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Abstract

A model or hybrid network consisting of oscillatory cells interconnected by inhibitory and electrical synapses may express
different stable activity patterns without any change of network topology or parameters, and switching between the
patterns can be induced by specific transient signals. However, little is known of properties of such signals. In the present
study, we employ numerical simulations of neural networks of different size composed of relaxation oscillators, to
investigate switching between in-phase (IP) and anti-phase (AP) activity patterns. We show that the time windows of
susceptibility to switching between the patterns are similar in 2-, 4- and 6-cell fully-connected networks. Moreover, in a
network (N = 4, 6) expressing a given AP pattern, a stimulus with a given profile consisting of depolarizing and
hyperpolarizing signals sent to different subpopulations of cells can evoke switching to another AP pattern. Interestingly,
the resulting pattern encodes the profile of the switching stimulus. These results can be extended to different network
architectures. Indeed, relaxation oscillators are not only models of cellular pacemakers, bursting or spiking, but are also
analogous to firing-rate models of neural activity. We show that rules of switching similar to those found for relaxation
oscillators apply to oscillating circuits of excitatory cells interconnected by electrical synapses and cross-inhibition. Our
results suggest that incoming information, arriving in a proper time window, may be stored in an oscillatory network in the
form of a specific spatio-temporal activity pattern which is expressed until new pertinent information arrives.
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Introduction

Multi-stability of a dynamic system consists of the ability to

express, for a given set of parameters, multiple stable states and to

switch between these states in response to some external transient

input. A few decades ago, the discovery of bi-stable cell properties

(plateau activity) transformed understanding of the operation of

the neural cell (see review [1]) as well as neural network operation

[2–5]. More recently, studies in computational processes in non-

oscillatory networks gave rise to the concept of a binary memory

switch, where transient inputs can turn a plateau like activity on or

off in a sub-set of cells within the network [6–12]. In the present

study, we are interested in multi-stability of oscillatory networks

generating rhythmic output. Bi-stability of in-phase (IP) and anti-

phase (AP) solutions was first found in a half-center network model

consisting of two inhibitory neurons with slow synaptic kinetics

[13]. Such bi-stability does not necessarily require slow synaptic

transmission and, indeed, it was also found when fast synaptic

inhibition was combined with electrical coupling in similar

network models [14–16]. Bi-stable behavior of a 2-cell inhibitory

network has also been confirmed in dynamic clamp experiments

on hybrid networks consisting of biological neurons of different

intrinsic properties [15,17].

Instantaneous reconfiguration of activity patterns by brief

signals is potentially important for network operations, but the

conditions and robustness of switching in a multi-stable oscillatory

network still remain unknown. Here we analyze switching between

patterns in a model network comprising relaxation oscillators

interconnected by fast inhibitory synapses and electrical coupling.

A relaxation oscillator is a model of a cellular pacemaker,

commonly used to describe the slow envelope of membrane

potential oscillation in bursting neurons (for example [18]). Also, in

a short duty cycle regime (i.e. if a cell exerts synaptic action over a

short part of the cycle), it is applicable to spiking neurons, in which

an intrinsic regenerative mechanism is fast compared to recovery

variable time scale [16]. Interestingly, moreover, relaxation

oscillators are formally analogous to firing-rate models of

excitatory neural network activity with slow negative feedback,

like synaptic depression or cellular adaptation. Such population

firing-rate models are used to study the bursting activity of

populations of neurons which by themselves do not have

pacemaker properties, as for example CPG networks in the

developing spinal cord [19]. Moreover, if reciprocally intercon-

nected via inhibitory subpopulations such network models serve

for study of neural competition in such phenomena like binocular

rivalry, perceptual bistability [20–22] or perceptual decision

making [23].

In this paper we are interested in switching between in phase

(IP) and anti-phase (AP) states in fully-connected homogenous

networks of 2, 4 and 6 relaxation oscillators of short duty cycle.

Our goal was to understand how switching rules, i.e. polarity,

intensity and phase of stimulus producing a given switch, found for
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a 2-cell network can be generalized to a larger network. Although

due to symmetry of the system one might expect that switching

between IP and AP behavior will occur within the same window of

the oscillatory cycle independently on the network size it was not

clear whether the intensity of such switching stimuli remained the

same. Indeed, increasing the size of a fully-connected network

requires scaling of coupling parameters such that if total

conductance of a single cell is kept constant synaptic coupling

between any two cells decreases. This in turn may affect the basin

of attraction of the IP or AP pattern and therefore efficacy of a

switching stimulus of a given intensity.

Moreover, networks of larger size can generate several distinct

AP patterns which is not the case in a 2-cell network. Here, our

goal was to test whether properties of stimuli producing switching

between AP patterns can be encoded in the resulting pattern of

activity. This would not only provide a mechanism for storing

signals incoming to the network in the form of a given activity

pattern, as in models of working memory and line attractors, but

also, since switching should occur only in specific time windows of

the oscillatory cycle, offers an additional dimension of encoding.

Finally, a large inhibitory network in addition to IP and AP

behaviors may express a multiplicity of other stable states, some of

which may co-exist with IP and AP behaviors in some parameter

domaines. If so, in addition to a transition between IP and AP

switching from IP (or AP) to other states would be possible.

Therefore, in order to explore and eliminate this possibility, we

examined how the occurrence of multi-stable patterns depends on

network size and determined an invariant parameter space for

exclusive co-existence of the IP and AP states.

We first find a domain of coupling parameters in which only IP

and AP patterns coexist independent of the network size.

Thereafter we compare properties of stimuli producing switching

between the patterns in networks of different sizes, for the same set

of coupling parameters. We show that increasing the number of

cells does not alter the properties of switching stimuli. Moreover,

in the 4 or 6 cell network switching between different AP patterns

was possible, the resultant AP pattern being completely deter-

mined by the profile of the switching stimulus, i.e. by the

distribution of depolarizing and hyperpolarizing signals among

cells. Finally we demonstrate that a firing-rate model network

consisting of two oscillatory populations of excitatory cells

interconnected by cross-inhibition and electrical coupling express-

es switching between patterns according to rules similar to those

found for two relaxation oscillators.

Results

Bi-stability of a 2-cell inhibitory network is a robust phenom-

enon. It has been demonstrated in modeling studies either for the

slow inhibitory synapses alone [13] or for fast inhibition combined

with electrical coupling [14–16] and, moreover, can easily be

found in hybrid networks in which biological cells from snail

ganglion [15] or cortical slices [17] are interconnected by a

dynamic clamp system. In order to illustrate bistability of a 2-cell

network we use model cells (relaxation oscillators) interconnected

by fast inhibition and electrical synapses. In the model, IP (Fig. 1A,

synchronous spikes are indicated by black dots above recordings)

or AP (Fig. 1B) behavior is expressed for the same set of network

parameters and switching between the two patterns can occur

spontaneously if noise of sufficient amplitude is introduced to the

network (Fig. 1C). As mentioned above, bistable behavior of a 2-

cell model network has been already described [16]. We re-

calculate here the occurrence of patterns in such a network

(Fig. 2C1) in order to compare it with the behavior of larger

networks (Fig. 2C2–3). In the 2-cell network, three types of activity

pattern can be expressed depending on coupling strength: IP, AP

and almost-in-phase (AIP). In contrast to IP and AP patterns

which are symmetrical (cells’ trajectories in the phase plane are

identical), the AIP pattern is not symmetrical (trajectories of the

cells differ) and consists in two cells’ active phases expressed with

the phase shift W,0.5 (see [16]). Note that the AIP pattern is

expressed if oscillations underlying spiking are in a relaxation

regime (the recovery variable time constant is large comparing to

the membrane time constant); otherwise, instead of AIP, the AP

pattern is present, as in a network consisting of reciprocally

inhibitory integrate-and-fire cell models. The occurrence of the

three patterns as a function of the inhibitory and electrical synaptic

strength is shown in Figure 2C1. For inhibition alone, only the

asymmetrical pattern is stable (see oblique line area, Fig. 2C1).

Increasing electrical coupling produces a transition from this

pattern to the symmetrical AP pattern (phase shift W= 0.5) (see

horizontal dashed line area, Fig. 2C1). Further increase of the

electrical coupling leads to the appearance of the IP pattern (see

vertical line area, Fig. 2C1), which coexists with AP in some

parameter domain (underlined surface Fig. 2C1).

The next larger network with a similar symmetry to the 2-cell

network is a 4-cell network fully connected by inhibitory and

electrical synapses (Fig. 2A). For this (and the larger) network we

used intrinsic cell parameters identical to the 2-cell model network

but scaled the synaptic conductance to maintain constant the total

Figure 1. Bi-stability in model 2-cell networks. Networks consist of two cells interconnected by electrical synapses (resistor symbol in network
diagram) and instantaneous reciprocal inhibitory synapses (solid lines with dots in network diagram). A. Model network consisting of relaxation
oscillators expresses in-phase (IP) (A), or anti-phase (AP) (B) activity patterns for the same set of synaptic parameters. Introducing stochastic current
input to both cells produces spontaneous transition between AP and IP (see black dots) patterns (C). Abbreviations: N relaxation oscillator model
neuron. Parameters: gsyn = 0.032, gel = 0.18, s_noise = 0.05 (C).
doi:10.1371/journal.pone.0003830.g001
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synaptic conductance of a single model cell. In other words,

assuming network size equal N, a total electrical or inhibitory

coupling between a given cell and the remaining N-1 cells was

made independent of N.

With increasing network size, the number of stable patterns

expressed increases. Indeed, in the 4-cell network, 4 stable

asymmetrical and 2 symmetrical patterns were found in the

presence of a relatively large amplitude noise input to the network

(Fig. 2B). Like the 2-cell network, the 4-cell network expressed

symmetrical AP (Fig. 2B1), and IP behavior (Fig. 2B2). Among

asymmetrical patterns we found a 4 phase pattern in which all 4

cells fire at different phases within the cycle (Fig. 2B3), and 3 and 2

phase patterns in which synchronous firing occurs in groups of 2 or

3 cells (Fig. 2B4). Interestingly, the emergence of patterns seems to

follow the same principle as in the 2-cell network (compare Fig 2C1

and C2). Indeed, with dominating inhibitory coupling, only

asymmetrical patterns were expressed (see oblique line area,

Fig. 2C2) whereas introducing electrical coupling led first to the

appearance of AP and then IP behaviors (horizontal dashed and

vertical line areas, respectively, Fig. 2C2) until, for a sufficiently

strong electrical coupling, only the IP pattern remains. Impor-

tantly, the IP and AP patterns coexist in a similar subspace of

coupling parameters as in the 2-cell network (compare underlined

surfaces, Fig. 2C1 and C2). Finally, increasing the number of cells

in the network to 6 did not change the qualitative distribution of

pattern occurrence in the two dimensional parameter space

(compare Fig. 2C1, C2 and 2C3).

In the next section we will investigate transitions between these

patterns. As illustrated in Figure 3, such transitions may occur

spontaneously due to stochastic inputs. Indeed, with a low level of

noise, the 4-cell network expresses either AP (Fig. 3A1) or IP

(Fig. 3A2) patterns which persist an arbitrarily long time, while

increasing the noise amplitude provokes spontaneous switching

within a short time interval (Fig. 3A3).

We will now consider non-spontaneous switching evoked by

extrinsic stimuli. Since the network is oscillating, one may expect

that the impact of a given stimulus will be phase-dependent.

Therefore, we study not only the effect of polarity and intensity of

a stimulus but also its efficacy depending on the time of delivery

within the cycle. This is tested with respect to three types of

Figure 2. Multiple stable activity patterns in 2-, 4- and 6-cell network. A. Wiring diagram of 4-cell oscillatory network with full synaptic
connections. B. Examples of various oscillatory behaviors expressed by the 4-cell network. Two symmetrical patterns: AP (B1) and IP (B2) are
characterized by identical trajectory of all network members. Asymmetrical patterns characterized by different cell trajectories consist of 4 phase (4
phs, B3) or 3 and 2 phase behavior (3 phs, 2 phs respectively, B4). Notice the synergic group of 2 or 3 cells in B4. C. Occurrence of activity patterns as a
function of synaptic strength in 2- (C1), 4- (C2) and 6-cell (C3) network. Parameters: gsyn = 0.014 (B), gel = 0.06 (B1–B2), 0.01 (B3–B4), s_noise = 0.005,
independent identically distributed Gaussian for each 0.2 unit integration step in B and C.
doi:10.1371/journal.pone.0003830.g002
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switching: from IP to AP (Fig. 4A), from AP to IP (Fig. 4B) and

between different AP patterns (Fig. 4C). In all these cases, initial

and resultant states of the network are illustrated in diagrams

showing clusters of synchronous cells (group of cells either black or

white). For example, a switch from IP to AP is illustrated as a

transition between four black cells to two black and two white cells

(right panel, Fig. 4A). Here the stimulus profile is described as ‘‘0 0

2 2’’ indicating that cell N1 and N2 do not receive any input

whereas a transient hyperpolarizing input is delivered to cells N3

and N4. An identical stimulus profile evokes a reverse switch

between AP to IP (Fig. 4B).

Notice that the AP pattern shown in figure 4A–B is not the only

possible AP behavior of the network. Indeed, an AP state consists

in a division of the network into 2 groups of synchronous cells, the

groups oscillating in anti-phase. Therefore in the 4-cell network

there are 3 possible such divisions: AP12/34, AP13/24 and AP14/

23. Here switching from AP12/34 to AP13/24 was evoked by

delivering hyperpolarizing inputs to 2 cells (N1 and N3) and

depolarizing inputs to the 2 remaining cells (N2 and N4) (see

stimulus profile ‘‘2 + 2 +’’, Fig. 4C).

All examples illustrated in Figure 4 show successful switching.

As we shall see in the next sections, they occurred because stimuli

were applied at the proper time within the cycle. Indeed, as shown

in [15], in the 2-cell network switching from IP to AP was possible,

for example, when a depolarizing stimulus was applied to one of the

cells at a time halfway between two successive spikes. Here we

explore this switching again by delivering depolarizing stimuli of

different intensity (see scale bar, top Fig 5) to one of the cells (see Stim

‘‘+ 0’’, Fig. 5A1) while the network is expressing IP behavior (initial

state). In order to explore the phase dependence of stimulus impact,

we delivered it at different moments of the cycle from phase W= 0 to

1, corresponding to the maxima of depolarization of the consecutive

spikes of cell N1 (see central inset Fig. 5A1). For low intensity

stimulus, the initial state of the network remains unchanged

independently of the timing of stimulus delivery within the cycle

(see lighter grey bar, Fig. 5A1). Increasing the intensity of stimulus

provided a time window around the middle of the cycle where

switching to the AP behavior occurred (Fig. 5A1). Further increase

stimulus intensity did not substantially alter this window. Interest-

ingly, the application of analogous stimuli (i. e. depolarizing stimulus

to 50% of cells) for a 4-cell network (see Stim ‘‘+ + 0 0’’, Fig. 5A2),

revealed a very similar window for switching (Fig. 5 A2).

By contrast to depolarizing stimuli, which offered relatively

large switching windows (up to half of the cycle), hyperpolarizing

stimuli distributed among 50% of cells produced switching only if

delivered in a very narrow time window during firing of stimulated

cells in both the 2-cell (Fig. 5 B1) and the 4-cell network (Fig. 5 B2).

Finally, simultaneous application of stimuli of opposite polarities,

each now delivered to 50% of cells (see stimulus profiles, Fig. 5C1

and C2), resulted in switching windows which combined the main

features of the two types of switching window corresponding to the

singe stimulus polarities (Fig. 5 C1, C2). Indeed, with this type of

stimulus, switching from IP to AP behaviors was produced in the

middle part of the cycle as well as around the spike generation

phase (i.e. W= 0 and 1). (Note that although the compound

window is a qualitative sum of components it is not a simple linear

combination.)

We will now consider reverse transitions, i.e., switching from the

AP to the IP pattern. When the network is in AP mode it is divided

into two groups of cells (see top panels in Fig. 6A1–A2); this

asymmetry increases the number of distinct stimulus types.

First, if we apply a stimulus of a given polarity to just one of the

two groups (see stimulus profiles in Fig. 6A, B), switching windows

show features similar to those which characterize transitions from

IP to AP behavior. Indeed, in both 2-cell and the 4-cell model

networks, positive stimuli delivered to one group of synergic cells

evoked switching to the IP behaviors when applied in the middle

of the cycle (Fig. 6A1, A2). Here the window for switching is wide,

occupying approximately half of the cycle, similar to the analogous

window for IP to AP transitions (see Fig. 5A1, A2). Furthermore,

negative stimuli delivered to just one group of cells are likewise

effective only when applied during spiking of the stimulated cells

(Fig. 6B1, B2) as was the case for IP to AP switching (Fig. 5B1, B2).

Notice however, that the window is now located at W= 0.5 since

the stimulated group is now phase shifted by 0.5 with respect to the

reference cell in the initial AP behavior. Finally, when stimuli of

opposite polarities were delivered to the two antagonistic groups of

cells, switching to IP was still evoked in a large window located

around the middle of the cycle (Fig 6 C1, C2). However, at W= 0.5

these transitions were not possible: here, delivery of the stimuli

produced simultaneous exchange of the phases of the two groups -

spiking cells became silent and silent cells became spiking. This

resulted in a reset of the ongoing activity (not shown) but did not

change the AP pattern.

Second, stimuli of a given polarity can be delivered to cells

belonging to both antagonistic groups such that only 50% of

network members receive input (see stimulus profiles, Fig. 7). If

depolarizing, such a stimulus is very effective and produces

Figure 3. Bi-stability in 4-cell fully-connected model network.
For a given parameter set the network either is divided into 2 groups of
synergic cells (N1,2 in black and N3,4 in white) oscillating in AP (A1) or
expresses synchronous activity (A2) where all the spikes occur
simultaneously from N1 to N4 (see dots and scheme where all the
cells are black). Spontaneous switching between these two modes of
activity occurs due to the stochastic input signal (A3) (see transition
from upper network scheme to bottom one). Notice increase of noise
amplitude in A3 compared to A1 and A2. Parameters: gsyn = 0.014,
gel = 0.06, s_noise = 0.025 (A1, A2), 0.05 (A3).
doi:10.1371/journal.pone.0003830.g003
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switching to the IP behavior independently of the phase of delivery

(Fig. 7A). If hyperpolarizing, its impact is again restricted to phases

when one of stimulated cells fires (W= 0, 0.5, 1, Fig. 7B). (For a

mixed stimulus of this type, see below.) It must be noted that

similar features are expressed by the 2-cell network if both cells are

stimulated with the same polarity (data not shown).

Third, stimuli of opposite polarities delivered to antagonistic

groups, again such that only 50% of network members receive input,

(see stimulus profile, Fig. 8A) evokes switching to IP behavior when

applied in a large window around middle of the cycle, except at

W= 0.5 (Fig. 8 A). At W= 0.5 a switch into a new AP pattern occurs

(from AP 12/34 to AP 13/24) because both stimulated cells,

Figure 4. Transition between two stable states may be evoked by different types of stimuli. A. Delivery of transient hyperpolarizing
stimuli to N3 and N4 (see arrows) during ongoing IP activity produces a sudden transition to AP behavior in which cells N3 and N4 oscillate out of
phase with cells N1 and N2. This transition is schematically represented on the right panel. The profile of stimulus (here Stim ‘‘0 0 2 2’’) is encoded in
a series of symbols corresponding to stimulus occurrence (0 no stimulus, + depolarizing stimulus, 2 hyperpolarizing stimulus) delivered to cell N1,
N2, N3 and N4 respectively. B. The same type of stimulus (see right panel) during ongoing AP activity may produce the re-establishment of IP
behavior. In this case the initial state is defined as AP12/34 indicating antagonistic activity of two groups of cells: N1, N2 and N3, N4, respectively. C:
Stimulation of all cell members with the stimuli of mixed polarity (see right panel) may produce a transition between different AP patterns. Compare
initial state AP12/34 with the resulting AP13/24 pattern. Parameters: gsyn = 0.014, gel = 0.06, stimulus intensity = 0.4.
doi:10.1371/journal.pone.0003830.g004
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belonging to different synergic groups, exchange their memberships:

at W= 0.5 the spiking cell (N4) become silent due to hyperpolarizing

stimulus whereas the silent cell (N1) generates a spike in response to

depolarizing stimulus. Applying the same type of stimulus also to the

remaining 50% of cells, in such a way that in each synergic group the

cells received stimuli of different polarities (see stimulus profile,

Fig. 8B), always produced switching to the IP pattern, except if

applied during cells’ spiking phases (W= 0, 0.5, 1) (Fig. 8B) where

switching to another AP pattern took place (from AP 12/34 to AP

13/24). Indeed, in each spiking phase, a pair of cells receiving stimuli

of opposite polarity and belonging to different synergic groups can

exchange their memberships, as described above. Notice, impor-

Figure 5. Time windows of susceptibility to switching from IP to AP pattern in 2- and 4-cell network. A. Shown is ongoing in-phase
activity, sketch of the oscillatory cycle and diagram of stimulus profile in the 2-cell (upper panel, A1) and 4-cell (upper panel, A2) networks. In each
bottom panel switching diagrams are shown for different intensities of depolarizing stimulus, represented by different intensities of gray (see scale).
The diagram is divided into the bottom part, representing the initial state, and the top part representing the resulting pattern. For each current
intensity, stimuli of duration 0.3 time units are delivered in different phases of the cycle with a step of 0.2 time units (cycle period is c. 20 time units
for all patterns shown). The stimulus of lowest intensity does not produce a switch in any phase of the cycle. This is indicated by a continuous
horizontal bar in the bottom part of the diagram (A1, A2). Increasing the stimulus intensity results, in some phases of the cycle, in an effective
stimulation which is indicated by a gray bar in the upper part of diagram. Notice a similar mid-cycle window in the 2-cell (A1) and 4-cell (A2)
networks. B. With an hyperpolarizing stimulus switching is effective only during the firing phase of the stimulated cell for the 2-cell (B1) and 4-cell (B2)
networks. C. Stimulus of mixed polarity (see upper panel) evokes switching both in mid-cycle and in vicinity of cells’ firing phases in 2- (C1) and 4- (C2)
cell networks. 2- and 4-cell network parameters are the same as in figures 1A and 2B1–B2, respectively.
doi:10.1371/journal.pone.0003830.g005
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tantly, that the distribution of delivered stimulus is now encoded in

the resulting AP pattern. Indeed, cells which receive a stimulus of the

same polarity will form new synergic groups (see N1, N3 and N2,

N4, Fig. 8B). This results in a new division of the network which is

equivalent to a new AP behavior (AP 13/24). Finally, it must be

noted that for very high stimulus intensity, another AP pattern

variant may emerge instead of the expected pattern (see top panel in

Fig. 8B).

Although the 4-cell network reveals some general rules of

encoding the stimulus profile as resulting pattern, the network is

nevertheless insufficiently general. In particular, it is never possible

to switch a majority (or minority) of a synergic group with a

corresponding set of cells in the other group – because groups

comprise just 2 cells (and since only 1 cell can be switched it is

always 50% of a group). Therefore, to generalize the above

encoding rules, we used a similar approach on the 6-cell network.

Here, within each group of synergic cells consisting of 3 cells, 2

cells receive stimulus of the same polarity (see stimulus profile,

Fig. 8C) and therefore are supposed to remain synergic in the

resulting AP pattern. Interestingly, switching indeed occurs from

AP123/456 to AP124/356 so that pairs (N1, N2) and (N5, N6)

which received homogenous stimuli remained synergic. By

contrast cells N3 and N4 switch their memberships because the

signals they receive are of opposite polarity to the signals sent to

the other group members. Moreover, time windows for switching

to the new AP pattern were the same as in the 4-cell network: such

switching occurred only if the stimulus was delivered during the

cells’ spiking phases; otherwise stimulus delivery resulted in full

network synchrony (Fig. 8C). It should be stressed that in the 6-cell

network the distribution of the applied stimuli again determines

the resulting AP pattern (N1, N2 and N4 received depolarizing

stimuli and N3, N5 and N6 hyperpolarizing inputs, therefore

clusters 1, 2, 4 and 3, 5, 6 are formed).

As mentioned in the Introduction, there is a formal analogy

between a relaxation oscillator and a firing-rate model of

excitatory neural network activity with slow negative feedback

[19]. We therefore tested whether our results are applicable to a

model network consisting of two excitatory populations with

recurrent connectivity, in which synaptic depression played the

role of a slow process underlying oscillations. Both populations

Figure 6. Time windows of susceptibility to switching from AP to IP pattern in 2- and 4-cell network using homogenous stimulus to
synergic 50% of cells. A1–2. The schematic representation in the upper panel is the same as described in Fig. 5A. Depolarizing stimulus delivered
to cell N1 (A1) or cells N1, N2 (A2) evokes a switch if applied in a large mid-cycle window. B1–2. Hyperpolarizing stimulus delivered to cell N2 (B1) or
cells N3, N4 (B2) evokes switching only in a narrow window around W= 0.5. C1–2. Mixed polarity stimulus delivered to all network members has a
similar effect as depolarizing stimulus except around W= 0.5 where switching fails. Network and stimulus parameters as in Fig. 5.
doi:10.1371/journal.pone.0003830.g006
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were connected by electrical synapses and projected to a common

inhibitory pool which provided cross inhibition (Fig. 9A, see also

Method). (It must be noted similar network behavior to that

described below is expressed if populations E1 and E2 project to

separate inhibitory pools.) As illustrated, such a model network

expresses bistability of IP and AP patterns (Fig. 9B) and switching

between these can be produced by transient inputs in similar time

windows to those for a network consisting of relaxation oscillators

(compare figures 9C1 and 6A1, 9D1 and 6B1, 9C2 and 5A1, 9D2

and 5B1). This also suggests that switching in larger networks

consisting of many oscillatory units will be similar independently of

whether a ‘‘unit’’ consists of a single cell or of a population of cells.

Discussion

In the present study, we demonstrate that an oscillatory model

network, consisting of more than 2 cells, fully interconnected with

fast inhibitory and electrical synapses, generates a large variety of

stable activity patterns, the number of which depends on the

Figure 7. Time windows for AP to IP switching with homoge-
nous stimuli delivered to 50% of cells in each synergic group.
A. Depolarizing stimulus produces switching independently of the time
of its delivery. B. Hyperpolarizing stimulus is effective only if applied
during firing phases. Network and stimulus parameters as in Fig. 5.
doi:10.1371/journal.pone.0003830.g007

Figure 8. Mixed stimulus may produce switching between
different AP behaviors in 4- and 6-cell network. A. Stimulus of
opposite polarities delivered to antagonistic cells (50% of network
members) may produce either switching to IP if delivered within a large
mid-cycle window except W= 0.5 or switching to another AP pattern if
delivered at W= 0.5. B. Mixed stimuli applied to the whole population
with opposite polarities distributed among synergic cells (see upper
panel) evokes switching to IP everywhere in the cycle except if
delivered close to firing phases where switches to another AP pattern
occur. The new AP pattern expresses the map of activity corresponding
to the stimulus profile (AP13/24). Note that stimuli of very high intensity
may produce AP with activity map different from both the stimulus
profile and the initial AP map (see AP14/23). C. Qualitatively similar
switching is found for the 6-cell network.
doi:10.1371/journal.pone.0003830.g008
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number of cells as well as on the coupling parameter domain (see

Fig. 2). Moreover, for a given set of synaptic strengths, multiple

stable patterns can be expressed and switching between them can

be induced by a suitable transient external stimulus. In this paper,

we focused on the parameter domain where only IP and different

AP patterns co-exist. We generalized rules governing switching

between IP and AP patterns by comparing behaviors of networks

of different sizes.

It must be noted that whereas increasing the network size

diminishes the strength of intra-network cell-to-cell connectivity –

a condition necessary for exclusive coexistence of AP and IP

patterns (see Fig. 2) – the intensity of external stimulus per cell,

Figure 9. Bistable behavior of two excitatory populations interconnected by cross-inhibition and electrical coupling. A. Network
architecture. Excitatory and inhibitory connections are represented by triangles and filled circles, respectively whereas resistor symbol represents
electrical coupling. E1, E2 represents excitatory and I inhibitory populations. B. Time course of activity e1 (black line) and e2 (gray line) in populations
E1 and E2. Transient input (arrow head) produces switching from AP to IP (B1) or vive versa (B2). Positive stimuli (C1, C2) are more efficient in
switching than negative, which are restricted only to active phases (D1, D2). Parameters: te = 1, ts = 250, w = 0.7, V = 0.17, b = 0.06, i_tr = 0.3, g = 0.075,
gs = 0.025, h = 0.3 ks = 0.05 ke = 0.05. Vapp = 0.1 (in B), 0.02–0.2 (in C and D, see bottom bar), stimulus duration = 10 time units.
doi:10.1371/journal.pone.0003830.g009
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required for a given switch, remains the same (see Fig. 5 and 6).

The other scaling, providing a constant cell-to-cell synaptic

strength, may seem to be more intuitive. However, in this case

inhibition and electrical coupling between a cell and the rest of the

network become so strong with increasing network size that they

produce a damping of the amplitude of oscillations and their

eventual suppression (as previously described [16]). Note also that

this latter scaling regime implies that cells can sustain an arbitrarily

large total conductance, implausible given their morpho-functional

limits.

The switching rules are illustrated in Fig. 10 where they are

summarized for 2- and 4-cell networks. Assuming stimulus delivery

to 50% of the cell population, transitions from IP to AP are

produced by a depolarizing stimulus if it is applied within a

relatively wide time window located at mid-cycle (type X window)

(upper panel Fig. 10A). On the other hand, a hyperpolarizing

stimulus can produce switching only by suppressing the spike of a

cell and therefore this switching is very phase-specific (phases 0, 1,

type Y window) (middle panel Fig. 10A). If these two types of

stimuli are applied simultaneously to different sub-populations of

cells, the resulting time window is the sum of the two windows

corresponding to depolarizing and hyperpolarizing stimuli (type

X+Y window) (bottom panel Fig. 10A).

Reverse transitions are more complex. Indeed, the network

expressing AP behavior is divided into two antagonistic groups of

cells and therefore distribution of stimuli between these two groups

becomes important. Consider two possibilities.

First, assuming that only cells belonging to one of these groups

are stimulated, a transition from AP to IP occurs if a depolarizing

signal arrives within a large mid-cycle window (type X9) (upper

panel Fig. 10B), or if a hyperpolarizing signal is applied in a very

narrow window restricted to the cell firing phase (type Y9) (middle

panel Fig. 10B). When stimuli of both polarity are distributed

among the network cells, the resulting window is now not a sum

(see bottom panel, fig 10A) but a difference between the two

window types (Type X9–Y9) (bottom panel, Fig. 10B).

Second, if stimuli of the same polarity are delivered to members

of different groups, transitions to IP also occur. Here, depolarizing

stimuli produce switching independently of the time of delivery

(Type X0) (upper panel, Fig. 10C), the impact of hyperpolarizing

stimuli is again restricted to the firing phases of neurons (Type Y0)

(middle panel, Fig. 10C) and mixed stimuli provide switching if

delivered anywhere in the cycle except during firing phases (Type

X0–Y0) (upper line, bottom panel Fig. 10C). Importantly however,

during these firing phases the network switches from a given AP to

a new AP pattern. The resulting AP pattern consists in a new

division of the network into two new sub-populations of cells,

corresponding to the distribution of hyperpolarizing and depolar-

izing stimuli among the network members (bottom line, bottom

panel Fig. 10C). Therefore the information carried by the transient

stimulus is now encoded in a given persistent spatio-temporal

oscillatory pattern expressed by the network.

These results indicate that, within networks consisting of

oscillatory cells interconnected by fast inhibitory and electrical

synapses, reconfiguration of activity patterns may be evoked by

transient input and the new configuration encodes a profile of the

stimulus.

The idea of storing the memory of a transient stimulus in the

form of a given spatial distribution of active cells has been used in

the bi-stable model network expressing switching between global

OFF and multiple ON activity states which was proposed as a

model of working memory [12]. There is no OFF state in an

oscillatory network since activity is always expressed as synchro-

nous, or one of the different patterns of asynchronous, firing of

neurons. Instead of switching between OFF and one of the

multiple ON states (depending on a given subpopulation of active

cells) such a network expresses transitions between IP and one of

the multiple AP states (depending on a given division of the

network into two parts), that is a transition between two rhythmic

outputs of different frequencies. Therefore in both network types

the average frequency of neurons can be altered by a transient

stimulus. Apart from this similariry the switching properties of

oscillatory networks are quite different from non-oscillatory

networks expressing bi-stability. Indeed, the impact of a transient

input on the ongoing network activity is phase dependent.

Therefore the same incoming information will have different

effect on network behavior (or have no effect at all) if arriving in

different phases of the oscillatory cycle. Moreover, stimuli of the

same profile (i.e. same polarity and distribution among the cells)

can produce switching back and forth between IP and AP patterns.

By contrast, a specific stimulus is required to switch ON or OFF

the activity in the non-oscillatory network.

Furthermore, in the oscillatory network direct switching

between different AP states is possible, whereas in the non-

oscillatory network in order to establish a new ON state the

network activity must be first reset to the OFF state. Finally,

switching between states can be very fast within oscillatory

network.

Beside the possible function of storing information as proposed

in models of working memory, the multi-stability of oscillatory

networks may also play an important role in functional

reconfiguration of dynamical systems. For example in motor

control, during ongoing activity of the CPG network it has been

shown that the sensory information from the periphery as well as

feedback originating from special senses (vision, audition, vestib-

ular) may shape the motor output in a phase dependant way (see

review [24]). These inputs continuously adjust the output of the

network during a given motor task. However, when a sudden

change is needed, for example a transition from one gait to

another, it can be executed by a transient signal which changes

instantaneously and simultaneously the phase relationships

between all the network elements involved in the task. Interest-

ingly, in the area of bimanual finger tapping two coordination

patterns of different stability have been found ([25,26]). In the

search for principles of pattern generation in complex biological

systems, a theory of self-organization in non-equilibrium systems

including order parameters dynamics, stability, fluctuations and

times scales has been proposed [27–29]. From such a perspective,

multi-stability of neural networks appears as a commonly

occurring natural phenomenon. Indeed, in accordance with the

theory, it has been demonstrated that a transition between bi-

stable patterns of finger tapping can be elicited in the human brain

by transient transcranial magnetic stimulation [30]. Unfortunately,

in that study no attempt was made to determine time windows for

susceptibility of switching between patterns. Relaxation oscillators

used in this study are basically models of the slowly oscillating

envelope of bursting neurons, but in a short duty cycle regime may

be also applicable to spiking neurons [16]. Factors that may

contribute to differences between our idealized cell model and a

real spiking neuron include non-relaxation intrinsic cell dynamics

and slow synapses. How they influence switching in bi-stable

network should be tested in further modeling studies. Interestingly,

our preliminary results indicate that 2- and 4-cell networks

consisting of IF cell models express qualitative features of switching

windows very similar to those described for a network composed of

relaxation oscillators.

Our results are also applicable to networks consisting of

oscillatory circuits, which express periodic changes of cells’ mean
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Figure 10. Rules of switching between multistable patterns depending on stimulus profile. (see Discussion).
doi:10.1371/journal.pone.0003830.g010
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firing rate (Fig. 9). It seems likely that switching rules found for a

given topology of connections between relaxation oscillators, like

those for full connectivity presented in this study, could be also

applicable for such a ‘‘network of networks’’, independent of

details of individual cells’ or synapses’ properties. This could

further support a hypothesis that switching between multistable

patterns can occur during gait control provided be GPGs networks

which are known to consist of oscillatory units with a well-defined

symmetry of connectivity [31,32]. Our model requires, in addition

to cross-inhibition, electrical coupling between oscillatory units to

express AP pattern in the case of short duty cycle, as described

previously [16]. Although such coupling has so far been described

only in invertebrates’ CPG, recent work suggests that it may also

play an important role in mammalian CPG networks [33].

In summary, our data demonstrate that a given network

operation can be altered without change of cellular or synaptic

properties and with almost no activation time. A reconfiguration

through neuromodulation has been shown to play an important

role in shaping properties of a network’s hardware elements in

both developing and mature networks. However, as demonstrated

by our data, in the multi-stable network, different stable rhythmic

patterns can be selected by specific transient stimuli without any

change of network topology, membrane or synaptic parameters.

Materials and Methods

The Cell Model
Cells in the model network are modeled as a set of first order

differential equations, each cell contributing two state variables to

the set: the instantaneous membrane potential (Vi) and a slow

recovery current (Wi) dependent on membrane potential. The

variables have the (non-dimensionalised) dynamics defined by

equation 1–2.

tv
dVi

dt
~{ VizWi{tanh gfastVi

� �
zI

syn
i zIel

i zI in
i tð Þ

� �
ð1Þ

tw Við Þ
dWi

dt
~{ Wi{gslowVi

� �
ð2Þ

In equations 1–2 gfast determines the degree to which the

instantaneous voltage-dependent current is N-shaped whereas

gslow models the voltage-dependent activation function of the slow

current. Synaptic transmission is instantaneous, with a synaptic

current given by

I
syn
i ~

Xj~N

j~1

gsyns
Vj{Hsyn

ksyn

� �
Vj{Esyn
� �

ð3Þ

where gsyn is the maximal synaptic conductance, Vi is the

membrane potential of the the presynaptic cell j, Esyn is the

synaptic reversal potential, Hsyn represents the midpoint for

synaptic activation and ksyn the steepness of the synaptic activation

function. The function s(x) is defined as s(x) = 1/(1+ex).

Gap junction coupling is represented by

Iel
i ~

Xj~N

j~1

gel Vj{Vi
� �

ð4Þ

where gel is electrical conductance. I in
i tð Þ is externally injected

input current. tv and tw (Vi) are the membrane time constant and

the time constant of slow current dynamics, the latter depending

on the membrane potential Vi:

tw Við Þ~t2z t1{t2ð Þs Vi

ktw

� �
ð5Þ

with t1 and t2 specifying the minimum and maximum time

constants and thereby determining the durations of the active and

silent phases of the oscillator – and ktw quantifying the rate of

voltage dependence.

The complete model defined by equations 1–4 has, therefore,

three time constants, two membrane and two junction conduc-

tances, synaptic threshold and reversal potentials and two rate

constants (the k parameters). In principle, the junction parameters

can vary per junction while the neuron parameters may vary per

neuron; for tractability in the current work these parameters are

identical for all junctions and neurons respectively, with the

following values: Esyn = 24, Hsyn = 0, ksyn = 0.02, gfast = 2, gslow = 2,

t1 = 5, t2 = 50, ktw = 0.2, tv = 0. 16.

The parameters have been chosen to model neurons with

relatively steep synaptic onset and short duty cycle (i.e. short

fraction of the cycle when the cell is depolarised above threshold

and may exert synaptic action). With this choice of parameters,

equations 1–5 may be considered a model of spiking neurons. In

the study presented here, the only parameters varied from the

defaults are the conductances gel and gsyn of the electrical and

inhibitory synapses.

The model has been implemented as a set of Matlab functions

which compute the quantities defined by the five equations above

and integrate the set of ordinary differential equations using

Matlab’s standard ode45 solver with the default tolerance

parameter settings. Note that the external timestep used (0.2

units) is long compared to the internal timesteps available to, and

typically employed by, the ode45 integrator. The external input

currents I in
i tð Þ are assumed to be piecewise constant, also over

intervals long compared to the internal integration timestep. The

implementation has been compared to an independent realisation

using the xpp tool and found to give identical results.

Analysis Methods
The investigation of the oscillatory behaviours generated by

networks of the type under study is time-consuming and has been

automated. For a given choice of conductance parameters, the

network dynamics are integrated from an initial state (see below).

The first 30% of the simulation following the completion of any

non-zero input signal is discarded to mitigate the effects of

transients and the membrane potentials are computed at time

points with an interval of 0.2 units. Given these values, an attempt

(which may fails: typical causes of failure are chaotic network

behaviour or very long period oscillation) is made to estimate a

period of regular oscillation for the network by computing the

positions of peaks in the autocorrelation of the signals and finding

the highest common factor of inter-peak periods. If this calculation

fails, the network is simulated further and the calculation repeated.

If no period can be found with simulations up to 3000 units in

duration, the signals are reported to be un-analysable. (The typical

period of oscillation for the parameters used is 20–25 time units.)

Once a period has been determined, the network signals are

analysed. Samples for a single period are generated and the traces

of the individual cells compared, to group cells into classes

executing the same behaviour with possibly differing phases. In all

cases reported here, cells execute the same behaviour, that is they

all exhibit the same voltage trace to the resolution of the grouping

test (measured normalised trace correlation exceeds 0.95) though
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their phases within that common trace may vary. Once the cell

behaviours have been grouped, the classification of oscillatory

modes is performed. The analysis distinguishes the behaviours

illustrated in Figure 2.

For a given choice of parameters, the network exhibits a

number of oscillatory behaviours. In this study, we vary the two

principal conductance parameters gel and gsyn, over the range in

which interesting behaviours occur, for networks comprising 2, 4

and 6 cells. The reported results generated as follows. For each

pair of parameter values investigated:

1. a set of 8 random initial states for the network are generated,

using a zero mean Gaussian distribution with 0.025 standard

deviation. Random current input of length 250 time units is

then constructed using independent identically Gaussian

distributed random values with zero mean and 0.005 standard

deviation for each 0.2 time unit step. For each set of initial

conditions the model is integrated with the input current for

around 10 periods. After this, input is removed and the

behaviour of the network that results is then analyzed and

classified.

2. the model is integrated from a zero initial state, and the

generation of IP behaviour is checked. If IP is generated,

random input current as described above is applied to see

whether the IP is stable in the presence of noise. The behaviour

is then classified.

3. the model is integrated from the zero initial state as before, and

if stable IP behaviour is generated an attempt is made to switch

the network to AP: half the cells receive a 1 unit positive

current injection and half a 1 unit negative current injection for

0.2 time units, applied in successive tests at each time point

between phase W= 0.4 and 0.6 in the cycle of oscillation.

Again, random current inputs following the transient switching

impulse are used to verify that the behaviour switched to is

stable in the presence of noise. The behaviour is then classified.

The reported set of behaviours is the union of the results of the

three steps above. This procedure, in our opinion, represents a

reasonable compromise between computational effort and com-

pleteness of the results. Note, however, that it is not complete: the

presence of any particular type of behaviour other than AP and IP

is only detected if a suitable initial state is chosen (one that lies

within the basin of attraction of that behaviour) and this, since only

8 initial states are generated at random, cannot be guaranteed.

Firing rate model network
The mean field firing rate model of excitatory network activity

with synaptic depression (formally equivalent to the relaxation

oscillator model of a single cell described above) consists in the

following equations (see [19]).

te e’~{ezfe wse{Vð Þ

ts s’~{szfs eð Þ

Here e represents network firing rate and varies between 0 (no

activity) and 1 (all cells fire at their maximal frequency), w

represents network connectivity, s is the synaptic depression

variable which indicates the fraction of synapses available and V is

the average firing threshold in the population. The sigmoidal

function fe(x) = 1/(1+e2x/ka) represents the input-output function of

the network. Here the effective input equal to wse2V depends on

activity e because of recurrent excitation. Activity depresses

synapses as indicated by sigmoidal function fs (e) = 1/(1+e(e2h)/ka)

which decreases with e. Synaptic depression kinetics, determined

by time constant ts, is assumed to be slow compared to the

network recruitment time constant te, so we are in a relaxation

limit. The evolution of slow variable s produces switches between

low and high activity states, thus the firing rate e undergoes

periodic changes.

We then consider a network consisting of two such oscillatory

units which are interconnected by cross-inhibition and electrical

coupling (network scheme, Fig. 9), described as follows:

te e1
0~{e1zfe ws1e1{V{b e1ze2ð Þfe e1ze2{i trð Þð

zg e2{e1ð Þzgse1zVapp

�

ts s1
0~{s1zfs e1ð Þ

te e2
0~{e2zfe ws2e2{V{b e1ze2ð Þð

fe e1ze2{i trð Þzg e1{e2ð Þzgse2Þ

ts s2
0~{s2zfs e2ð Þ

Here the input resulting from cross-inhibition depends on a sum

e1+e2 (since both excitatory units project to the same inhibitory

population, on fe(e1+e22i_tr) which models a threshold-like

activation of the inhibitory population with threshold i_tr and on

b which represents the strength of cross-inhibitory connectivity.

To model electrical coupling between oscillatory units we first

notice that the average membrane potential of a cell belonging to a

given population is proportional to its firing rate e. Indeed, if ds is

the duration and as is the voltage amplitude of a spike, whereas dis

and ais are corresponding parameters characterized by inter-spike

interval, then the mean voltage level Ævæ, averaged over N cycles

expressed during time T, is equal to (N/T)(dsas+disais). Moreover,

since dis = T/N2ds we obtain: Ævæ = (N/T)(ds(as2ais)+T/Nsais) and

therefore Ævæ = (N/T)ds(as2ais)+ais. Assuming ds, as and ais do not

depend on the firing rate, we obtain Ævæ,e. Therefore the input

resulting from electrical coupling between two different popula-

tions is equal to g(e22e1) where g represents connectivity strength

and the average difference between the spike amplitude and inter-

spike voltage level. Recurrent electrical input is described by gse,

where gs represents the strength of recurrent connectivity. Vapp

represents a brief input.

Author Contributions

Conceived and designed the experiments: TB PM PB JH. Performed the

experiments: TB PM PB JH. Analyzed the data: TB PM PB JH.

Contributed reagents/materials/analysis tools: TB PM PB JH. Wrote the

paper: TB PM PB JH.

References

1. Llinas RR (1988) The intrinsic electrophysiological properties of mammalian

neurons: insights into central nervous system function. Science 242: 1654–1664.

2. Meyrand P, Simmers J, Moulins M (1991) Construction of a pattern-generating

circuit with neurons of different networks. Nature 351: 60–63.

Activity Reconfiguration

PLoS ONE | www.plosone.org 13 November 2008 | Volume 3 | Issue 11 | e3830



3. Marder E, Bucher D (2007) Understanding circuit dynamics using the

stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69:
291–316.

4. Kristan WB Jr, Calabrese RL, Friesen WO (2005) Neuronal control of leech

behavior. Prog Neurobiol 76: 279–327.
5. Hultborn H, Brownstone RB, Toth TI, Gossard JP (2004) Key mechanisms for

setting the input-output gain across the motoneuron pool. Prog Brain Res 143:
77–95.

6. Goldman-Rakic PS (1995) Cellular basis of working memory. Neuron 14:

477–485.
7. Camperi M, Wang XJ (1998) A model of visuospatial working memory in

prefrontal cortex: recurrent network and cellular bistability. J Comput Neurosci
5: 383–405.

8. Zhang K (1996) Representation of spatial orientation by the intrinsic dynamics
of the head-direction cell ensemble: a theory. J Neurosci 16: 2112–2126.

9. Amit DJ, Brunel N (1997) Model of global spontaneous activity and local

structured activity during delay periods in the cerebral cortex. Cereb Cortex 7:
237–252.

10. Renart A, Song P, Wang XJ (2003) Robust spatial working memory through
homeostatic synaptic scaling in heterogeneous cortical networks. Neuron 38:

473–485.

11. Goldman MS, Levine JH, Major G, Tank DW, Seung HS (2003) Robust
persistent neural activity in a model integrator with multiple hysteretic dendrites

per neuron. Cereb Cortex 13: 1185–1195.
12. Durstewitz D, Seamans JK (2006) Beyond bistability: biophysics and temporal

dynamics of working memory. Neuroscience 139: 119–133.
13. Van Vreeswijk C, Abbott LF, Ermentrout GB (1994) When inhibition not

excitation synchronizes neural firing. J Comput Neurosci 1: 313–321.

14. Lewis TJ, Rinzel J (2003) Dynamics of spiking neurons connected by both
inhibitory and electrical coupling. J Comput Neurosci 14: 283–309.

15. Bem T, Le Feuvre Y, Rinzel J, Meyrand P (2005) Electrical coupling induces
bistability of rhythms in networks of inhibitory spiking neurons. Eur J Neurosci

22: 2661–2668.

16. Bem T, Rinzel J (2004) Short duty cycle destabilizes a half-center oscillator, but
gap junctions can restabilize the anti-phase pattern. J Neurophysiol 91: 693–703.

17. Merriam EB, Netoff TI, Banks MI (2005) Bistable network behavior of layer I
interneurons in auditory cortex. J Neurosci 25: 6175–6186.

18. Rowat PF, Selverston AI (1993) Modeling the gastric mill central pattern

generator of the lobster with a relaxation-oscillator network. J Neurophysiol 70:
1030–1053.

19. Tabak J, O’Donovan MJ, Rinzel J (2006) Differential control of active and silent

phases in relaxation models of neuronal rhythms. J Comput Neurosci 21:
307–328.

20. Wilson HR (2003) Computational evidence for a rivalry hierarchy in vision. Proc
Natl Acad Sci U S A 100: 14499–14503.

21. Shpiro A, Curtu R, Rinzel J, Rubin N (2007) Dynamical characteristics common

to neuronal competition models. J Neurophysiol 97: 462–473.
22. Moreno-Bote R, Rinzel J, Rubin N (2007) Noise-induced alternations in an

attractor network model of perceptual bistability. J Neurophysiol 98: 1125–1139.
23. Wong KF, Wang XJ (2006) A recurrent network mechanism of time integration

in perceptual decisions. J Neurosci 26: 1314–1328.
24. Rossignol S, Dubuc R, Gossard JP (2006) Dynamic sensorimotor interactions in

locomotion. Physiol Rev 86: 89–154.

25. Aramaki Y, Honda M, Okada T, Sadato N (2006) Neural correlates of the
spontaneous phase transition during bimanual coordination. Cereb Cortex 16:

1338–1348.
26. Kelso JA (1984) Phase transitions and critical behavior in human bimanual

coordination. Am J Physiol 246: R1000–1004.

27. Haken H, Kelso JA, Bunz H (1985) A theoretical model of phase transitions in
human hand movements. Biol Cybern 51: 347–356.

28. Jirsa VK, Fuchs A, Kelso JA (1998) Connecting cortical and behavioral
dynamics: bimanual coordination. Neural Comput 10: 2019–2045.

29. Schoner G, Kelso JA (1988) Dynamic pattern generation in behavioral and
neural systems. Science 239: 1513–1520.

30. Meyer-Lindenberg A, Ziemann U, Hajak G, Cohen L, Berman KF (2002)

Transitions between dynamical states of differing stability in the human brain.
Proc Natl Acad Sci U S A 99: 10948–10953.

31. Golubitsky M, Stewart I, Buono PL, Collins JJ (1999) Symmetry in locomotor
central pattern generators and animal gaits. Nature 401: 693–695.

32. Grillner S, Deliagina T, Ekeberg O, el Manira A, Hill RH, et al. (1995) Neural

networks that co-ordinate locomotion and body orientation in lamprey. Trends
in Neurosciences 18: 270–279.

33. Tresch MC, Kiehn O (2000) Motor coordination without action potentials in the
mammalian spinal cord. Nat Neurosci 3: 593–599.

Activity Reconfiguration

PLoS ONE | www.plosone.org 14 November 2008 | Volume 3 | Issue 11 | e3830


