reconstruction 
methods, BP, DAS, and TR, are closely related to the quality of the PA 
signal sampling, and interpolation methods therefore have an important 
impact on PA reconstruction. Among interpolation methods, machine 
learning-based interpolation methods have better performance, but they 
require a large amount of work and high computational performance 
requirements, making it difficult to meet real-time and fast application 
scenarios. Mainstream computational interpolation methods are faster 
and can effectively improve the quality of PA reconstructed images, but 
often perform poorly in sparse sampling scenarios. With the continuous 
development of ultrasound transducer technology and processes, the 
working frequency of PA signals continues to increase [26], which 
makes the sparsity problem of PA signals mainly due to their spatial 
sampling density. In practical applications, the sparsity of PA signals can 
be caused by limitations in application scenarios and sensor sizes, or by 
actively reducing sampling density to increase the efficiency of PA 

imaging systems. 
To improve the accuracy of PA signal interpolation under sparse 

sampling, this paper proposes a novel extremum-guided interpolation 
(EGI) algorithm based on the structural characteristics of sparse signals. 
The algorithm utilizes the continuity of PA signals in the temporal and 
spatial domains and achieves interpolation of sparse signals using a 
simple extremum function. Compared to methods such as NEDI and CS, 
the proposed method does not require complex calculations, and it can 
effectively improve the quality of PA reconstruction under sparse sam-
pling. Image quality assessment (IQA) is used in simulation to evaluate 
the reconstruction results and compare the performance of various al-
gorithms under various conditions. The simulation and experiment re-
sults show that the proposed method has better performance in sparse 
reconstruction. 

2. Extremum-guided interpolation 

2.1. EGI algorithm 

To enhance the quality of reconstructed images, spatial interpolation 
is required for the acquired PA signal data before image reconstruction. 
The EGI algorithm uses a combination of nonlinear functions within a 
certain search range to select local extremum signals as interpolation 
signals, thus approximating the high-sampling rate signal. 

During the sound pressure signal acquisition with a full-ring sensor 
array, assuming there are m sensors and n total time-domain sampling 
points, generally n≫m, the signal data format is a matrix of size m× n. 
For an ring sensor array, the matrix can be expanded by adding an extra 
row, where the first m rows are the same as the signal data matrix, and 
the (m + 1)-th row vector is the same as the first row vector of the signal 
data matrix, resulting in a matrix A of size (m + 1)× n. 

Let xi denote the i-th row vector of matrix A, xi(k) denote the k-th 
element of the i-th row vector of matrix A, yj denote the interpolated 
vector between xj and xj+1, and yj(k) denote the k-th element of yj. Here, 
i = 1,2, .,(m + 1),j = 1,2, .,m, k = 1,2, .,n, and the search half-width is 
set as d. 

Firstly, linear interpolation is performed on the part of the matrix 
within a distance of d from the edge, namely the elements satisfying the 
condition k = 1,2, .,d,(n − d + 1),(n − d + 2), .,n, as shown in Eq. (1): 

yj(k) =
xj(k) + xj+1(k)

2
, (1) 

Next, we process the elements satisfying k = (d+1), (d+2), ., (n − d)
in vectors xj and xj+1. Based on the continuity of signals in the spatial 
dimension, the signal combinations in symmetric position regions can be 
roughly classified into three categories: "signal and signal," "signal and 
background," and "background and background." To determine the 
possible signals at the interpolation position, a minimum value function 
can be used for a simple judgment process, as shown in Fig. 2. 

Fig. 1. PA imaging.  
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Since the use of functions is mainly for judging the amplitude of the 
signal, the simultaneous occurrence of positive and negative signals may 
cause the function output to be abnormal. Therefore, the selection is 
decomposed into two parts deviating from the reference value: 

αj(k) = { xj(k), xj(k) > 0 0, xj(k) ≤ 0,
βj(k) = { xj(k), xj(k) < 0 0, xj(k) ≥ 0, (2) 

Among them, αj(k) represents the k-th pixel of the positive vector αj, 
and βj(k) represents the k-th pixel of the negative vector βj. 

Following the logic in Fig. 2, the signal is processed by comparing the 
elements corresponding to the symmetric center in two rows of vectors, 
and the minimum value is taken: 

pl(k) = min
{

αj
(
k − d + l

)
,αj+1

(
k + d − l

)}
,

nl(k) = min
{
− βj

(
k − d + l

)
, − βj+1

(
k + d − l

)}
,

(3) 

Using the minimum value function within a certain search width 
centered at the k-th pixel, sets of values {p1(k), p2(k), ., pd(k)} and {n1(k)
, n2(k), ., nd(k)} can be obtained with the k-th pixel as the symmetric 
center. Those sets of values not only includes possible signal values but 
also possible background signal values. In order to screen out the 
background signal values contained therein and to select the most likely 
signal values at the corresponding position, a simple maximum value 
function can be used to process the results obtained from Eq. (3) based 
on the continuity of signals in the time dimension, as shown in Fig. 3. 

Following the above method, the elements pl(k) and nl(k) satisfying 
the conditions l = 1, 2, ., d are separately processed using the maximum 
value function: 

Pl(k) = max{p1(k), p2(k), ., pd(k)},
Nl(k) = max{n1(k), n2(k), ., nd(k)},

(4) 

By adding the sign according to the positive or negative nature of the 
signal, the expression of the interpolation result yj(k) can be obtained as: 

yj(k) = Pl(k) − Nl(k) (5) 

Vector yj is composed of yj(k) and inserted between vectors xj and 
xj+1 in matrix A. The above process is repeated from j = 1 to j = m in 
order, and the (2m) × n interpolation result matrix B is obtained by 
removing the (2m + 1)-th row vector as follows: 

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1(1) x1(2) ⋯ x1(n)
y1(1) y1(2) ⋯ y1(n)
x2(1) x2(2) ⋯ x2(n)

⋮ ⋮ ⋱ ⋮
xm(1) xm(2) ⋯ xm(n)
ym(1) ym(2) ⋯ ym(n)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (6) 

Since the iterative interpolation method is based on row vectors, the 
interpolation rate of this method should be 2N, where N is the number of 
iterations. The processing process is shown in Fig. 4. 

2.2. Input parameters 

From the principles of the EGI algorithm described earlier, it can be 
inferred that the only tunable parameter for the EGI algorithm is the 
search half-width d. For photoacoustic imaging using a ring array sensor, 
the selection of this parameter can be determined by the structural pa-
rameters of the array itself. 

Due to differences in the distribution of sensors, the time at which the 
same signal is received by different sensors will vary slightly. Generally, 
when the sound pressure signal is in the internal region of the array, the 
closer the signal source is to the edge of the sensor array, the longer the 
time interval between adjacent sensors receiving the signal. The geo-
metric relationship is shown in Fig. 5. 

There, Sensor1 represents the sensor used as a reference for the 
current search half-width, Sensor2 represents the adjacent sensor on the 
same side as the signal source, and Sensor2∗ represents the adjacent 
sensor on the opposite side of the signal source. Therefore, L1 denotes 
the distance between the source and Sensor2∗, L2 denotes the distance 
between the source and Sensor1, and L3 denotes the distance between 
the source and Sensor2. R is the radius of the sensor array, r represents 
the radius of the arc formed by the possible locations of the signal 

Fig. 2. Data interpolation process (White represents background, black repre-
sents signal). 

Fig. 3. Filter signal with extremal function (The gray depth represents the strength of the signal, with white being the background).  

Fig. 4. Data interpolation process.  
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source, θ is the deflection angle between Sensor1 and Sensor2, and α is 
the deflection angle between Sensor1 and source. From their geometric 
relationship, it is easy to see that the distance difference between 
adjacent sensors reaches its maximum value when the signal source is 
close to the edge of the sensor array. However, it is not easy to directly 
determine which one is larger between (L1 − L2) and (L2 − L3). There-
fore, we analyze them based on their geometric relationship. Given θ, R, 
and r, where θ is typically less than π2 and r ∈ [2R sin θ,2R], we can derive 
the following relationship from geometry: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

α = arcsin
r

2R
L3 = 2Rsin(α − θ)

L2 = r

L1 = 2Rsin(α + θ)

(7) 

Substituting Eq. (7) into the expression (L1 − L2) − (L2 − L3), we can 
simplify it to obtain: 

(L1 − L2) − (L2 − L3) = 2Rsin(α+ θ) + 2Rsin(α − θ) − 2r

= 4Rsinα cos θ − 2r = 2r(cos θ − 1) < 0 (8) 

Let V be the sound velocity, ΔT be the time difference between two 
adjacent sensors receiving the signal, and Δt be the sampling time in-
terval of the sensors. From Eq. (8), (L1 − L2) < (L2 − L3) can be inferred, 
and the positional difference Δd of signals originating from the same 
source in the sampling direction of the matrix space can be obtained: 

Δd =
ΔT
Δt

=
L2 − L3

VΔt
=

r − 2R sin
(
arcsin r

2R − θ
)

VΔt
(9) 

According to the principle of the EGI algorithm, when d ≥ Δd
2 , the 

capture of all fragmented signals can be completed. Considering that in 

practical applications, the signal source is not located right next to the 
sensor, and a larger value of d may introduce additional errors,d is taken 
as d =

[
CΔd

2

]
. Here, C is a positive number less than 1, which is used to 

constrain the search half-width d. The expression for the search half- 
width d is defined as: 

d =

⎡

⎣C
r − 2R sin

(
arcsin r

2R − θ
)

2VΔt

⎤

⎦ (10)  

3. Simulation and analysis 

3.1. Signal simulation 

The PA signals were simulated using the k-wave toolbox based on 
MATLAB [27]. To better simulate real-world scenarios, we designed a 
head model with complex structures and grayscale variations, as shown 
in Fig. 6(a). The original sound pressure distribution generated by the 
models is shown in Fig. 6(b). The sensor data visualization is shown in 
Fig. 6(c). 

The original sound pressure distribution area was a square of size 
120mm× 120mm, and a ring array with a radius of 55mm was used. The 
ring array was centered at the symmetrical center of the sound pressure 
distribution area. The simulation grid size was set to 640× 640, where 
the size of the medium region was 600× 600, and the corresponding size 
of each pixel is 0.2mm× 0.2mm. A perfect matched layer was located at 
the edge of the sound pressure distribution area with a width of 20. The 
sound speed of the medium was set to 1500m/s, and the sampling in-
terval was 40ns. In more mature photoacoustic imaging applications, the 
number of sensors in a ring array is often 256, or 512 [28,29]. 
High-quality photoacoustic reconstruction images can be obtained with 
sufficient quality using data at this number. Therefore, in the subsequent 

Fig. 5. The geometric relationship between sensors and source.  

Fig. 6. PA simulation with 256 sensors. (a) Head model; (b) Sound pressure distribution; (c) Sensor data.  
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simulations and experiments, apart from directly conducting re-
constructions (where the number of sensors used for reconstruction is 
the same as the number of sensors used for forward simulation), the 
number of sensors used for reconstruction is set to 256 (i.e., the sparse 
sampled data is processed through an algorithm to make it equivalent to 
256 samples). 

3.2. EGI processing and reconstruction 

Assuming there are m sensors and n total time-domain sampling 
points, the signal data format is a matrix of size m× n. For the elements 
in this matrix, the search half-width d is only related to the column 
number where the element is located. Therefore, in practical calcula-
tions, it is only necessary to generate a vector of length n that stores the 
half-width d according to the order of matrix columns. When performing 
EGI, the vector can be called directly. This can greatly improve the speed 
of the interpolation algorithm without the need to recalculate the size of 
d for each element. 

For the simulated signal obtained in Section 3.1, the total number of 
spatial sampling points is 256. Here, it is reduced to 128 sensors shown 
in Fig. 7(a). With C = 0.2, we compute d using Eq. (10) and obtain the 
corresponding search half-width vector shown in Fig. 7(b). 

And the reconstruction is carried out using several typical recon-
struction algorithms such as BP, DAS, and TR, and the results are shown 
in Fig. 8. 

From the reconstruction results in Fig. 8, it can be seen that the EGI 
algorithm can significantly suppress image artifacts and improve the 
quality of photoacoustic reconstruction. Several typical photoacoustic 
reconstruction algorithms were used in the above simulation, among 
which the BP algorithm is simple and easy to implement, and has an 
advantage in imaging larger objects, but the imaging effect is poor for 
smaller structures or high-frequency components. The DAS algorithm 
can effectively suppress noise and interference, and has good imaging 
quality, but requires accurate parameter adjustment and calculation. TR 
can handle more complex imaging problems, and has good imaging ef-
fect on high-frequency components, but has a large calculation amount 
and is difficult to use in real-time systems. According to the analysis 
results in reference [25], the interpolation algorithm can provide suffi-
ciently dense signal data to significantly improve the quality of recon-
struction results, although its performance may vary among different 
reconstruction algorithms, the quality of the reconstructed image is still 
directly related to the data used for reconstruction. Although the choice 
of reconstruction algorithm has a significant impact on the quality of the 
imaging, in order to objectively compare the effects of various signal 

processing algorithms on the reconstruction results, in the algorithm 
research in the later part of the text, we will use the TR algorithm, which 
has advantages in imaging details and does not require consideration of 
data filtering issues, as the basic reconstruction algorithm. 

3.3. Effects of noise to EGI 

Using a perfect signal without noise does not prove the effectiveness 
of the algorithm, as various complex factors such as optical absorption, 
non-uniformity of the light beam, electronic noise, and background 
noise can affect the signal in practical applications, leading to various 
forms of noise in the photoacoustic signal [30–32]. To study the per-
formance of the EGI algorithm under the influence of these noise factors, 
128 sensors data is used as an example, and two simulation scenarios are 
mainly considered: point-like random noise and non-uniformity of the 
signal at the sensor level. 

For point-like random noise, additive Gaussian white noise is simu-
lated. The standard deviation is set to 0.2, and the mean is set to 0, with 
noise proportions of 30 %, 50 %, 70 %, and 90 %, respectively. Then, 
the EGI algorithm is used for interpolation and the TR algorithm is used 
for reconstruction, and the results are shown in Figs. 9–10. 

Similarly, for the non-uniform noise, the vector along the axis of the 
data time sampling point is taken as the unit. Multiplying it with a 
random Gaussian distribution with a mean of 1 and a standard deviation 
of 0.2, the noise proportions are set to 30 %, 50 %, 70 %, and 90 %, 
respectively. The EGI algorithm is used for interpolation, and the TR 
algorithm is used for reconstruction. The results are shown in  
Figs. 11–12. 

From Figs. 9–12, it can be seen that under the influence of both point- 
wise and non-uniform noise, the EGI algorithm can accurately capture 
the discontinuities in the signal and insert signal values at appropriate 
locations. Even in the case where the noise proportion is as high as 90 %, 
the algorithm can effectively restore the details of the image and sup-
press the generation of artifacts. 

The results show that the EGI algorithm is not sensitive to noise. 
Although the EGI algorithm cannot directly remove the inherent noise in 
the sampled signal, the noise is smoothed to some extent from the re-
sults. In practical applications, various methods can be used to reduce 
noise and calibrate sensor amplitudes, and combined with the EGI al-
gorithm, can achieve relatively ideal interpolation results. 

3.4. Comparison of sparse reconstruction 

In practical applications, interpolation methods are commonly used 

Fig. 7. Signal processed with EGI. (a) Data with 128 sensors; (b) Vector of search half-width.  
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to process sparsely sampled data to improve the performance of PA 
reconstruction. In [25], the researchers explained the cause of recon-
struction artifacts and demonstrated that interpolation methods can 
generate a sufficiently dense grid for numerical computations, thus 
reducing reconstruction artifacts. 

According to the conclusion in [17], traditional interpolation 
methods such as NI, LI, and SI have similar performance in PA recon-
struction and produce comparable improvements in reconstructed im-
ages. Therefore, only the NI method was selected for comparison among 
traditional methods. When using the NEDI method to process images, it 

Fig. 8. PA reconstruction with 128 sensors. (a) Reconstruction with BP; (b) Reconstruction with DAS; (c) Reconstruction with TR; (d) Reconstruction with EGI and 
BP; (e) Reconstruction with EGI and DAS; (f) Reconstruction with EGI and TR. 

Fig. 9. Interpolation of data with random noise at 128 sensors. (a1–a2) Noise proportions of 30 %; (b1–b2) Noise proportions of 50 %; (c1–c2) Noise proportions of 
70 %; (d1–d2) Noise proportions of 90 %. 
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usually produces more effective interpolation results than traditional 
algorithms in images with rich edge information. Following the method 
in Ref. [20], a window size of 8 × 8 is chosen, and a local variance 
threshold set to 8. When using CS algorithm to recover sparse signals, 
since the photoacoustic signal is sparse in spatial domain, the 
two-dimensional photoacoustic signal is unfolded into one dimension 
along the spatial sampling direction., following the approach described 
in references [21,22], the signal recovery problem is formulated as a 
constrained optimization problem with l1 norm regularization. The re-
covery of the signal is formulated as the solution to the underdetermined 
equation, and the CVX toolbox [33] is used for the computation. Due to 
the characteristics of the circular array photoacoustic data, random se-
lection of matrix data row vectors (a unit row vector is the complete 
temporal sampling data of a sensor) is used here for random sampling. 
Therefore, the observation matrix is constructed based on the corre-
sponding sampling method. And the discrete cosine transform matrix is 
chosen to be the sparse matrix. 

The number of sensors was reduced to 96, 80, 64, 48 and 32. The 
noise was set according to the settings in Section 3.3, with both noise 
levels set to 30 %, and other parameters unchanged. NI, NEDI, CS, and 
EGI algorithms were used to process the signal. The signal processing 
results are shown in Fig. 13, and the reconstruction results obtained 
using the TR algorithm are shown in Fig. 14. 

To objectively evaluate the performance of each algorithm, the 
image quality score was calculated using the original sound pressure 
distribution shown in Fig. 6(b) as a reference. And the results were ob-
tained with image quality assessment (IQA) algorithm, including PSNR, 
SSIM, and MSE [34,35], as shown in Table 1 and Fig. 15. 

From the results in Figs. 14–15, it can be seen that when using the NI 
algorithm, good imaging quality can be obtained at higher sampling 
rates, but as the sampling decreases, the image details deteriorate 
significantly, accompanied by obvious edge blur. When using the NEDI 
algorithm, good imaging results were also obtained at higher sampling 
rates, with fewer artifacts compared to the NI algorithm results, but 

Fig. 10. Reconstruction of data with random noise at 128 sensors. (a1–a2) Noise proportions of 30 %; (b1–b2) Noise proportions of 50 %; (c1–c2) Noise proportions 
of 70 %; (d1–d2) Noise proportions of 90 %. 

Fig. 11. Interpolation of data with non-uniformity at 128 sensors. (a1–a2) Noise proportions of 30 %; (b1–b2) Noise proportions of 50 %; (c1–c2) Noise proportions 
of 70 %; (d1–d2) Noise proportions of 90 %. 
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more edge details were lost when the sampling was reduced. When the 
CS algorithm was used to process the data, the imaging details obtained 
at higher sampling rates were slightly better than NI and NEDI under 96 

sensors. However, due to the sensitivity of the algorithm to noise, 
additional noise appeared in the processed signal, which had an adverse 
effect on the reconstruction results. As the sparsity level increased, the 

Fig. 12. Reconstruction of data with non-uniformity at 128 sensors. (a1–a2) Noise proportions of 30 %; (b1–b2) Noise proportions of 50 %; (c1–c2) Noise pro-
portions of 70 %; (d1–d2) Noise proportions of 90 %. 

Fig. 13. Signal processing results under different sparsity levels. (a1–a4) 96 sensors; (b1–b4) 80 sensors; (c1–c4) 64 sensors; (d1–d4) 48 sensors; (e1–e4) 32 sensors.  
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CS algorithm became increasingly difficult to recover the original signal 
from the observed signal, resulting in a significant drop in the quality of 
the reconstruction results. Without using a denoising algorithm, the EGI 
algorithm produced results with less noise than other algorithms, and 
could still recover image details well as the sparsity level increased. This 
indicates that the EGI algorithm performs better than other algorithms 
in sparse sampling photoacoustic reconstruction. 

It should be noted that as the sparsity level increases, the image 
quality of the results obtained by several algorithms decreases to varying 
degrees. When using the NI, NEDI, and CS algorithms, this deterioration 
in image quality is mainly manifested as the loss of image details and the 
increase of image artifacts, but the situation is different for the EGI 

algorithm. For the EGI algorithm, the deterioration in image quality is 
mainly manifested as the diffusion of strong signals, which corresponds 
to the principle of the EGI algorithm. The sparsity of the signal is 
manifested in the sinogram as the tearing of the signal band. Since the 
EGI algorithm has captured the vast majority of the torn signal, the er-
rors in the results obtained by this algorithm mainly come from those 
incorrectly connected signals, and as the sparsity level increases, the 
errors of this kind also increase. However, Eq. (3) determines that the 
EGI algorithm tends to choose smaller values, so as the number of iter-
ations increases, strong signal values will be excluded, making the 
diffusion of strong signals only related to the sparsity level. Therefore, 
this type of error is convergent, and the IQA results show that the EGI 

Fig. 14. TR reconstruction results under different sparsity levels. (a1–a4) 96 sensors; (b1–b4) 80 sensors; (c1–c4) 64 sensors; (d1–d4) 48 sensors; (e1–e4) 32 sensors.  

Table 1 
IQA results of TR reconstructions.  

IQA methods Interpolation methods Number of sensors 

96 80 64 48 32 

PSNR/dB NI 19.5167 17.7612 16.2132 15.2602 13.8233 
NEDI 18.9366 17.5055 17.2001 15.4960 13.5643 
CS 18.5475 17.5822 17.0671 14.3969 11.5774 
EGI 21.6137 20.1614 19.0232 17.9311 16.5161 

SSIM NI 0.6216 0.6394 0.6092 0.6077 0.5986 
NEDI 0.7265 0.7243 0.6924 0.6729 0.6566 
CS 0.7238 0.6805 0.5965 0.5408 0.4783 
EGI 0.7295 0.7183 0.7213 0.7083 0.6817 

MSE NI 0.0111 0.021 0.0189 0.0297 0.0414 
NEDI 0.0127 0.0177 0.019 0.0282 0.0440 
CS 0.0139 0.0174 0.0196 0.0363 0.0695 
EGI 0.0068 0.0096 0.0125 0.0161 0.0223  
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algorithm performs better at the same sparsity level. 
In addition, for photoacoustic imaging, researchers generally use 

methods such as adjusting the wavelength and using contrast agents to 
enhance the absorption of the photoacoustic signal by the region of in-
terest. In this scenario, the advantage of the EGI algorithm lies in its 
ability to prioritize the integrity of structures corresponding to strong 
signals. This feature can assist researchers in reconstructing target 
structures using fewer sensors than normal sparse conditions. 

3.5. Computational complexity 

Assuming there are m sensors and n total time-domain sampling 
points, generally n≫m. The number of iterations for interpolation using 
the EGI method is denoted as N. To analyze the time complexity of the 
EGI algorithm, let T(k) denote the time complexity of the EGI algorithm, 
f(k) be the problem size function, and k represent the problem size. Then 
we have T(k) = O[f(k)]. According to the EGI algorithm, the first layer of 
calculations involves taking the smaller value between two symmetric 
elements and performing two loops. The second layer searches within a 
half-width of d, and performs 2d+1 loops. The third layer traverses a 
vector of length n, although linear interpolation is used for edge pro-
cessing, it has little effect on the time complexity, and is still approxi-
mated as n loops. The fourth layer traverses a total of m rows of vectors. 
Since m doubles after each iteration, when the number of interpolation 
iterations is N, a total of m(2N − 1) loops are performed. Therefore, the 
problem size function of the EGI algorithm can be represented as f(m,n,
N) = 2(2d + 1)nm(2N − 1). If d tends to converge after N iterations, 
then d can be treated as a constant, and the time complexity can be 
obtained: 

T(m, n,N) = O
(
2Nmn

)
(11) 

It can be seen that when the number of iterations N remains un-
changed, the time complexity of the EGI algorithm can be considered 
linear. However, as the number of iterations increases, its time 
complexity will increase exponentially. 

Next, we compare the processing time of the NI, NEDI, CS and EGI 
algorithms for data processing. The simulations were performed on a 
desktop computer with a Windows 10 operating system, an i7-11700 
CPU with a clock frequency of 2.5 GHz, and a memory capacity and 
frequency of 32 GB and 3200 MHz, respectively. Take simulated PA 
signal data from sensors with quantities of 32, 48, 64, 80, and 96, and 
interpolate them to be equivalent to 256 sensors. It should be noted that 
the interpolation factor of the NEDI algorithm is 2N. The EGI algorithm 
performs interpolation iteratively, and its interpolation factor is similar 
to that of the NEDI algorithm, which is also 2N, where N is a positive 
integer. When using NEDI and EGI algorithms for processing, the 
interpolation factor is 4, and the parts that are less than 256 samples are 
filled using NI. As the data size increases, the computation required by 
CS algorithms increases drastically. Considering the high sampling fre-

quency of the signal, when using CS algorithms to process the signal, the 
temporal dimension of the data is compressed by a factor of 0.5 to 
reduce the computational load. The results are shown in the Table 2 and  
Fig. 16. 

As can be seen from the table, with an increase in the number of 
iterations, the EGI algorithm’s computation time increases, which is 
consistent with the analysis of time complexity mentioned earlier. 
However, this algorithm can still process data at a relatively fast speed 
even under low interpolation rate. Therefore, in practical applications, 
the EGI algorithm can be used for the initial iterations of data process-
ing, and simple algorithms such as NI can be used for processing when 
equivalent to higher density sampling. This approach can greatly 
accelerate the data processing speed while maintaining a high level of 
interpolation quality. 

3.6. Experimental data reconstruction 

In the experiment, a circular array is used for photoacoustic imaging 
of a phantom composed of agar blocks and leaf veins. The experimental 
setup, phantom, and schematic diagram are shown in Fig. 17. 

The circular transducer array has a radius of 50 mm and a sampling 
frequency of 40 MHz. The excitation source uses an optical parametric 
oscillator (SOLAR LP604), the wavelength of the excitation light is set to 
680 nm, and the maximum energy density on the surface is about 
4mJ/cm2. The light beam is expanded and coupled to a fiber optic 
bundle, forming an annular illumination field at the focal plane of the 
transducer array. The system is controlled by a high-precision delay 
generator (Stanford Research Systems, DG645). 

Due to the huge amount of computation and time is required for 
precise reconstruction using the TR algorithm. For efficiency consider-
ations, the DAS algorithm was used to reconstruct the photoacoustic 
image. The accuracy of the reconstructed image was 0.05 mm, and the 
size of the reconstructed image was 2000× 2000. The size of the target 
area was set to 800× 800, and its center coincided with the center of the 
reconstructed image. The original signal was sampled with 128 sensors 
and processed using NI, NEDI, CS, and EGI to make it equivalent to 256 
sampling, and then reconstructed using DAS algorithm. The results of 
data processing and image reconstruction are shown in Figs. 18–19. 

Based on the signal processing results of the experimental data in 

Fig. 15. Comparison of IQA results of NI, NEDI, CS, and EGI.  

Table 2 
Time cost.  

Data size NI (s) NEDI (s) CS (min) EGI (s) 

32 × 2829  0.0533  14.5005 ~ 3  1.9301 
48 × 2829  0.0539  25.3241 ~ 5  2.0119 
64 × 2829  0.0553  32.9577 ~ 6  2.0706 
80 × 2829  0.0561  47.0933 ~ 8  2.1748 
96 × 2829  0.0578  55.9613 ~ 11  2.2098  
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Fig. 18, the performance of the NI and NEDI algorithms is consistent 
with the simulation results. However, due to the strong noise in the 
experimental signal, the performance of the CS algorithm is slightly 
worse than the simulation, making it difficult to recover the complete 
original signal from the sparse signal. Based on the reconstruction re-
sults in Fig. 19, the main problems with the NI and NEDI algorithms are 
the blurring of the image edges and image artifacts, while the CS algo-
rithm performs better at the image edges than the NI and NEDI algo-
rithms, but the additional noise in the reconstructed signal leads to the 
loss of some image details. The EGI algorithm performs better than other 

algorithms in the reconstructed image, as it not only ensures the integ-
rity of the structural details of the image, but also better suppresses the 
generation of image artifacts and noise. 

4. Conclusion 

Sparse sampling in photoacoustic imaging is one of the main factors 
affecting the quality of reconstructed images. In this paper, we analyze 
the geometric physical relationship between adjacent sensor signals 
based on a circular array, establish the mathematical relationship be-
tween the deviation of the signal matrix in the time domain direction 
and the number of time sampling points, and propose an extremum- 
guided interpolation (EGI) algorithm. By utilizing the simple prior in-
formation of the continuity of the photoacoustic signal, the EGI algo-
rithm can estimate high sampling rate signals without complex 
constrained solving or operator calculations, only through nonlinear 
approximation. Simulation and experimental data validation show that 
the EGI algorithm is not sensitive to noise, can effectively improve the 
quality of actual photoacoustic reconstruction, and has a relatively fast 
computation speed, which is advantageous for its application in real- 
time systems. We hope to further improve the proposed algorithm in 
future work to increase its speed and performance. 
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