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A B S T R A C T   

Background: Pancreatic adenocarcinoma (PAAD) is one of the most malignancy diseases. Lysine 
β-hydroxybutyrylation (Kbhb) has been reported to involve various metabolism and cancer 
progression. 
Methods: Data from online databases (TCGA and GEO) were retrieved for the selection of dif-
ferential expressed Kbhb site genes (DTRGs). Univariate cox and LASSO analysis were performed 
to identify the prognostic DTRGs. Based on the optimal DTRGs, a prognostic risk score model was 
established. Kaplan-Meier and Receiver operator characteristic analysis were conducted to 
evaluate the predicting ability of the prognosis model. Generated with clinical data, independent 
analysis and nomogram model were performed. Finally, the differences of survival, immune cell 
levels, immunotherapy response, drug sensitivity between high- and low-risk groups were 
explored. 
Results: A total of 63 DTRGs were identified in PAAD, and these genes were related to cell division 
and apoptosis biological functions. Through univariate cox regression and LASSO analysis, 30 
DTRGs were selected to be related to prognosis and five (KRT18, ANLN, ECT2, RBM5, and RBM6) 
were identified as the optimal DTRGs in PAAD. Based on the five optimal DTRGs, a prognostic 
risk score model was constructed, with promising predictive ability in PAAD survival (AUC 
>0.70). High-risk group showed lower survival rate (P < 0.05). Moreover, based on the risk score, 
a nomogram model was also established, which possessed perfect stability. Finally, lower risk 
score was related to higher immune cell levels, indicating an immune activation in low-risk status, 
which maybe the reason for the better survival in low-risk group. Furthermore, the immuno-
therapy response and drug sensitivity were all higher than that in low-risk groups (P < 0.05). 
Conclusion: A five-gene prognosis risk model which exhibit promising predictive ability in survival 
is constructed for patients with PAAD.   
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1. Introduction 

Pancreatic adenocarcinoma (PAAD) is a highly malignancy disease [1]. The common risk factors of PAAD are gallstones, smoking, 
alcohol consume, and chronic pancreatitis [2]. Most PAAD arise from microscopic non-invasive epithelial proliferations within the 
pancreatic ducts, considered as pancreatic intraepithelial neoplasias [3]. PAAD is commonly detected at advanced stage, about 80–85 
% of the patients missed optimal surgery period due to absent of typical symptom [4]. Surgery resection is the only potentially curative 
method, while for patients received surgery resection, the five-year survival is only 20 % [3]. Early-stage PAAD manifests as rapid 
progression and early metastasis, thereby inducing poor prognosis [4]. An effective prediction tool is necessary for the prognosis and 
management of PAAD. 

Tumor metabolic reprogramming is an important hallmark of cancer, and alteration of metabolism can induce immune escape [5]. 
Various genes-related to metabolism have been reported as oncogenes or suppressor genes in cancer [6–8]. Lysine β-hydroxybutyr-
ylation (Kbhb) is a novel histone posttranslational modification and is first reported by Xie et al., in 2016 [9]. Kbhb has been reported 
to involve various metabolism and cancer progression [9,10]. In lung adenocarcinoma, BDH1-mediated LRRC31 regulation dependent 
on histone Kbhb to promote tumor progression [11]. p53 is a common tumor suppressor, which is also reported to be modified by 
Kbhb. p53 Kbhb decreases p53 acetylation and downstream genes expression like p21 and PUMA, and thus inhibit apoptosis [12]. 
These evidences indicate the association of Kbhb with cancer progression, whereas, role of Kbhb in PAAD has not be investigated. 

Prognostic models based on the gene chips and high-throughput sequencing emerged recently [13,14]. Nevertheless, the prog-
nostic signature based on the Kbhb have not been reported. In our analyses, data from online databases were involved in a bio-
informatic analysis, and prognostic model related to Kbhb genes was mainly established. Moreover, based on the expression of the 
Kbhb genes, all the samples were divided into high- and low-risk groups to investigate differences of immune response, drug sensi-
tivity, and mutation features between the two risk groups. Five optimal genes (KRT18, ANLN, ECT2, RBM5, and RBM6) were identified 
in PAAD. And based on the five optimal genes, a prognostic risk score model was constructed, with a promising predictive ability in 
PAAD survival. High-risk group showed lower survival rate, lower immune cell levels, higher immunotherapy response and higher 
drug sensitivity. 

2. Methods 

2.1. Data source 

Data of gene expression, survival information, and clinical feature of PAAD were downloaded from TCGA-PAAD dataset in UCSC 
Xena database (http://xena.ucsc.edu/). A total of 177 cancer samples and four normal samples in TCGA-PAAD were involved in the 
training analysis. Sixty-six PAAD samples with survival information from GSE62452 dataset in Gene Expression Omnibus (GEO 
https://www.ncbi.nlm.nih.gov/) database was also retrieved for the validation analysis. Moreover, the list of 1493 Kbhb site-related 
genes (TRGs) were downloaded from a previous study [15]. 

2.2. Differential expression analysis 

Based on the gene expression data from TCGA-PAAD dataset, differential expressed genes (DEGs) between cancer and normal 
samples were identified using limma package (version 3.54.0) [16] in R. The selection threshold was set as P < 0.05 & |log2fold change 
(FC)| >0.5. Following, the DEGs and TRGs were intersected using VennDiagram package (version 1.7.3) [17] in R, and overlapping 
genes were identified as differential Kbhb-related genes (DTRGs). 

2.3. Functional analysis and protein-protein interaction (PPI) networks analysis 

To investigate the biological function and pathways involved in TRGs, the function of the DTRGs were investigated in an online 
website DAVID (version 6.8.0, https://david.ncifcrf.gov/tools.jsp), containing Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analysis. To investigate the connection of the DTRGs, protein-protein interaction (PPI) was analyzed in STRING 
database (version 11.0, https://string-db.org/) and PPI network was constructed using Cytoscape software. 

2.4. Prognostic analysis 

Combined with the expression of DTRGs and survival information of cancer patients in TCGA-PAAD dataset, the prognosis-related 
DTRGs were further restrained by using univariate cox regression analysis in survival package (version 3.2–7) [18] in R. Based on the 
prognostic DTRGs, least absolute shrinkage and selection operator (LASSO) regression analysis was used to select the optimal DTRGs 
and construct the survival risk score model in TCGA-PAAD dataset. The risk core model was established as the following formula: 

Risk score=
∑n

i=1
Coefi × Expi 

Coefi represents the risk coefficient; Expi represent the expression value. 
The risk score of each sample was calculated according to the above formula. Based on the median of the risk score, all the samples 

in TCGA-PAAD dataset were divided into two groups: high-and low-risk groups. Kaplan-Meier (KM) analysis was used to investigated 
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the survival difference between the two risk groups. Receiver operator characteristic (ROC) curve was used to evaluate the robustness 
of the risk score model using timeROC package (version 0.4) in R. Moreover, the model was validated in GSE62452 validation dataset. 

2.5. Independent prognostic analysis 

Univariate and multivariate COX regression analysis were used to perform independent prognostic analysis in TCGA dataset, and 
then RMS package (version 6.2–0) [19] was used to construct a nomogram model for predicting the survival of patients in clinic. The 
calibration curve, decision curve analysis (DCA) curve, and ROC curve were used to evaluate the predictive ability of the nomogram. 

2.6. Gene Set Variation Analysis (GSVA) analysis 

GSVA connected the gene expression and pathway change. By downloading gene sets from the MsigDB, ssGSEA algorithm was used 
to score each KEGG pathway enrichment. limma package (version 3.54.0) was performed to compare the differential KEGG pathways 
between high- and low-risk groups. 

2.7. Immune infiltration, immune checkpoint, immunotherapy response, and drug sensitivity analysis 

Estimate package [20] in R was used to investigate the differences of immune, stromal, and ESTIMATE score between different risk 
groups. ssGSEA was used to evaluate the immune infiltration levels between two risk groups. As for immune checkpoint analysis, 
firstly, the expression level of immune checkpoint was obtained from TCGA database, and Wilcox rank-sum test in stats package 
(version 4.2.2) in R was used to analyze the differential of immune checkpoint between two risk groups. Moreover, Tumor Immune 
Dysfunction and Exclusion (TIDE) analysis tool (http://tide.dfci.harvard.edu/) was used to evaluate the immunotherapy response 
between two risk groups and Wilcox rank-sum test was used to compare the differences of immunotherapy response between different 
groups. To evaluate the drug sensitivity, 138 drugs in GDSC database (https://www.cancerrxgene.org/) were downloaded. pRRo-
phetic package (version 0.5) [21] was used to predict the IC50 value of the drugs for each patient based on the gene expression levels. 

2.8. Mutation frequency analysis 

Based on cBioPortal database (https://www.cbioportal.org/), the domain and the mutation sites of each optimal DTRG was further 
analyzed, and the mutation frequency in each of the DTRG in patients was evaluated. Moreover, KM curve was analyzed to investigate 
the survival differences between mutation group and non-mutation group using the survival option in the cBioPortal database. 

2.9. Statistical analysis 

All the analysis in this study were performed in R software (version 4.2.2, R Foundation for Statistical Computing, Vienna, Austria). 
P < 0.05 was set as statistical significance. Wilcox rank-sum test was used to evaluate the differences between two risk groups. 
Spearman method was used to evaluate the correlation between two groups (risk score and ESTIMATE score; genes and risk score; 
genes and immune cells; risk score and drugs). Pearson analysis was used for investigation of the correlation among the five genes and 
63 genes in PPI network. The Benjamini & Hochberg procedure was used to correct for multiple testing. 

The study design is exhibited in Fig. 1. 

Fig. 1. The study design. PAAD, pancreatic adenocarcinoma; TCGA, the Cancer Genome Atlas Program; DEGs, differential expressed genes; GO, 
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DTRGs, differential Kbhb-related genes; LASSO, least absolute shrinkage and 
selection operator; GSVA, Gene Set Variation Analysis. 
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3. Results 

3.1. Identification of DTRGs 

A total of 1594 DEGs were obtained between tumor and normal samples (Fig. 2A). Through intersecting these DEGs with the 1493 
TRGs from previous study [15], a total of 63 overlapping DTRGs were involved into the functional analysis (Fig. 2B). The functional 
analysis suggested that these DTRGs were mainly enriched into 23 GO biological process (BP), 22 GO cellular components (CC), nine 
GO molecular functions (MF), and one KEGG pathways. The TOP 5 functions were visualized in Fig. 2C, manifesting as that the 63 
DTRGs were mainly involved in cell division and apoptosis-related biological function. PPI network indicated that the 63 DTRGs were 
significantly correlated, exerting as 110 protein interaction relationship pairs and 43 nodes were concluded in PPI network (Fig. 2D). 
Among which, H3F3C, HIST2H2BE, PLK1 were closely related to most of the proteins. 

3.2. Identification of optimal DTRGs and construction of the prognostic model 

In TCGA-PAAD training dataset, multivariate cox regression analysis identified 30 DTRGs that were related to prognosis of patients 
with PAAD (Fig. 3A, P < 0.05). Following, LASSO analysis generated the genes combination into five: KRT18, ANLN, ECT2, RBM5, and 

Fig. 2. Identification of the DTRGs. (A) Volcano plot for identification of DEGs between cancer and normal groups. (B) Venn analysis. (C) GO and 
KEGG results in TOP5. The length of the bar indicates significance; the numbers behind the bats indicate the number of enriched genes. (D) Protein- 
protein interaction (PPI) networks. Lines indicate the interaction between genes; node size indicates the degree of connectivity; red circle indicates 
up-regulated genes; green circle indicates down-regulated genes; red lines indicate positive correlation; blue lines indicate negative correlation; the 
darker the color, the stronger the correlation. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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Fig. 3. Construction and evaluation of the prognostic risk score model. (A) Univariate cox regression analysis. (B) LASSO analysis. Left panel 
represents the coefficients. Right panel represents the selection of λ. The two dashed lines indicate two special values of λ: lambda.min on the left 
and lambda.1se on the right. (C) Distribution of the risk score in TCGA-PAAD training datasets. (D) Kaplan-Meier (KM) curves in TCGA-PAAD 
training datasets. (E) ROC curve in TCGA-PAAD training dataset. (F) Distribution of the risk score in GSE62452 validation dataset. (G) Kaplan- 
Meier (KM) curves in GSE62452 validation dataset. (H) ROC curve in GSE62452 validation dataset. 
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RBM6, which were considered as the biomakers (Fig. 3B). among which, ANLN, KRT18 and ECT2 were risk factors; RBM5, and RBM6 
were protective factors in PAAD. According to the five optimal DTRGs, a prognostic risk score model was constructed:  

Fig. 4. Construction and evaluation of Nomogram model. (A) Univariate Cox regression analysis. (B) Multivariate Cox regression analysis. (C) 
Nomogram model for predicting the survival of patients. Each factor corresponds to a score, and the total score of each factor corresponds to the 
total score. According to the total score, the 1-year, 3-year, and 5-year survival rates are predicted. (D) Calibration curve. (E) decision curve analysis 
(DCA) curve. (F) ROC curve. 
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Risk score = 0.058414713 × KRT18 + 0.311584926 × ANLN + 0.03302212 × ECT2 - 0.363869556 × RBM5 -0.008985028 × RBM6. 

Based on the gene expression, the samples were divided into high- and low-expression groups according to median. KM analysis 
indicated that higher expression of ANLN, KRT18, and ECT2 predicted worse overall survival; and higher expression of RBM5 and 
RBM6 predicted better overall survival (Figure S1 A-E), which is consistent with the above univariate cox regression analysis. Cor-
relation analysis showed that the links among these five genes were closely, especially RBM5 and RBM6 (Figure S1F). 

3.3. Evaluation of the prognostic model 

For evaluating the predicting ability of the risk score model, all the cancer samples in TCGA-PAAD training dataset were divided 
into two groups: high- and low risk groups, with 88 samples in each group (Fig. 3C and D). KM analysis suggested that the high-risk 
groups exhibited worse survival rate compared with low-risk groups (Fig. 3D, P = 0.00047). ROC cure showed that the risk score model 
possessed promising predicting ability in survival of patients with PAAD (Fig. 3E, AUC >0.70 in 1- and 5-year survival; and AUC >0.65 
in 3-year survival). The prognostic ability of the risk score model were also validated in GSE62452 dataset, and similar results were 
obtained (Fig. 3F–H). 

Fig. 5. Function analysis between two risk groups. (A) GSVA results. (B) Volcano plot for identification of DEGs between high- and low-risk groups. 
(C) GO and KEGG analysis for the DEGs between high- and low-risk groups. 
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3.4. Construction and evaluation of nomogram model 

To investigate the independence of risk score, the clinical elements of cancer patients in TCGA-PAAD training dataset and the risk 
score were involved into the univariate and multivariate cox regression analysis. In the univariate cox regression analysis, age, 
pathologic T, pathologic N, tumor stage, and risk score were significantly correlated with the risk of PAAD (Fig. 4A, P < 0.05). The five 
elements were following involved into multivariate cox regression analysis, and the results indicated that age, pathologic N, and risk 
score exhibited independent prognostic ability in PAAD (Fig. 4B, P < 0.05). Based on the three independent factors from multivariate 
cox regression analysis, a nomogram model that was used to predicting the survival of patients with PAAD in 1, 3, and 5 year was 
constructed (Fig. 4C). 

The calibration curve and DCA curve indicated that the slope between observed overall survival and nomogram-predicted overall 
survival were close to 1 in 1, 3, and 5 years (Fig. 4D), indicating effectiveness of the nomogram model. The DCA curve also exhibited 
that the predicting ability of nomogram model was higher than age, pathologic N, and risk score curve (Fig. 4E). In a threshold of 
0–0.6, nomogram model possessed more benefit effectiveness. Moreover, the ROC curve also demonstrated the promising predictive 
ability of nomogram in survival (Fig. 4F). 

3.5. Differences of functions between two risk groups 

To investigate the differences of pathways between two risk groups, GSVA analysis was performed. The results indicated that high- 
risk group was related to cell cycle, mismatch repair, P53 signaling pathway etc.; low-risk group was enriched in tryptophan meta-
bolism, taste transduction, neuroactive ligand receptor interaction, and so on (Fig. 5A). Furthermore, to further investigate the dif-
ference in function between two risk groups, limma package was used to explore the differential expressed genes between the two risk 
groups, manifesting that 1197 DEGs were selected (Fig. 5B). GO and KEGG analysis demonstrated that these DEGs between two risk 
groups were correlated with tumor progression process like cell adhesion, apoptotic process, cell cycle, PI3K-Akt signaling pathways 
(Fig. 5C). 

Fig. 6. Immune differences between two risk groups. (A) Stromal, immune, and ESTIMATE score between two risk groups. (B) Correlation of risk 
scores with immune and ESTIMATE scores. (C) Immune cell levels between two risk groups. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P 
< 0.0001. 
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3.6. Differences of immune feature between two risk groups 

Tumor microenvironment is composed of tumor cells, various immune cells, fibroblasts, cytokines and catalytic factors, which is a 
complex system with dynamic balance. In our results, immune and ESTIMATE score were significantly different between high- and 
low-risk groups (Fig. 6A). The risk score suggested a significantly negative correlations with immune and ESTIMATE scores (Fig. 6B, P 
< 0.001), indicating that immune status was more active in low-risk score conditions. Moreover, immune cell infiltration analysis 
indicated 17 significantly different immune cells between high- and low-risk groups (Fig. 6C). For example, immune cell infiltration 
levels in low-risk groups were relatively higher than that in high-risk groups, exerting as higher activated B cell, activated CD8 T cell, 
effector memory CD4 T cell, effector memory CD8 T cell, Eosinophil, Immature B cell, immature dendritic cell, macrophage, MDSC, 
and Monocyte (Fig. 6C). Incidentally, expression levels of the five optimal DTRGs were also significantly correlated with the immune 
cell levels (Figure S2). 

3.7. Differences of immunotherapy response and drug sensitivity between two risk groups 

A total of 30 immune checkpoint genes were significantly differential expressed between two risk groups (Fig. 7A). The TIDE score 
in the high-risk group was significantly higher than that in the low-risk group (Fig. 7B), indicating that the patients in the high-risk 
group exhibited a greater probability of tumor immune escape and a poor response to immune checkpoint blockade (ICB) treat-
ment. Moreover, a total of 73 drugs showed significantly different IC50 between the two different risk groups (Fig. 7C). There was a 

Fig. 7. Immunotherapy and drug sensitivity predicting. (A) Immune checkpoint genes expression differences between two risk groups. (B) TIDE 
score between two risk groups. (C) Correlation between risk score and drugs. (D) Differences of most significant drugs between two risk groups. 
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significant and strongest negative correlation between risk score and Z.LLNle.CHO drug, and a significant and strongest positive 
correlation between risk score and Nilotinib drug (Fig. 7C and D). 

3.8. Mutation side and frequency of five biomarkers 

The mutation frequency of KRT18, ANLN, ECT2, RBM5, and RBM6 were 0 %, 2 %, 5 %, 0.7 %, and 2.7, respectively (Figure S3A). 
Moreover, there were three, five, and two mutation sites in ANLN, ECT2, and RBM6, respectively (Figure S3B). A previous study 
indicated that mutation of genes influences the prognosis of patients [22]. So, we further investigated whether mutation effected on the 
survival of PAAD patients. The results showed that among these five genes, only mutation of ANLN might be related to a poor survival 
(Figure S3C). 

4. Discussion 

Kbhb emerged to be related to cancer and metabolism progression. In the present study, a total of 63 DTRGs were identified in 
PAAD, and these genes were demonstrated to related to cell division and apoptosis biological functions. Through univariate cox 
regression and LASSO analysis, 30 DTRGs were selected to be related to prognosis and five (KRT18, ANLN, ECT2, RBM5, and RBM6) 
were identified as the optimal DTRGs in PAAD. Based on the five optimal DTRGs, a prognostic risk score model that exhibited 
promising predictive ability in PAAD survival was established. High-risk group showed lower survival rate. Moreover, based on the risk 
score, a nomogram model was also established, which can be used to predict the survival in clinic and the nomogram possessed perfect 
stability. Finally, high- and low-risk groups exert different immune infiltration levels, manifesting as lower risk score matching with 
higher immune cell levels. The results indicate an immune activation in low-risk status, which maybe the reason for the better survival 
in low-risk group. Furthermore, the immunotherapy response and drug sensitivity were all higher than that in low-risk groups. 

For the selected optimal DTRGs, our analysis indicated that higher expression of ANLN, KRT18, and ECT2 predicted worse overall 
survival; and higher expression of RBM5 and RBM6 predicted better overall survival. ANLN, full named Anillin, is a mitosis-related 
protein that is reported to promote contractile ring formation and cytokinesis. ANLN, is higher expressed, and is related to a poor 
prognosis in esophageal squamous cell carcinoma [23]. USP10 can regulate ANLN through ubiquitination to affect the tumor cell-cycle 
progression [23]. Similar expression and role of ANLN are emphasized in oral cancer and breast cancer [24,25]. In PAAD, higher 
expression of ANLN is related to lymph node metastasis and poor prognosis, which is consistent with our results. Mechanically, ANLN 
promotes cancer progression by mediating miR218-5p/LASP1 in PAAD [26]. 

Keratin 18 (KRT18) is one of the most abundant keratins in epithelial and endothelial cells, and has also been suggested highly 
expressed in various cancer [27–29]. ECT2 is also an oncogene in various cancer. High expression of ECT2 and is related to poor 
prognosis in breaster cancer [30]. ECT2 involves in tumor cell growth and migration in colorectal cancer [31]. Moreover, ECT2 is 
related to drug resistance. ECT2 knockdown inhibits the proliferation and metastasis of tumor cells; promotes apoptosis, and enhances 
sensitivity to cisplatin in cervical cancer [32]. These results for KRT18 and ECT2 are also in accordance with our results. Importantly, 
KRT18 is involved in the acetylation of non-histone substrate in human colon carcinoma cell line [29], demonstrating that KRT18 
might regulate tumor progression through acetylation. 

RBM5 [33–36] and RBM6 [37–39] belong to RNA-binding proteins, and are upregulated in tumor tissues in various cancers, which 
are also in agreement with our findings. RBM5 exhibits pro-apoptosis activity and anti-tumor role in lung cancer [34]. Downregulation 
of RBM5 can induce bladder cancer apoptosis through initiate miR-432-5p/β-catenin feedback loop [36]. RBM6 also shows down-
regulation in laryngocarcinoma, and overexpressed RBM6 inhibits cancer incidence rate [38]. RBM6 is downregulate in hepatocellular 
carcinoma tissue, and RBM6 overexpression weaken cancer cell vitality and migration ability [39]. Moreover, a study indicates that 
RBM6-RBM5 chimeric expression may be a potential tumor differentiation marker [40]. Overall, the five genes might be powerful 
indication in PAAD, and exert robust predicting ability in PAAD, proving the promising ability of risk score model in predicting 
survival in PAAD again. 

Nevertheless, limitation exists. First, the sample size in this analysis might be small, and the risk score model is necessary to be 
validated in larger cohorts. Second, although the roles of the five optimal genes have been reported in various cancers in previous 
studies, the regulation mechanism of them in PAAD is relatively absent, and the relationship between these genes and butyrylation is 
also needed to be clarified. Among the five identified genes, only KRT18 is reported to regulate tumor progression through acetylation. 
More validation and exploration studies need to be performed in future. Anyway, our analysis provided a robust predicting tool for 
patients with PAAD, and also provided some indication for the following mechanism exploration in PAAD. 

5. Conclusion 

A five-gene (KRT18, ANLN, ECT2, RBM5, and RBM6) prognosis risk model is constructed in this study and the model is promising in 
predicting the survival of the PAAD. Based on the risk score model, low-risk group exhibits better survival rate, more active immune 
status, higher immunotherapy response and drug sensitivity. The study might provide effectively predictive and managemental 
indication in PAAD. 
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