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Simple Summary: Immunotherapy leads to durable responses in a proportion of patients
with advanced melanoma. Combination immunotherapy is more efficacious than single-agent
immunotherapy, yet it is associated with significant toxicity. Currently there are no robust biomarkers
to guide first-line immunotherapy selection. We have developed a flow cytometry-based score, to
quantify the expression of antigen-presenting molecules MHC-I and MHC-II on melanoma cells, that
incorporates both the fraction of tumor cells expressing MHC molecules and the level of expression.
We demonstrate that the evaluation of tumor cell surface MHC-I expression aids in treatment selection,
with combination immunotherapy providing clinical benefit over single-agent immunotherapy in
MHC-I low melanoma with poor immune cell infiltration.

Abstract: Immunotherapy targeting T-cell inhibitory receptors, namely programmed cell death-1
(PD-1) and/or cytotoxic T-lymphocyte associated protein-4 (CTLA-4), leads to durable responses in a
proportion of patients with advanced metastatic melanoma. Combination immunotherapy results
in higher rates of response compared to anti-PD-1 monotherapy, at the expense of higher toxicity.
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Currently, there are no robust molecular biomarkers for the selection of first-line immunotherapy.
We used flow cytometry to profile pretreatment tumor biopsies from 36 melanoma patients treated
with anti-PD-1 or combination (anti-PD-1 plus anti-CTLA-4) immunotherapy. A novel quantitative
score was developed to determine the tumor cell expression of antigen-presenting MHC class I
(MHC-I) molecules, and to correlate expression data with treatment response. Melanoma MHC-I
expression was intact in all tumors derived from patients who demonstrated durable response
to anti-PD-1 monotherapy. In contrast, melanoma MHC-I expression was low in 67% of tumors
derived from patients with durable response to combination immunotherapy. Compared to MHC-I
high tumors, MHC-I low tumors displayed reduced T-cell infiltration and a myeloid cell-enriched
microenvironment. Our data emphasize the importance of robust MHC-I expression for anti-PD-1
monotherapy response and provide a rationale for the selection of combination immunotherapy as
the first-line treatment in MHC-I low melanoma.

Keywords: immune checkpoint blockade; anti-PD-1; combination immunotherapy; major
histocompatibility (MHC) class I; metastatic melanoma

1. Introduction

Immunotherapy has transformed the clinical management of advanced melanoma, resulting in
durable responses and improved patient survival. Immune checkpoint inhibitors directed against
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein-1 (PD-1) on
T-cells, facilitate immune recognition of tumor neo-antigens and immune-mediated tumor control [1–4].
Combination (anti-PD-1 plus anti-CTLA-4) immunotherapy results in higher objective response rates
(58% as compared to 45% for anti-PD-1 and 19% for anti-CTLA-4 alone) and superior progression-free
and overall survival [5]. However, severe (grade 3 or 4) immune-related toxicities are also 1.6 times
more frequent with combination immunotherapy compared to anti-PD-1 monotherapy, often resulting
in treatment discontinuation [2,3]. Patients with asymptomatic brain metastases, BRAFV600-mutant
melanoma or elevated serum lactate dehydrogenase (LDH) derive an incremental benefit from
combination immunotherapy when compared to single agent anti-PD-1 [5,6], however routine upfront
combination immunotherapy for stage IV melanoma patients is not cost-effective [7]. Thus, there
is an unmet clinical need to accurately select melanoma patients who require combination rather
than single agent immunotherapy based on objective criteria, in addition to the above-mentioned
clinicopathologic features.

We recently reported that transcriptional downregulation of the major histocompatibility complex
class I (MHC-I) molecules on melanoma cells was associated with melanoma de-differentiation and
resistance to anti-PD-1 monotherapy [8]. In this study, we extended our analyses to include pretreatment
tumor samples derived from patients who received combination (anti-PD-1 plus anti-CTLA-4)
immunotherapy. We employed novel flow cytometry tools to evaluate MHC-I, MHC-II and PD-L1
expression on tumor cells, and correlated expression data with tumor immune contexture. We found
that downregulation or loss of MHC-I molecules on melanoma cells is associated with low MHC-II and
PD-L1 expression and poor T-cell infiltration into the tumor. Significantly, although these characteristics
were associated with lack of response to anti-PD-1 monotherapy, they did not preclude response to
combination immunotherapy. Thus, melanoma patients with low MHC-I expression on tumor cells
may preferentially benefit from first-line combination immunotherapy.
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2. Results

2.1. Disease Characteristics and Response Assessment

The study included pre-treatment melanoma biopsies from 36 patients subsequently treated
with anti-PD-1 (17/36, 47%) or combination (anti-PD-1 plus anti-CTLA-4) immunotherapy (19/36,
53%) (Table 1 and Figure 1a). In this cohort, patients receiving combination immunotherapy were
younger (median age 56 versus 70) and 47% had BRAFV600-mutant melanoma compared to 12% for
anti-PD1 monotherapy. Prior treatment was administered in 3/17 (18%) patients who received anti-PD-1
alone (Ipilimumab in two patients and combination BRAF/MEK inhibitor in one patient), whereas no
patients who received combination immunotherapy had prior systemic therapy. Time from biopsy
to the start of treatment was 0–328 days (median, 85 days for anti-PD-1 and 98 days for combination
immunotherapy).

Table 1. Baseline patient characteristics.

Clinical Characteristics Single Agent PD-1 (n = 17) Combination Immunotherapy (n = 19)

Age
Median (range) 70 (42–88) 56 (28–72)

Sex, n (%)
Male 8 (47) 14 (74)

Female 9 (53) 5 (26)

Stage (AJCC 8th edition), n (%)
Unresectable IIIc 1 (6) 2 (11)

M1a 3 (18) 0
M1b 3 (18) 2 (11)
M1c 6 (35) 8 (42)

Mutation, n (%)
BRAF V600 2 (12) 9 (47)

BRAF non-V600 0 1 (5)
N/KRAS 7 (41) 2 (11)

BRAF/NRAS wild type 8 (47) 7 (37)

Line of treatment, n (%)
First line 14 (82) 19 (100)

Second line * 3 (18) 0

RECIST response, n (%)
CR/PR 12 (71) 15 (79)
SD/PD 5 (29) 4 (21)

Biopsy site, n (%)
LN 6 (35) 8 (42)
SC 6 (35) 7 (37)

Non-brain visceral 1 (6) 1 (5)
Brain 4 (24) 3 (16)

Pre-treatment biopsy timing
Median (Range) 85 (0–328) 98 (7–274)

Progression free survival
Median NR NR
6-month 82% 68%

Overall Survival
Median NR NR

12-month 88% 84%

* One patient received combination Dabrafenib and Trametinib in the neoadjuvant/adjuvant setting and two patients
received single agent Ipilimumab as first-line therapy. Abbreviations: AJCC, American Joint Committee on Cancer;
RECIST, Response Evaluation Criteria In Solid Tumors; CR, complete response; PR, partial response; SD, stable
disease; PD, progressive disease; NR, not reached; LN, lymph node; SC, subcutaneous.
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Figure 1. Tumor expression of MHC-I is associated with response to PD-1 inhibitor monotherapy, 

but not combination immunotherapy. (a) Details of the 36 melanoma pre-treatment biopsies 

analyzed in this study, including 17 from patients subsequently treated with anti-PD-1 (aPD-1) and 

19 from patients treated with combination (aPD-1+aCTLA-4) immunotherapy. Patient responses as 

defined by RECIST criteria, biopsy site, driver mutations and LDH status are shown. CR, complete 

response; PR, partial response; SD, stable disease; PD, progressive disease; LN, lymph node; SC, 

subcutaneous, Visceral, non-brain visceral, ULN, upper limit of normal. (b) Representative flow 

cytometry analysis showing melanoma cell gating and calculation of the MHC-I expression score. 

Histograms show expression of MHC-I on melanoma cells (red) and healthy control peripheral blood 

mononuclear cells (HC-PBMC; blue shaded histogram). (c) Lack of tumor MHC-I expression in two 

B2M-deficient melanoma biopsies, with MHC-I score indicated. An MHC-I positive melanoma 

tumour was included for comparison. (d) B2M protein expression in short-term melanoma lines 

derived from the melanoma biopsies shown in (c); kDa, kilodalton. (e) Melanoma MHC-I expression 

score, stratified by therapy and patient’s response. Boxes show the interquartile range and the 

median, with Mann-Whitney’s p value indicated. Dotted line indicates positivity threshold (=1.0). 

Values below 0.01 are shown as zero. (f) Correlation matrix of melanoma cell expression of MHC-I, 

MHC-II, PD-L1 and PD-L2. Spearman’s rank correlation values are shown within the matrix, with 

asterisks indicating the p values (*p < 0.05; **p < 0.01; ***p < 0.001). (g) Venn diagram showing the 

distribution of tumors with low/negative MHC-I (score <1.0, n = 14), low/negative MHC-II (score 

<0.1, n = 16) and low/negative PD-L1 expression (score <1.0, n = 10). 

2.2. Response to Combination Immunotherapy in MHC-I Low Melanoma 

To examine criteria that may govern differential responses to single agent versus combination 

immunotherapy, we employed flow cytometry to evaluate expression of the antigen-presenting 

molecule MHC-I on melanoma cells (Supplementary Figure S1a–c, Figure 1b). The expression of 

MHC-I on tumor cells is critical for CD8 T-cell receptor engagement and the resultant tumor killing 

[9], and melanoma loss of MHC-I has been associated with tumor progression [8,9]. 

To enable quantitative comparisons across multiple experiments, we applied a flow cytometric 

quantitative score that reflects both the fraction of tumor cells expressing the marker, and the level of 

marker expression (Figure 1b). The validity of this assay was confirmed with the identification of 

Figure 1. Tumor expression of MHC-I is associated with response to PD-1 inhibitor monotherapy, but
not combination immunotherapy. (a) Details of the 36 melanoma pre-treatment biopsies analyzed in
this study, including 17 from patients subsequently treated with anti-PD-1 (aPD-1) and 19 from patients
treated with combination (aPD-1+aCTLA-4) immunotherapy. Patient responses as defined by RECIST
criteria, biopsy site, driver mutations and LDH status are shown. CR, complete response; PR, partial
response; SD, stable disease; PD, progressive disease; LN, lymph node; SC, subcutaneous, Visceral,
non-brain visceral, ULN, upper limit of normal. (b) Representative flow cytometry analysis showing
melanoma cell gating and calculation of the MHC-I expression score. Histograms show expression of
MHC-I on melanoma cells (red) and healthy control peripheral blood mononuclear cells (HC-PBMC;
blue shaded histogram). (c) Lack of tumor MHC-I expression in two B2M-deficient melanoma biopsies,
with MHC-I score indicated. An MHC-I positive melanoma tumour was included for comparison.
(d) B2M protein expression in short-term melanoma lines derived from the melanoma biopsies shown
in (c); kDa, kilodalton. (e) Melanoma MHC-I expression score, stratified by therapy and patient’s
response. Boxes show the interquartile range and the median, with Mann-Whitney’s p value indicated.
Dotted line indicates positivity threshold (=1.0). Values below 0.01 are shown as zero. (f) Correlation
matrix of melanoma cell expression of MHC-I, MHC-II, PD-L1 and PD-L2. Spearman’s rank correlation
values are shown within the matrix, with asterisks indicating the p values (* p < 0.05; ** p < 0.01;
*** p < 0.001). (g) Venn diagram showing the distribution of tumors with low/negative MHC-I (score
<1.0, n = 14), low/negative MHC-II (score <0.1, n = 16) and low/negative PD-L1 expression (score <1.0,
n = 10).

2.2. Response to Combination Immunotherapy in MHC-I Low Melanoma

To examine criteria that may govern differential responses to single agent versus combination
immunotherapy, we employed flow cytometry to evaluate expression of the antigen-presenting
molecule MHC-I on melanoma cells (Supplementary Figure S1a–c, Figure 1b). The expression of
MHC-I on tumor cells is critical for CD8 T-cell receptor engagement and the resultant tumor killing [9],
and melanoma loss of MHC-I has been associated with tumor progression [8,9].

To enable quantitative comparisons across multiple experiments, we applied a flow cytometric
quantitative score that reflects both the fraction of tumor cells expressing the marker, and the level
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of marker expression (Figure 1b). The validity of this assay was confirmed with the identification
of MHC-I loss (MHC-I score <0.001, Figure 1c) in independent melanoma biopsies taken from two
patients who progressed while on anti-PD-1 treatment. Loss of MHC-I expression in both tumors
was associated with loss of the MHC-I invariant chain B2M in the corresponding biopsy-derived
melanoma cell lines (Figure 1d). Robust MHC-I expression (MHC-I score ≥1.0, where 1.0 is equivalent
to MHC-I expression on 100% of melanoma cells at similar expression levels to peripheral blood
mononuclear cells derived from a single healthy donor, used as a comparator across all analyses)
was found in all patients who responded (CR/PR) to anti-PD-1 monotherapy, but in only five out of
15 (33%) patients responding to combination immunotherapy, while expression in non-responders
was variable (Figure 1e). MHC-I expression correlated with tumor surface expression of MHC
class II (MHC-II) (Figure 1f, Supplementary Figures S1d–e and S2a–b) and the PD-1 ligand PD-L1
(Figure 1f, Supplementary Figure S2c–e), with considerable yet not complete overlap between MHC-I,
MHC-II and PD-L1 low/negative tumors (Figure 1g). All tumors in anti-PD-1 responder group were
positive for MHC-I and the majority (90%) also expressed MHC-II and PD-L1, whereas 60% of tumors
in combination immunotherapy responder group showed low/absent MHC-I, MHC-II and PD-L1
expression (Supplementary Figure S2a,d).

To gain insight into the immune environment of MHC-I low tumors, we examined baseline
T-cell infiltration in two patients (22 and 32), both with advanced BRAFV600-mutant melanoma, low
melanoma MHC-I expression (MHC-I score <0.1 in both pre-treatment biopsies, Figure 2a), but distinct
responses to immunotherapy. While patient 22 showed complete response following a single dose
of combination Ipilimumab and Nivolumab, patient 32 had disease progression on first restaging at
3 months, after 4 cycles of Pembrolizumab. Both patients developed immune-related adverse events
in response to immunotherapy, dermatitis, hepatitis, and thyroiditis (patient 22) or vitiligo (patient
32). The pre-treatment biopsies displayed similar patterns of immune cell infiltration, including
effector (CD45RO+) CD8 T-cells co-expressing the EOMES transcription factor, multiple inhibitory
receptors (PD-1, CTLA-4, TIM3, CD244, CD39) and markers of proliferation (Ki-67) and activation
(ICOS, 4-1BB) (Figure 2b–c), phenotypes previously associated with response to anti-PD-1 [10–13]. The
effector (CD45RO+) CD4 T-cells also exhibited similar phenotypes in both biopsies (Figure 2d). Thus,
whereas low MHC-I expression likely contributed to tumor escape from Pembrolizumab-induced T-cell
activation in patient 32, it did not preclude response to combination immunotherapy in patient 22.

Analysis of a previously published melanoma proteomics dataset [14] also confirmed that
expression of the MHC-I invariant chain B2M was significantly higher in pre-treatment biopsies derived
from 39 melanoma patients responding to anti-PD-1 monotherapy compared to 33 non-responding
patients (Supplementary Figure S2f). Taken together, these data confirm the importance of intact MHC-I
expression for response to anti-PD-1 monotherapy and emphasize that combination immunotherapy
could provide clinical benefit in MHC-low melanoma.

2.3. Clinicopathologic Features and Immune Contexture of MHC-I Low Tumors

We next examined tumor microenvironment and clinicopathologic features associated with MHC-I
downregulation. The cohort was dichotomized into melanoma MHC-I low (MHC-I score <1.0, n = 14)
and MHC-I normal/high (MHC-I score ≥1.0, n = 22). Clinical characteristic most strongly associated
with MHC-I downregulation was high serum LDH (Table 2 and Figure 1a). LDH ≥1.5 upper limit of
normal was found in 5/14 (36%) patients with MHC-I low tumors compared with only 1/22 (5%) for
MHC-I normal/high tumors (p = 0.02, Fisher’s exact test). Tumor immune (CD45+) infiltration was
positively correlated with MHC-I expression (Figure 3a). Among the eleven major immune subsets
analyzed (Supplementary Figure S3a), total T-cells expressing the αβ T cell receptor (TCR αβ) and CD8
T-cells were higher in MHC-I normal/high compared to MHC-I low tumors (Figure 3b, Supplementary
Figure S3b), while myeloid cells (macrophages/monocytes and myeloid dendritic cells) were enriched
in MHC-I low tumors, reflecting a shift from the T-cell-enriched to a myeloid cell-enriched immune
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environment. Thus, low tumor MHC-I expression was associated with myeloid predominance and
reduced tumor T-cell content.Cancers 2020, 12, x 6 of 13 
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Figure 2. Flow cytometric analysis of pretreatment biopsies from patient 22 and patient 32. (a) Expression
of MHC-I and MHC-II on melanoma cells. Left, melanoma cells gated as per Figure S1 (red) overlaid
onto total live events (pseudocolor plot). Right, melanoma MHC-I and MHC-II expression, with percent
positivity and expression scores indicated (red boxes, MHC-I; blue boxes, MHC-II). (b) Flow cytometric
analysis of T-cell subsets, gated for effector CD4 and CD8 T-cells (frequency among CD45RO+ T-cells
is indicated). (c,d) Flow cytometric analyses of tumor-infiltrating CD8 T-cells (c) or conventional
FOXP3-negative CD4 T-cells (d) from patient 22 and patient 32, with healthy control (HC)-PBMC shown
for comparison. Boxes show frequencies of gated cells, except red boxes that show frequency of T-cells
expressing multiple inhibitory receptors (indicated) as defined by Boolean gating.

Table 2. Baseline clinicopathologic characteristics according to tumor MHC-I expression.

Clinical Characteristics
MHC-I Low

(n = 14)
MHC-I Normal/High

(n = 22) p Value

Age, n (%)
Age < 65
Age ≥ 65

10 (71)
4 (29)

10 (45)
12 (55) 0.18

Sex, n (%)
Male

Female
10 (71)
4 (29)

12 (55)
10 (45) 0.48

Biopsy site, n (%)
SC or LN

Non-lung visceral
Brain

11 (79)
0

3 (21)

16 (73)
2 (9)
4 (18)

1.0
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Table 2. Cont.

Clinical Characteristics
MHC-I Low

(n = 14)
MHC-I Normal/High

(n = 22) p Value

Mutation, n (%)
BRAF/N/KRAS mutation
BRAF/N/KRAS wild type

9 (64)
5 (36)

12 (55)
11 (45) 0.52

Stage (AJCC 8th edition), n
(%)

IIIc/M1a/b
M1c
M1d

4 (29)
4 (29)
6 (52)

7 (32)
10 (45)
5 (23) 0.27 *

LDH, n (%)
Normal

>1.0xULN
>1.5xULN

6 (43)
8 (57)
5 (36)

17 (77)
5 (23)
1 (5)

0.07
0.02

Years from primary, n (%)
≤3 years
>3 years

Unknown/occult

9 (64)
2 (14)
3 (22)

9 (41)
9 (41)
4 (18)

0.13

MHC-I normal/high, MHC-I score ≥1.0; MHC-I low, MHC-I score <1.0; p value, Fisher’s exact test; * M1d versus
IIIc/M1a/b/c; Abbreviations: LN, lymph node; SC, subcutaneous; LDH, Lactate dehydrogenase; ULN, upper limit
of normal.
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Figure 3. Immune contexture stratified by tumor MHC-I expression. (a) Correlation of tumor immune
infiltration (CD45+ fraction) and melanoma MHC-I expression score, with Spearman’s rank correlation
coefficient and the p value indicated. (b) Immune contexture (percent of CD45+ fraction) of MHC-I
normal/high (MHC-I score ≥1.0) and MHC-I low/negative tumors (MHC-I score <1.0). Values below
0.1% are shown as zero. Boxes indicate the interquartile range and the median. Statistically significant
comparisons (Mann-Whitney’s test) are indicated (* p < 0.05; ** p < 0.01; *** p < 0.001). Tumor-associated
macrophages and monocytes (TAM+Mono); T-cells expressing the αβ T-cell receptor (TCRαβ) or
the γδ T-cell receptor (TCRγδ); TCRαβ conventional CD4+FOXP3- T-cells (CD4 Tconv) or regulatory
CD4+FOXP3+ T-cells (TRegs); natural killer (NK) cells; plasmacytoid dendritic cells (pDC); CD1c+

myeloid DC (mDC); granulocytes (GRAN). (c) PD-L1 expression score on melanoma cells (left panel),
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tumor-associated macrophages (TAMs, middle panel) and tumor-infiltrating lymphocytes (TILs, right
panel) in MHC-I low (blue) and MHC-II high tumors (red). Boxes show the interquartile range and
the median, with Mann-Whitney’s p values indicated. (d) Regulatory T-cell/CD8 TIL ratio in tumor
biopsies, stratified by therapy and patient’s response. Boxes show the interquartile range and the
median, with Mann-Whitney’s p value indicated.

Surprisingly, although PD-L1 and MHC-I expression on tumor cells was strongly correlated,
PD-L1 was highly expressed by tumor-infiltrating lymphocytes and myeloid cells in both MHC-I
high and MHC-I low tumors (Figure 3c). Finally, we found that that regulatory T-cells were relatively
enriched in combination immunotherapy responders compared to anti-PD-1 monotherapy responders
(Figure 3d), and this difference could not be attributed to the variation in tumor MHC expression, nor
did it correlate with the relative myeloid fraction. The ratio also trended higher in both non-responder
groups, but the difference was not significant. These data suggest that combination immunotherapy
may provide therapeutic benefit in MHC-I low tumors by targeting tumor-infiltrating regulatory T-cells.

3. Discussion

In this study, we employed quantitative multiparameter flow cytometry to assess expression of
antigen-presenting molecules MHC-I and MHC-II on melanoma cells in pre-treatment biopsies from
patients subsequently receiving anti-PD-1 or combination (anti-PD-1 plus anti-CTLA-4) immunotherapy.
Using MHC scores that reflect both the fraction of tumor cells expressing the marker and the level
of expression, we found that intact expression of the MHC-I and MHC-II molecules on tumor cells
was strongly associated with response to anti-PD-1 monotherapy, but was not required for response
to combination immunotherapy. In particular, two thirds of patients who responded (PR/CR) to
combination immunotherapy displayed low MHC-I and MHC-II expression on melanoma cells, a
feature that we show is associated with poor baseline prognostic characteristics, including elevated LDH.
This is in line with standard clinical practice that selects patients with poor prognostic features, including
elevated LDH, for the more toxic combination immunotherapy over anti-PD-1 monotherapy. Although
mechanisms linking elevated LDH to poor prognosis are incompletely understood, LDH-associated
lactic acid may impede interferon-gamma production by tumor-infiltrating T-cells and NK cells thus
interfering with immune-mediated tumor control [15].

PD-1 blockade relies on “re-invigoration” of PD-1high effector CD8 T-cells [10,11] specific for
melanoma neo-antigens presented on MHC-I. Accordingly, tumor MHC-I downregulation or loss has
emerged as a mechanism of acquired resistance to anti-PD-1 monotherapy [9]. We recently confirmed
MHC-I downregulation as a common mechanism of resistance to anti-PD-1 monotherapy [8]. Our
current findings are consistent with the importance of MHC-I expression on tumor cells for response to
PD-1 inhibitor monotherapy. We now extend these findings by demonstrating that MHC-I expression
is not required for response to combined PD-1 and CTLA-4 blockade.

There is some controversy regarding MHC-I expression on melanoma cells as a potential predictor
of anti-PD-1 monotherapy response. Expression of MHC-I signature proteins was a strong predictor of
response to anti-PD-1 by proteomics analysis [14] but not by gene expression analysis [16,17], although
MHC-I gene expression did trend higher in anti-PD-1 responders compared to non-responders in
both studies and amplifications in MHC-I related genes were observed exclusively in responders to
anti-PD-1 monotherapy [16]. Our current findings confirm the importance of intact MHC-I expression
on tumor cells for response to anti-PD-1 monotherapy and indicate that combination immunotherapy
could overcome MHC-I downregulation or loss on tumor cells. These data are consistent with Rodig et
al. (2018) who reported that MHC-I and MHC-II expression on pretreatment tumors by IHC was not
predictive of response to combination immunotherapy in the CheckMate 069 study [18].

Rodig et al. also found that melanoma MHC-II but not MHC-I expression by
immunohistochemistry (IHC) was predictive of week-13 response to anti-PD-1 monotherapy in
the CheckMate 064 trial [18]. We now confirm that expression of MHC-I and MHC-II proteins on
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tumor cell surface is highly correlated, as was previously observed at both the transcript and protein
levels [19]. While it is difficult to directly compare flow cytometric- and immunohistochemistry-based
estimates of MHC expression, we found that IHC-defined thresholds associated with immunotherapy
response, 30% for MHC-I [18] and 1% [18] or 5% for MHC-II [20], identified only 43% of MHC-I low
tumors in our study and 50% or 83% of MHC-II low tumors, respectively. These results suggest that
the differences in the staining and scoring of MHC molecules [20], may account for the discrepancy in
the conclusions regarding in particular MHC-I expression as a determinant of anti-PD-1 monotherapy
response. We also demonstrate a tight correlation between MHC-I and PD-L1 proteins on tumor
cells, potentially providing an insight into the validity of PD-L1 expression as a predictive tool.
PD-L1 expression on melanoma cells is often regarded as a surrogate of interferon-γ driven immune
inflammation and by extension, the ongoing anti-tumor T-cell response [21]. While tumor positivity
for PD-L1 on immunohistochemistry alone was not predictive of patient outcomes [5,22], there was an
association between higher melanoma PD-L1 expression scores and improved survival of patients
receiving anti-PD-1 monotherapy [23]. However, PD-L1 regulation in melanoma cells is exceedingly
complex and PD-L1 expression may be driven by tumor-cell intrinsic mechanisms in a proportion
of patients who exhibit or develop resistance to anti-PD-1 monotherapy [8,24]. To this end, we
demonstrate a discrepancy in PD-L1 expression by tumor cells and immune cells within individual
biopsies, indicative of differential regulation in melanoma and immune cells in response to the same
microenvironmental cues.

Finally, it is not clear how combination immunotherapy provides clinical benefit in MHC-low,
myeloid cell-enriched tumors. Tumor MHC-II expression was proposed to stimulate cytotoxic CD4 T-cell
responses in a subset of patients [18]. Although the development of such cells has been documented in
animal models and linked to regulatory T-cell depletion by anti-CTLA-4 [25], there is no indication
that this mechanism also operates in humans [26]. We found that regulatory T-cell/CD8 T-cell ratio
was significantly elevated in combination immunotherapy responders, suggesting that combination
immunotherapy provides therapeutic benefit via regulatory T-cell targeting. Anti-CTLA-4-induced
blockade of regulatory T-cell function may contribute to the recruitment of novel adaptive immune
specificities, as evidenced by the frequent development of autoimmune complications on combination
immunotherapy [2], and some of these T-cell clones may eliminate tumor indirectly, such as by
targeting the microenvironment [27]. Alternatively, combination immunotherapy may reduce
metabolic fitness of immunosuppressive myeloid populations in the tumor microenvironment by
targeting regulatory T-cells [28]. Irrespective of the underlying mechanism, our results emphasize the
importance of intact tumor MHC-I expression for anti-PD-1 monotherapy response and indicate that
combination immunotherapy may provide clinical benefit irrespective of tumor MHC expression and
immune contexture.

4. Materials and Methods

4.1. Study Approval and Patient Details

Patients with unresectable stage III or IV melanoma treated with immune checkpoint inhibitors
at Melanoma Institute Australia and affiliated hospitals between May 2015 and August 2018, with
available enzymatically dissociated tumor tissue banked at the time of biopsy, were included in this
study. Written consent was obtained from all patients (Human Research ethics committee protocols
from Royal Prince Alfred Hospital; Protocol X15-0454 & HREC/11/RPAH/444). Tumor response was
assessed using the immune-related response criteria (irRC) [29]. Patients were treated with anti-PD-1
(Pembrolizumab or Nivolumab) monotherapy at currently approved doses, alone or in combination
with anti-CTLA-4 (Ipilimumab). All biopsies were assessed by an experienced pathologist prior to
tissue banking, and the presence of melanoma cells was confirmed by histopathology.
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4.2. Tissue Processing and Flow Cytometry

Tumor biopsies were enzymatically processed as previously described [8]. Briefly, cryopreserved
tumor dissociates were thawed and immediately stained with a mixture of fluorescently labeled
monoclonal antibodies (detailed in Supplementary Table S1) and Fc block to prevent non-specific
staining due to Fc receptor binding. Cells were fixed, permeabilized and stained with fluorescently
labeled antibodies against intracellular proteins plus Fc block in permeabilization buffer. Live Dead
near-infrared (NIR) fixable dye (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) was used to
exclude non-viable events. Samples were acquired on BD LSR-II Fortessa X20 flow cytometer (BD
Biosciences, Franklin Lakes, NJ, USA) and analyzed using FlowJo software v10.5 (TreeStar, Ashland,
OR, USA). All events were collected, and samples containing less than 200 viable melanoma cells were
excluded from the study.

Relative MHC-I expression (rMHC-I) was calculated as the geometric mean fluorescence intensity
(MFI) of MHC-I on melanoma cells divided by MHC-I MFI on donor PBMC. The MHC-I expression
score was then defined as rMHC-I × % marker positive-melanoma/100. MHC-II expression was
calculated as for MHC-I. Normal or high MHC-I expression was defined by an MHC-I score ≥1.0,
where 1.0 is equivalent to MHC-I expression on 100% of melanoma cells at similar expression levels to
control PBMCs. MHC-II positivity was defined by an MHC-II score ≥0.1, where 0.1 is equivalent to
MHC-II expression on 2% of melanoma cells at similar expression levels to control PBMCs. Expression
of PD-L1 and PD-L2 was calculated as a ratio of PD-L1 or PD-L2 MFI, divided over MFI of the
fluorescence minus one control (FMO, background fluorescence in the respective channel after omission
of PD-L1 and PD-L2 antibodies). PD-L1 expression score was calculated as rPD-L1 ×% marker-positive
melanoma/100.

4.3. Cell Culture and Immunoblotting

Short-term melanoma cell lines were maintained in Dulbecco’s Modified Eagle media
supplemented with 10% heat inactivated fetal bovine serum (FBS; Sigma-Aldrich, St Louis, MO,
USA), 4 mM glutamine (Gibco, Thermo Fisher Scientific, Waltham, MA, USA), and 20 mM HEPES
(Gibco), at 37 ◦C in 5% CO2. Cell authentication and profiling was confirmed using the StemElite ID
system from Promega. All cells tested negative for mycoplasma (MycoAlert Mycoplasma Detection Kit,
Lonza, Basel, Switzerland). For immunoblotting, total cellular proteins were extracted at 4 ◦C using
RIPA lysis buffer containing protease inhibitors and phosphatase inhibitors (Roche, Basel, Switzerland).
Proteins (40µg) were resolved on 12% SDS-polyacrylamide gels and transferred to Immobilon-FL
membranes (Millipore Sigma, Burlington, MA, USA). Western blots were probed with antibodies
against B2M (1:1000; D8P1H; Cell Signaling Technology, Danvers, MA, USA; Cat No. 12851) and
β-Actin (1:6000; AC-74; Sigma-Aldrich; Cat No. A5316).

4.4. Statistical Analyses

Patient demographics and clinicopathologic features including Eastern Cooperative Oncology
Group (ECOG) performance status, LDH levels at baseline, mutation status and American Joint
Committee on Cancer (AJCC) 8th Edition M stage [30] were collected according to treatment received
(single agent PD-1 versus combination immunotherapy) and MHC-I expression (MHC-I high/normal
versus low). Fisher’s exact test was used to compare the two groups. Progression free survival (PFS)
and overall survival (OS) were described via the Kaplan–Meier method from the start of therapy to
the date of last follow-up, disease progression, or date of death. Statistical analyses were carried out
using GraphPad Prism software v.8.1.1. Figure legends specify the statistical analysis used and define
error bars.
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5. Conclusions

In this study, we have developed a novel flow cytometry-based scoring system that accurately
measures the cell surface expression of antigen-presenting molecules, namely MHC-I and MHC-II, on
melanoma cells in patient-derived tumor biopsies. Using MHC scores that reflect both the fraction of
tumor cells expressing the marker and the level of expression, we found that the intact expression of
MHC-I molecules on tumor cells was strongly associated with a response to anti-PD-1 monotherapy,
but was not required for a response to combination immunotherapy. Our data indicate that the
flow-based assessment of MHC-I expression in pretreatment melanoma biopsies may aid in first-line
immunotherapy selection, by identifying patients with MHC-I-low melanoma that may preferentially
benefit from the more toxic combination (anti-PD-1 plus anti-CTLA-4) immunotherapy.

Mechanistically, we have found that pretreatment tumors derived from combination
immunotherapy responders are relatively enriched in suppressive regulatory T-cells, suggesting
that combination immunotherapy provides therapeutic benefit via direct or indirect regulatory
T-cell targeting.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/11/3374/s1,
Figure S1: Flow cytometric analysis of melanoma cells in enzymatically dissociated tumor biopsies; Figure S2:
Flow cytometric evaluation of tumor MHC-I, MHC-II and PD-L1 expression in pretreatment biopsies; Figure S3:
Immune contexture of individual melanoma biopsies; Figure S4: Uncropped images for Western blot gels used in
Figure 1.; Table S1: Antibodies and reagents used for flow cytometry.

Author Contributions: E.S., J.H.L., and H.R. designed the study, analyzed the data, and wrote the manuscript.
E.S., A.S., B.P., and P.F. conducted experiments. R.P.S., J.F.T., R.A.S., B.S., M.S.C., S.Y.L., A.M.M., G.V.L., and R.F.K.
acquired data. All authors read, corrected, and approved the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by Macquarie University, Melanoma Institute Australia, the New South Wales
Department of Health, NSW Health Pathology and National Health and Medical Research Council of Australia
(NHMRC) Program Grant 1093017, Cancer Institute NSW and the Sydney Vital Translational Cancer Research
Centre. H.R., R.A.S., and G.V.L. are supported by NHMRC Fellowships. G.V.L. is also supported by the University
of Sydney Foundation. A.M.M. is supported by a Cancer Institute NSW Fellowship. J.F.T. was supported by
the Melanoma Foundation of the University of Sydney. S.Y.L. is supported by Grant 1123911, awarded through
the Priority-driven Collaborative Cancer Research Scheme and co-funded by Cancer Australia and Cure Cancer
Australia Foundation. Support from the Ainsworth Foundation is also greatly acknowledged.

Conflicts of Interest: J.H.L. has received speaking honoraria from AstraZeneca and conference support from
BMS and Novartis. J.F.T. has been on advisory boards for MSD and BMS and has received honoraria and travel
support from GSK and Provectus. M.S.C. is an advisory board member for MSD, BMS, Novartis, Amgen, Roche,
Pierre Fabre, Merke, Sanofi, Eisai, Nektar, and Ideaya. R.A.S. receives professional services fees from Merck Sharp
& Dohme, GSK Australia, BMS, Novartis, Myriad, NeraCare and Amgen. A.M.M. is on the advisory board of
BMS, Merck (MSD), Novartis, Roche, and Pierre Fabre. G.V.L. is consultant advisor for Aduro, Amgen, Array,
Boehringer Ingelheim, BMS, Highlight Therapeutics, Merck Sharpe & Dohme, Novartis, Pierre Fabre, QBiotics,
Regeneron, and SkylineDx. R.F.K. has been on advisory boards for Roche, Amgen, BMS, MSD, Novartis and
TEVA and has received honoraria from MSD, BMS and Novartis. E.S., S.Y.L., A.S., B.P., P.F., B.S. and H.R. have no
competing interests to declare. The funders had no role in the design of the study; in the collection, analyses, or
interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.;
Schadendorf, D.; Hassel, J.C.; et al. Improved survival with ipilimumab in patients with metastatic melanoma.
N. Engl. J. Med. 2010, 363, 711–723. [CrossRef]

2. Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.;
Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated
Melanoma. N. Engl. J. Med. 2015, 373, 23–34. [CrossRef] [PubMed]

3. Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.-J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.;
Schadendorf, D.; Ferrucci, P.F.; et al. Overall Survival with Combined Nivolumab and Ipilimumab in
Advanced Melanoma. N. Engl. J. Med. 2017, 377, 1345–1356. [CrossRef] [PubMed]

http://www.mdpi.com/2072-6694/12/11/3374/s1
http://dx.doi.org/10.1056/NEJMoa1003466
http://dx.doi.org/10.1056/NEJMoa1504030
http://www.ncbi.nlm.nih.gov/pubmed/26027431
http://dx.doi.org/10.1056/NEJMoa1709684
http://www.ncbi.nlm.nih.gov/pubmed/28889792


Cancers 2020, 12, 3374 12 of 13

4. Schachter, J.; Ribas, A.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.;
Lotem, M.; et al. Pembrolizumab versus ipilimumab for advanced melanoma: Final overall survival results
of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet 2017, 390, 1853–1862.
[CrossRef]

5. Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.;
Wagstaff, J.; Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced
Melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [CrossRef]

6. Tawbi, H.A.; Forsyth, P.A.; Algazi, A.P.; Hamid, O.; Hodi, F.S.; Moschos, S.; Khushalani, N.I.; Lewis, K.;
Lao, C.D.; Postow, M.; et al. Combined Nivolumab and Ipilimumab in Melanoma Metastatic to the Brain. N.
Engl. J. Med. 2018, 379, 722–730. [CrossRef]

7. Verma, V.; Sprave, T.; Haque, W.; Simone, C.B.; Chang, J.Y.; Welsh, J.W.; Thomas, C.R. A systematic review of
the cost and cost-effectiveness studies of immune checkpoint inhibitors. J. Immunother. Cancer 2018, 6, 128.
[CrossRef]

8. Lee, J.H.; Shklovskaya, E.; Lim, S.Y.; Carlino, M.S.; Menzies, A.M.; Stewart, A.; Pedersen, B.; Irvine, M.;
Alavi, S.; Yang, J.Y.H.; et al. Transcriptional downregulation of MHC class I and melanoma de- differentiation
in resistance to PD-1 inhibition. Nat. Commun. 2020, 11, 1897. [CrossRef]

9. Sade-Feldman, M.; Jiao, Y.J.; Chen, J.H.; Rooney, M.S.; Barzily-Rokni, M.; Eliane, J.-P.; Bjorgaard, S.L.;
Hammond, M.R.; Vitzthum, H.; Blackmon, S.M.; et al. Resistance to checkpoint blockade therapy through
inactivation of antigen presentation. Nat. Commun. 2017, 8, 1136. [CrossRef]

10. Huang, A.C.; Postow, M.A.; Orlowski, R.J.; Mick, R.; Bengsch, B.; Manne, S.; Xu, W.; Harmon, S.; Giles, J.R.;
Wenz, B.; et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 2017,
545, 60–65. [CrossRef]

11. Thommen, D.S.; Koelzer, V.H.; Herzig, P.; Roller, A.; Trefny, M.; Dimeloe, S.; Kiialainen, A.; Hanhart, J.;
Schill, C.; Hess, C.; et al. A transcriptionally and functionally distinct PD-1(+) CD8(+) T cell pool with
predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 2018, 24, 994–1004.
[CrossRef] [PubMed]

12. Gide, T.N.; Quek, C.; Menzies, A.M.; Tasker, A.T.; Shang, P.; Holst, J.; Madore, J.; Lim, S.Y.; Velickovic, R.;
Wongchenko, M.; et al. Distinct Immune Cell Populations Define Response to Anti-PD-1 Monotherapy and
Anti-PD-1/Anti-CTLA-4 Combined Therapy. Cancer Cell 2019, 35, 238–255 e6. [CrossRef] [PubMed]

13. Daud, A.I.; Loo, K.; Pauli, M.L.; Sanchez-Rodriguez, R.; Sandoval, P.M.; Taravati, K.; Tsai, K.; Nosrati, A.;
Nardo, L.; Alvarado, M.D.; et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human
melanoma. J. Clin. Investig. 2016, 126, 3447–3452. [CrossRef]

14. Harel, M.; Ortenberg, R.; Varanasi, S.K.; Mangalhara, K.C.; Mardamshina, M.; Markovits, E.; Baruch, E.N.;
Tripple, V.; Arama-Chayoth, M.; Greenberg, E.; et al. Proteomics of Melanoma Response to Immunotherapy
Reveals Mitochondrial Dependence. Cell 2019, 179, 236–250 e18. [CrossRef] [PubMed]

15. Brand, A.; Singer, K.; Koehl, G.E.; Kolitzus, M.; Schoenhammer, G.; Thiel, A.; Matos, C.; Bruss, C.; Klobuch, S.;
Peter, K.; et al. LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK
Cells. Cell Metab. 2016, 24, 657–671. [CrossRef]

16. Liu, D.; Schilling, B.; Liu, D.; Sucker, A.; Livingstone, E.; Jerby-Arnon, L.; Zimmer, L.; Gutzmer, R.; Satzger, I.;
Loquai, C.; et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients
with metastatic melanoma. Nat. Med. 2019, 25, 1916–1927. [CrossRef] [PubMed]

17. Hugo, W.; Zaretsky, J.M.; Sun, L.; Song, C.; Moreno, B.H.; Hu-Lieskovan, S.; Berent-Maoz, B.; Pang, J.;
Chmielowski, B.; Cherry, G.; et al. Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy
in Metastatic Melanoma. Cell 2016, 165, 35–44. [CrossRef]

18. Rodig, S.J.; Gusenleitner, D.; Jackson, D.G.; Gjini, E.; Giobbie-Hurder, A.; Jin, C.; Chang, H.; Lovitch, S.B.;
Horak, C.; Weber, J.S.; et al. MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in
untreated metastatic melanoma. Sci Transl. Med. 2018, 10, eaar3342. [CrossRef]

19. Alavi, S.; Stewart, A.J.; Kefford, R.F.; Lim, S.Y.; Shklovskaya, E.; Rizos, H. Interferon Signaling Is Frequently
Downregulated in Melanoma. Front. Immunol. 2018, 9, 1414. [CrossRef]

20. Johnson, D.B.; Estrada, M.V.; Salgado, R.; Sanchez, V.; Doxie, D.B.; Opalenik, S.R.; Vilgelm, A.E.; Feld, E.;
Johnson, A.S.; Greenplate, A.R.; et al. Melanoma-specific MHC-II expression represents a tumour-autonomous
phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat. Commun. 2016, 7, 10582. [CrossRef]

http://dx.doi.org/10.1016/S0140-6736(17)31601-X
http://dx.doi.org/10.1056/NEJMoa1910836
http://dx.doi.org/10.1056/NEJMoa1805453
http://dx.doi.org/10.1186/s40425-018-0442-7
http://dx.doi.org/10.1038/s41467-020-15726-7
http://dx.doi.org/10.1038/s41467-017-01062-w
http://dx.doi.org/10.1038/nature22079
http://dx.doi.org/10.1038/s41591-018-0057-z
http://www.ncbi.nlm.nih.gov/pubmed/29892065
http://dx.doi.org/10.1016/j.ccell.2019.01.003
http://www.ncbi.nlm.nih.gov/pubmed/30753825
http://dx.doi.org/10.1172/JCI87324
http://dx.doi.org/10.1016/j.cell.2019.08.012
http://www.ncbi.nlm.nih.gov/pubmed/31495571
http://dx.doi.org/10.1016/j.cmet.2016.08.011
http://dx.doi.org/10.1038/s41591-019-0654-5
http://www.ncbi.nlm.nih.gov/pubmed/31792460
http://dx.doi.org/10.1016/j.cell.2016.02.065
http://dx.doi.org/10.1126/scitranslmed.aar3342
http://dx.doi.org/10.3389/fimmu.2018.01414
http://dx.doi.org/10.1038/ncomms10582


Cancers 2020, 12, 3374 13 of 13

21. Ribas, A.; Hu-Lieskovan, S. What does PD-L1 positive or negative mean? J. Exp. Med. 2016, 213, 2835–2840.
[CrossRef] [PubMed]

22. Carlino, M.S.; Long, G.V.; Schadendorf, D.; Robert, C.; Ribas, A.; Richtig, E.; Nyakas, M.; Caglevic, C.;
Tarhini, A.A.; Blank, C.U.; et al. Outcomes by line of therapy and programmed death ligand 1 expression
in patients with advanced melanoma treated with pembrolizumab or ipilimumab in KEYNOTE-006: A
randomised clinical trial. Eur. J. Cancer 2018, 101, 236–243. [CrossRef] [PubMed]

23. Daud, A.; Wolchok, J.D.; Robert, C.; Hwu, W.-J.; Weber, J.S.; Ribas, A.; Hodi, F.S.; Joshua, A.M.; Kefford, R.;
Hersey, P.; et al. Programmed Death-Ligand 1 Expression and Response to the Anti–Programmed Death 1
Antibody Pembrolizumab in Melanoma. J. Clin. Oncol. 2016, 34, 4102–4109. [CrossRef] [PubMed]

24. Shklovskaya, E.; Rizos, H. Spatial and Temporal Changes in PD-L1 Expression in Cancer: The Role of Genetic
Drivers, Tumor Microenvironment and Resistance to Therapy. Int. J. Mol. Sci. 2020, 21, 7139. [CrossRef]
[PubMed]

25. Simpson, T.R.; Li, F.; Montalvo-Ortiz, W.; Sepulveda, M.A.; Bergerhoff, K.; Arce, F.; Roddie, C.; Henry, J.Y.;
Yagita, H.; Wolchok, J.D.; et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the
efficacy of anti–CTLA-4 therapy against melanoma. J. Exp. Med. 2013, 210, 1695–1710. [CrossRef] [PubMed]

26. Sharma, A.; Subudhi, S.K.; Blando, J.; Vence, L.; Wargo, J.; Allison, J.; Ribas, A.; Sharma, P. Anti–CTLA-4
Immunotherapy Does Not Deplete FOXP3+ Regulatory T Cells (Tregs) in Human Cancers—Response. Clin.
Cancer Res. 2019, 25, 3469–3470. [CrossRef]

27. Shklovskaya, E.; Terry, A.M.; Guy, T.V.; Buckley, A.; Bolton, H.; Zhu, E.; Holst, J.; Groth, B.F.D.S.
Tumour-specific CD4 T cells eradicate melanoma via indirect recognition of tumour-derived antigen.
Immunol. Cell Biol. 2016, 94, 593–603. [CrossRef]

28. Liu, C.; Chikina, M.; Deshpande, R.; Menk, A.V.; Wang, T.; Tabib, T.; Brunazzi, E.A.; Vignali, K.M.; Sun, M.;
Stolz, D.B.; et al. Treg Cells Promote the SREBP1-Dependent Metabolic Fitness of Tumor-Promoting
Macrophages via Repression of CD8+ T Cell-Derived Interferon-γ. Immunology 2019, 51, 381–397.e6.
[CrossRef]

29. Wolchok, J.; Hoos, A.; O’Day, S.; Weber, J.S.; Hamid, O.; Lebbé, C.; Maio, M.; Binder, M.; Bohnsack, O.;
Nichol, G.; et al. Guidelines for the Evaluation of Immune Therapy Activity in Solid Tumors: Immune-Related
Response Criteria. Clin. Cancer Res. 2009, 15, 7412–7420. [CrossRef]

30. Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.;
Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to
build a bridge from a population-based to a more “personalized” approach to cancer staging. CA A Cancer J.
Clin. 2017, 67, 93–99. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1084/jem.20161462
http://www.ncbi.nlm.nih.gov/pubmed/27903604
http://dx.doi.org/10.1016/j.ejca.2018.06.034
http://www.ncbi.nlm.nih.gov/pubmed/30096704
http://dx.doi.org/10.1200/JCO.2016.67.2477
http://www.ncbi.nlm.nih.gov/pubmed/27863197
http://dx.doi.org/10.3390/ijms21197139
http://www.ncbi.nlm.nih.gov/pubmed/32992658
http://dx.doi.org/10.1084/jem.20130579
http://www.ncbi.nlm.nih.gov/pubmed/23897981
http://dx.doi.org/10.1158/1078-0432.CCR-19-0402
http://dx.doi.org/10.1038/icb.2016.14
http://dx.doi.org/10.1016/j.immuni.2019.06.017
http://dx.doi.org/10.1158/1078-0432.CCR-09-1624
http://dx.doi.org/10.3322/caac.21388
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Disease Characteristics and Response Assessment 
	Response to Combination Immunotherapy in MHC-I Low Melanoma 
	Clinicopathologic Features and Immune Contexture of MHC-I Low Tumors 

	Discussion 
	Materials and Methods 
	Study Approval and Patient Details 
	Tissue Processing and Flow Cytometry 
	Cell Culture and Immunoblotting 
	Statistical Analyses 

	Conclusions 
	References

