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Abstract: With the continuous advancements of urbanization, the demand for power cables is
increasing to replace overhead lines for energy transmission and distribution. Due to undesirable
scenarios, e.g., the short circuit or poor contact, the cables can cause fire. The cable sheath has a
significant effect on fire expansion. Thus, it is of great significance to carry out research on flame-
retardant modification for cable sheath material to prevent fire accidents. With the continuous
environmental concern, polyolefin (PO) is expected to gradually replace polyvinyl chloride (PVC) for
cable sheath material. Moreover, the halogen-free flame retardants (FRs), which are the focus of this
paper, will replace the ones with halogen gradually. The halogen-free FRs used in PO cable sheath
material can be divided into inorganic flame retardant, organic flame retardant, and intumescent flame
retardant (IFR). However, most FRs will cause severe damage to the mechanical properties of the PO
cable sheath material, mainly reflected in the elongation at break and tensile strength. Therefore, the
cooperative modification of PO materials for flame retardancy and mechanical properties has become
a research hotspot. For this review, about 240 works from the literature related to FRs used in PO
materials were investigated. It is shown that the simultaneous improvement for flame retardancy
and mechanical properties mainly focuses on surface treatment technology, nanotechnology, and the
cooperative effect of multiple FRs. The principle is mainly to improve the compatibility of FRs with
PO polymers and/or increase the efficiency of FRs.

Keywords: cable sheath material; polyolefin; halogen-free flame retardant; mechanical properties

1. Introduction

Power cables are important equipment for energy transmission and are closely related
to system security [1]. Due to complex working environment, different operating conditions,
and flammable insulating materials, fire accidents of power cables often occur. The survey
found that 50% of electrical fires are caused by burning cables [2]. Once a fire occurs, it will
not only lead to the interruption of power transmission and cause major economic losses,
but also affect the health and safety of people [3]. Three typical cables are listed in Figure 1.
The polymer composite materials in the cable structure are mainly sheath and insulation.
Thus, the cable sheath has a significant effect on fire expansion. Thus, it is beneficial to
improve the flame retardancy of the cable sheath material. Meanwhile, the sheath material
should maintain certain mechanical strength to meet relevant standard, e.g., the European
standard EN 50264 for locomotives cables. As shown in Table 1, flame-retardant cable
materials need to meet the indicators in terms of flame-retardant and mechanical properties.

At present, the materials used for cable sheath are mostly organic polymers, including
PVC, polyethylene (PE), polypropylene (PP), ethylene vinyl acetate (EVA), etc., of which
PE includes high-density polyethylene (HDPE), low-density polyethylene (LDPE), and
linear low-density polyethylene (LLDPE) [4,5]. PVC is now widely used as sheath material
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because of its good electrical insulation properties, mechanical performance, and low
price [6]. However, PVC generates highly dense smoke and releases toxic gases during
burning. With the enhancement of environmental awareness, countries around the world
actively advocate for the use of PO, which is more environmentally friendly, instead of
PVC as cable material. However, since the molecular chain of the PO matrix is composed
of two elements, i.e., C and H, its limiting oxygen index (LOI) is only about 18%, and
the char-formation rate is relatively low with the production of a large volume of molten
droplets during combustion [7]. Thus, FRs should be added into PO to improve its flame
retardancy. Generally, halogen-free FRs are preferred due to their excellent flame-retardant
property and environmental friendliness, while the polarity difference between most FRs
and PO matrix may lead to the sacrifice of mechanical performance. Balancing the flame
retardancy and mechanical parameters is crucial for new material development.
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Figure 1. Schematic diagram of three typical cable structures. 
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Table 1. Index of halogen-free flame-retardant cable sheath material [8].

Performance Unit Index

LOI % ≥30
Tensile strength MPa ≥10

Elongation at break % ≥150

2. Flame Retardant Mode of Action

It is necessary to know about the interaction between the PO polymer and the ignition
source before preparing an effective flame retardant. Figure 2a illustrates the combustion
mode of action of combustible materials in air and the four key factors that initiate com-
bustion: combustible material, oxygen, heat, and a chain reaction [9,10]. Zhao et al. [11]
proposed that the combustion behavior of PO polymers can be roughly divided into five
stages, namely heating, degradation, decomposition, ignition, and combustion, of which
the decomposition stage will generate a large number of combustible gases (such as H2,
CH4, CO, etc.) and thus intensify the combustion. Then a series of chain reactions occur, as
shown in Figure 2b, and the products become combustible materials in combustion stage.

The corresponding basic theories of flame inhibition mode of action can be summa-
rized as follows [11]:

(i) Covering effect: When heated, some FRs can form a non-flammable protective layer,
thereby blocking the two elements, i.e., oxygen and heat, necessary for combustion.

(ii) Dilution effect: Some FRs can release incombustible gases, such as CO2 and water va-
por, when heated, and this can reduce the oxygen concentration around the polymers,
thereby inhibiting the combustion process.

(iii) Endothermic effect: Some FRs can undergo a decomposition reaction to absorb a large
amount of heat, leading to a cooling effect on the polymer.
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(iv) Inhibition effect: The thermal decomposition of some FRs will generate a large number
of radicals, which can combine with the reactive radicals released by the polymer
matrix to interrupt the process of the chain reaction.
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Therefore, the action of FRs is mainly to interfere with the five stages of the combustion
process according to these four modes of action, so as to reduce the spread of fire. This
paper summarizes the research progress related to the halogen-free FRs, i.e., inorganic
FRs, organic FRs, and IFR, which are used to cooperatively improve the flame-retardant
properties and mechanical performance of PO matrix in recent years.

3. Inorganic Flame Retardants
3.1. Metal Hydroxide

As FRs for PO materials, aluminum hydroxide (ATH) and magnesium hydroxide
(MH) share the similar flame-retardant principle. The reaction formula is shown in Figure 3.
Under high-temperature conditions, MH and ATH will produce water, which can absorb
heat through vaporization to cool the material. Moreover, the percentage of oxygen in
the air can be reduced due to the production of water vapor, thus achieving the effect of
inhibiting or delaying combustion. At the same time, the products of MH and ATH after
combustion, i.e., MgO and Al2O3, have high specific surface energy and strong adsorption
capacity. They can cover the outer surface of the PO polymer, thus forming a protective
barrier to suppress smoke and slow the spread of fire [12].
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However, MH or ATH often require a large number of addition (50–60 wt.%) to achieve
good flame-retardant properties. Furthermore, the polarity difference between hydroxide
FRs and PO leads to poor compatibility, which seriously reduces the mechanical properties
of the composites, such as elongation at break and tensile strength [13,14].

To improve the flame retardancy and mechanical properties of PO composites, re-
searchers have proposed the method of surface modification for MH/ATH, which can
change the surface properties of the metal hydroxide to improve its interfacial adhesion
with PO polymers [15,16]. Silane coupling agents, as a common surface modifier, have
shown significant cooperative improvement in the flame retardancy and mechanical prop-
erties of PO composite systems [17,18]. Yang et al. [19] added γ-(2, 3-epoxypropoxy)
propytrimethoxysilane (KH-560) to LLDPE/MH as a surface modifier for MH and con-
cluded that the composite had the best cooperative properties when 3–7 wt.% KH-560
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was added. On the one hand, KH-560 can improve the dispersion of MH in the PO ma-
trix; on the other hand, the increase of KH-560 content leads to the larger particle size of
MH in the system, and this is not conducive to improvement. Therefore, it is necessary
to select the appropriate range of KH-560 content to obtain satisfactory composite prop-
erties. Meng et al. [20] synthesized a novel MH-polyphosphazene-Ni2+ (MH-PZPN-Ni)
with core–shell structure by effectively grafting γ-aminopropyl triethoxysilane (KH-550),
hexachlorocyclotriphosphazene (HCCP), 1-(2-Aminoethyl) piperazine (AEP), and Ni2+

on the surface of MH through the strategy of layer-by-layer assembly and method of
Ni2+ chelation. The synthesis principle is shown in Figure 4a. They found that 60 wt.%
MH-PZPN-Ni added into the EVA matrix could lead to the improvement of the obtained
composites in both mechanical performance and flame retardancy, with the tensile strength
and elongation at break of 11.4 MPa and 107.2%, respectively. Moreover, it achieved an
LOI of 30.4% and vertical combustion test (UL-94) of V-0 rating. Meanwhile, compared
with EVA/MH, pores presented on the surface of the EVA/MH-PZPN-Ni composites were
smaller and fewer, as shown in Figure 4b, thus indicating that the compatibility between
MH-PZPN-Ni and EVA matrix had been improved.
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In addition, researchers have found that nano-hydroxide obtained by ultra-fabrication
shows the characteristics of small volume size, low filling amount, and large specific surface
area. Moreover, nanoscale particles are easier to disperse uniformly in the PO matrix; thus,
they have less negative impact on the mechanical performance of the polymeric material
when used as FRs [21]. Wang et al. [22] prepared PP composites with 50 wt.% nano-MH via
the process of melt extrusion. The results showed that this method not only increased the
value of LOI (from 19.3% to 29.1%), but also the sample of PP/MH passed the UL-94 test
with a V-0 rating. Moreover, the nanoparticles can be dispersed well in PP polymer, which
has a certain enhancement effect on the elongation at break and tensile strength of PP/MH
composites. To obtain the cable materials with better mechanical properties, Liu et al. [23]
synthesized MH nanoparticles grafted with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-
10-oxide (DOPO) via vinyl silane coupling agents WD70 and incorporated 51.32 wt.% of
them into the EVA matrix by using the melt-blending method. The elongation at break and
the LOI can reach 209% and 29.8%, respectively. Moreover, researchers have found that
nano additives can be the flame-retardant adjuvant of metal hydroxide, which had a great
effect on improving the flame retardancy and mechanical properties of PO materials with a
low addition amount [24]. Yen et al. [25] used nanoclay as an adjuvant for EVA/48 wt.%
MH composites. Due to the compact structure of the silicate layer formed by heated
nanoclay, the thermal insulation effect of the metal oxide layer can be further enhanced;
the LOI of EVA/48 wt.% MH polymers with 2 wt.% nanoclay reached 34.5%. Compared
with sample test without nanoclay, an increase of about 25% LOI was observed, and
the V-0 rating was maintained. Meanwhile, the elongation at break and tensile strength
of the composites increased from 375% and 8.5 MPa to 396% and 9.4 MPa, respectively.
Guo et al. [26] improved the flame retardancy and mechanical properties of EVA/40 wt.%
ATH composites by adding 2 wt.% graphene nano-platelets (GnPs) and 2 wt.% MoS2. They
prepared EVA/ATH and EVA/ATH/GnPs/MoS2 samples through the method of melt
blending, in which the EVA/ATH composite was recorded an LOI of 26% and a V-2 rating
in UL-94 test. The elongation at break and tensile strength were 359% and 12.6 MPa. After
the introduction of GnPs and MoS2, the LOI of the composite was 29.5%, and the UL-94 test
reached V-0 rating. The elongation at break and tensile strength were 448% and 21.5 MPa,
respectively. Nanoplatelets appeared to increase resistance to deformation and improve
the modulus at break as proposed in Figure 5a. Meanwhile, Figure 5b shows the effect of
GnPs or MoS2 on the mechanical performance of EVA/ATH composites. The test results
showed that GNPs had an adsorption effect on the polymer molecular chain. When the
polymer is under tension, this adsorption can prevent the breaking of the molecular chain,
thereby enhancing the mechanical properties of the polymer.
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3.2. Inorganic Phosphorus

As one of the optimal alternatives for halogen-containing FRs [27], phosphorous-based
FRs can be divided into organic phosphorus FRs and inorganic phosphorus FRs. The latter
mainly include red phosphorus (RP) [28], ammonium polyphosphate (APP) [29], and phos-
phate (such as ammonium phosphate, ammonium dihydrogen phosphate, diammonium
hydrogen phosphate, etc.) [30]. Generally speaking, there are two flame-retardant ap-
proaches for phosphorus-based FRs, namely the gas phase and condensed phase (shown in
Figure 6a). In the gas phase, the PO matrix will produce radicals such as H·, HO·, and CH3·
at high temperatures, while RP or APP generates PO· and PO2·. These radicals will combine
with each other and terminate the active radicals to achieve the purpose of interrupting
and inhibiting the combustion of PO, thereby improving flame retardancy [31]. Meanwhile,
in the condensed phase, acids, e.g., phosphoric acid (H3PO4), metaphosphoric acid (HPO3),
and polymetaphosphoric acid decomposed from inorganic phosphorus FRs, will contribute
to the dehydration of PO into carbon. This carbon layer can block the generation of new
radicals by limiting the diffusion of oxygen in the combustion environment and protect the
underlying polymer from further combustion. At the same time, thermal decomposition
reactions will lead to the condensation of phosphoric acid and will release water to decrease
the temperature of the matrix and dilute the concentration of combustible materials in the
air, thus producing a flame-retardant effect [32].

However, the compatibility of RP with PO matrix is poor, and this adversely affects
the mechanical performance of the PO composite. In addition, the low ignition point of RP
will be a safety hazard in the application. These factors above lead to the restriction of the
RP application.

To solve this issue, RP should be treated before use. An effective method is to en-
capsulate the RP by using the so-called microencapsulation technology [33,34]. Microcap-
sule technology is to cover the surface of the FRs with a coating of organic or inorganic
materials [35]. After coating, the compatibility of the flame retardant with the substrate can
be significantly improved [36]. Liang et al. [37] investigated the influence of the addition of
microencapsulated red phosphorus (MRP) on the mechanical performance of PP polymers
and found that the elongation at break of PP composites reached a maximum value of more
than 900%, with 2 wt.% MRP. However, when the addition of MRP was continued, the
elongation at break suddenly decreased, while the tensile strength only slightly decreased
(as shown in Figure 6b). This indicates that MRP has a significant effect on the improvement
of the mechanical properties of polymer materials at a lower addition.

Moreover, in order to make the polymer achieve higher flame-retardant properties,
MRP often needs to be compounded with other FRs, e.g., nanocarbon materials and metal
salts [38,39]. Chen et al. [40] used three FRs, i.e., MRP, MH, and Zinc Borate (ZB), in certain
ratios for PP polymers. It was shown that 50 wt.% MRP/MH/ZB (6/4/90) could increase
the thermal decomposition temperature of PP, thus greatly improving the stability of the
composites, while the LOI could reach more than 30%, and the UL-94 test could achieve
V-0 grade. Wang et al. [41] microencapsulated RP with an alcohol-soluble phenolic resin
to obtain the MRP and used it with aluminum hypophosphite (AHP) for flame-retardant
modification of LDPE composites. The results showed that LDPE composites with 10 wt.%
MRP could not achieve a V-0 rating; this was because the char layer generated after
combustion was insufficiently dense and prone to cracking. Meanwhile, the LDPE/10 wt.%
MRP/30 wt.% AHP composite could achieve a V-0 rating and produced a denser carbon
layer after combustion. Figure 6c shows the residual carbon shapes of the three LDPE
samples. Meanwhile, AHP did not affect the tensile strength of the composite, which still
could maintain above 10 MPa with 30 wt.% AHP.



Polymers 2022, 14, 2876 7 of 40Polymers 2022, 14, x FOR PEER REVIEW 8 of 43 
 

 

LDPE LDPE/10wt%MRP LDPE/10wt%MRP/
30wt%AHP

MRP weight (wt%)

(a) (b)

(c)

 
Figure 6. (a) The mode of action of phosphorus FRs. Reprinted from Reference [42] with permission. 
(b) Effect of MRP addition on mechanical properties of PP composites. (c) Pictures of the residual 
charcoal. Reprinted from Reference [41] with permission. 

Up until now, microencapsulation has been the most frequently used technique to 
enhance the compatibility of inorganic phosphorus flame retardants with PO substrates, 
so as to obtain cable material with excellent flame-retardant and mechanical properties 
[43,44]. Furthermore, hypophosphite or phosphinate can also serve as useful FRs for the 
PO matrix due to their characteristics of good thermal stability and high flame-retardant 
efficiency [45,46]. Tian et al. [47] investigated the effect of AHP on the flame retardancy of 
LDPE composites. The results showed that the LOI value of the LDPE polymer with 50 
phr AHP achieved 27.5%, and it passed the V-0 rating. Moreover, LDPE/AHP composites 
could still maintain good performance in tensile strength (10.6 MPa). Zhou et al. [48] pre-
pared a batch of EVA/AHP composites with melamine cyanurate (MCA) and MoS2 as ad-
juvants to obtain PO composites with better flame retardancy and mechanical perfor-
mance. After adding 30 wt.% AHP/MCA/MoS2 (18.7/9.4/2), the LOI value of EVA in-
creased to the maximum value of 38.5%, and a V-0 classification was achieved in the UL-
94 test. In addition, the elongation at break of the EVA composites increased to 654% after 
adding 2 wt.% MoS2. 

In summary, in order to achieve higher flame-retardant efficiency, the development 
of inorganic phosphorus FRs mainly focuses on the following aspects [49–51]: (i) surface 
treatment—the search for more excellent powder surface modifiers, especially the study 
of microencapsulation technology; (ii) development of cooperative FRs with better per-
formance—combining different kinds of FRs or introducing different kinds of flame-re-
tardant groups into the same flame-retardant molecular structure to achieve the coopera-
tive effect; and (iii) ultra-fine treatment—develop nanotechnology and carry out research 
on ultra-fine inorganic phosphorus-based FRs. 

  

Figure 6. (a) The mode of action of phosphorus FRs. Reprinted from Reference [42] with permission.
(b) Effect of MRP addition on mechanical properties of PP composites. (c) Pictures of the residual
charcoal. Reprinted from Reference [41] with permission.

Up until now, microencapsulation has been the most frequently used technique to
enhance the compatibility of inorganic phosphorus flame retardants with PO substrates, so
as to obtain cable material with excellent flame-retardant and mechanical properties [43,44].
Furthermore, hypophosphite or phosphinate can also serve as useful FRs for the PO
matrix due to their characteristics of good thermal stability and high flame-retardant
efficiency [45,46]. Tian et al. [47] investigated the effect of AHP on the flame retardancy of
LDPE composites. The results showed that the LOI value of the LDPE polymer with 50 phr
AHP achieved 27.5%, and it passed the V-0 rating. Moreover, LDPE/AHP composites could
still maintain good performance in tensile strength (10.6 MPa). Zhou et al. [48] prepared a
batch of EVA/AHP composites with melamine cyanurate (MCA) and MoS2 as adjuvants
to obtain PO composites with better flame retardancy and mechanical performance. After
adding 30 wt.% AHP/MCA/MoS2 (18.7/9.4/2), the LOI value of EVA increased to the
maximum value of 38.5%, and a V-0 classification was achieved in the UL-94 test. In
addition, the elongation at break of the EVA composites increased to 654% after adding
2 wt.% MoS2.

In summary, in order to achieve higher flame-retardant efficiency, the development
of inorganic phosphorus FRs mainly focuses on the following aspects [49–51]: (i) surface
treatment—the search for more excellent powder surface modifiers, especially the study of
microencapsulation technology; (ii) development of cooperative FRs with better
performance—combining different kinds of FRs or introducing different kinds of flame-
retardant groups into the same flame-retardant molecular structure to achieve the coopera-
tive effect; and (iii) ultra-fine treatment—develop nanotechnology and carry out research
on ultra-fine inorganic phosphorus-based FRs.
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3.3. Inorganic Silicon

Silicon FRs are divided into organic silicon FRs and inorganic silicon FRs. Inorganic
silicone FRs have the characteristics of being non-toxic and having less smoke, low burning
value, slow flame propagation, etc. [52]. They include SiO2, montmorillonite (MMT), glass
fibers, silica gel and talcum powder, etc.

However, the poor compatibility between inorganic silicon FRs and PO substrate
will seriously damage the processability and mechanical performance of the composites.
Therefore, how to improve the compatibility has become a key issue in the research of
inorganic silicon FRs. Micronization (micron, nano, etc.) and surface treatment are common
methods so far. Moreover, silicon FRs can be used with other additives to modify PO
polymers for flame retardancy and mechanical properties [53]. In general, inorganic
silicones are mainly used as adjuvants in combination with other FRs for PO polymers.
Among them, SiO2 [54,55] and MMT are the most commonly used inorganic silicone
adjuvants [56,57]. Thus, this section mainly discusses these two types of FRs.

3.3.1. SiO2

SiO2 contains many advantages, including small particle size, large specific surface
area, and good thermal stability. As an adjuvant for other FRs, it can form a protective
layer of silicon on the surface of the material to enhance the flame-retardant effect [58].
The protective layer can play a role in reducing the rate of heat release and improving the
mechanical performance of the materials [59].

There are three types of SiO2, including fused silica, fumed silica, and silica gel.
Kashiwagi et al. [60] explored the different effects of these three types of SiO2 as FRs in
PP polymers. It was shown that fumed silica and silica gel with a large surface area and a
low density can reduce the contact of the polymer with the combustion flame by acting
as a thermal barrier layer covering the surface of the molten PP polymer. Thus, they can
significantly reduce the total heat release of the PP composite system. However, fused
silica, due to its relatively small specific surface area, sinks into the polymer and makes
little contribution to thermal insulation and flame retardancy.

Recently, many scholars have conducted research about the SiO2 effect on the flame
retardancy of PO cable materials [61,62]. Table 2 lists some examples of the combination of
SiO2 and other conventional FRs. The table compares the effect of SiO2 as an adjuvant for
flame-retardant system. It is showed that researchers aimed mostly at the EVA polymer.
Moreover, with an addition of about 1–5 wt.% SiO2, the LOI and tensile strength of the
polymers can be improved noticeably.

Table 2. Cooperative effect of SiO2 as an adjuvant and other FRs.

PO
Matrix

SiO2
(wt.%) a Other FRs (wt.%) Flame Retardancy () b Mechanical Property () b Reference

EVA SiO2
(1.5)

layered double hydroxides
(LDH) (48.5) LOI: 30.8% (28.3%) [63]

EVA SiO2
(5.0) MH (55.0) UL-94 (3.0 mm) c: V-0 (V-0)

LOI: 39.0% (35%)
σt: 11.1 MPa (10.4 MPa)
εb: 70.0% (75.0%) [64]

EVA SiO2
(2.0) ATH (53.0)

UL-94 (3.0 mm): No rating,
nodripping (No rating,
dripping)
LOI: 33.2% (35.2%)

[65]

EVA SiO2
(5.0) ATH (120) + DCP (2.0) UL-94 (3.0 mm): V-0

LOI: 34.0%
σt: 21.0 MPa
εb: 420.0% [66]

PP SiO2
(1.0) PCO-900 (3.5) + NOR-116 (1.5) LOI: 25.7% (25.0%) [67]

a The concentrations of the additives; b value for PO composites without SiO2 added; c thickness of the tested
sample; σt, tensile strength; εb, elongation at break.
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3.3.2. MMT/OMMT

MMT is a very soft nano-layered silicate consisting of a central sheet of alumina
octahedral and two sheets of silica tetrahedral. Accordingly, its structure is shown in
Figure 7a, displaying two layers of stacked sheets [68]. MMT is favored for its abundant
mineral resources, excellent flame-retardant properties, and low price, so it has become
an important inorganic additive in the field of flame retardants. Studies showed that a
small amount of MMT had a positive effect on improving the thermal stability, mechanical
performance, and flame-retardant properties of PO substrates [69,70]. Meanwhile, MMT
has the advantages of low smoke and non-toxicity. As an adjuvant, it has great application
prospects for flame-retardant PO cable materials [71,72].
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However, since the PO matrix is a typical nonpolar polymer material, while the
surface of MMT sheet layer is highly hydrophilic and polarized, the compatibility between
them is poor and cannot achieve good dispersion, thus seriously affecting the mechanical
performance of composites. In order to solve the above problems, one approach is to
functionalize PO by introducing polar or polarizable groups into the polymer to convert the
nonpolar molecular chains of PO into polar ones [73]. Another commonly used method, as
the focus of this section, is to obtain organic montmorillonite (OMMT) by making organic
matter enter MMT sheets via exchanging with interlayer inorganic cations, hydrophobizing
the hydrophilic MMT surface, and reducing the surface energy of MMT, as shown in
Figure 7b, which has good compatibility with PO [74,75].

Table 3 shows the effect of MMT/OMMT as adjuvants for a flame-retardant system. It
is shown that, for most PO/FRs composites, after adding a small amount of MMT/OMMT
(1–5 wt.%), the flame retardancy and mechanical properties are improved. It is observed
that the mechanical properties of the materials can be greatly improved by replacing
MH/ATH with a small amount of OMMT/MMT; this may be due to the fact that the latter
is easier to disperse in the PO matrix.

Table 3. Examples of MMT/OMMT as adjuvants with conventional FRs in PO composites.

PO
Matrix

MMT/OMMT
(wt.%) Other FRs (wt.%) Flame Retardancy () a Mechanical Property () a Reference

LDPE MMT (2.25) MH (55.0)
UL-94 (3.0 mm): NC
b(NC)
LOI: 29.3% (31.9%)

[76]

EVA MMT (1.0) ATH (49.0) UL-94: V-0
LOI: 26.0% (33.0%)

σt: 11.2 MPa (17.4 MPa)
εb: 61.0% (21.0%) [77]

EVA OMMT (1.0) ATH (49.0) UL-94: V-0;
LOI: 28.0% (33.0%)

σt: 11.7 MPa (17.4 MPa)
εb: 61.0% (21.0%) [77]
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Table 3. Cont.

PO
Matrix

MMT/OMMT
(wt.%) Other FRs (wt.%) Flame Retardancy () a Mechanical Property () a Reference

PP
APP-CaMMT
(APP:CaMMT = 19:1)
(14.3)

Dipentaerythritol
(DPER) (5.7)

UL-94 (3.2 mm):
V-0 (NC)
LOI: 27.5% (21.9%)

[78]

PP Fe-OMT (4.0)

IFR (APP: PER:
melamine
polyphosphate
(MPP) = 9:4:7) (24.0)

UL-94 (3.0 mm):
V-0 (NC)
LOI: 30.0% (23.0%)

[79]

PP Ca-MMT (0.5)
Poly(ethylene glycol)
grafted
polypropylene (0.5)

σt: 33.5 MPa
εb: 132.5% [80]

LDPE
MMT (4.0) +
LDPE grafted maleic
anhydride (12.0)

MH (48.0) LOI: 26.0% (25.0%) σt: 13.1 MPa (10.8 MPa)
εb: 2.8% (1.6%) [81]

HDPE/
EVA MMT (5.0) MH (45.0)

UL-94 (3.0 mm):
V-0 (V-0)
LOI: 28.3% (28.4%)

[82]

HDPE/
EVA OMMT (5.0) MH (45.0)

UL-94 (3.0 mm):
V-0 (V-0)
LOI: 29.6% (28.4%)

[82]

PP MMT (1.2)
APP (10.8) +
DPER (4.0) +
melamine (MEL) (4.0)

UL-94 (3.2 mm): V-0
LOI: 29.8% σt: 30.0 MPa [83]

PP OMMT (2.6) IFR (28.0) +
PP-g-MAH (4.0)

UL-94 (4.0 mm):
V-0 (V-0)
LOI: 32.8% (30.7%)

σt: 28.1 MPa (30.8 MPa) [84]

LDPE/
EVA OMMT (5.0) ATH (30.0) +

MH (15.0) LOI: 23.3% σt: 15.6 MPa
εb: 33.5% [85]

a Value for PO composites without MMT/OMMT added. b Not classifiable.

4. Organic Flame Retardants
4.1. Organic Phosphorus

According to the element types and molecular structures, organic phosphorus FRs
are divided into three types: phosphorus-containing esters (including phosphate esters,
phosphite esters, metaphosphate esters, phosphonates, hypophosphonates, etc.) [86,87],
phosphorus–nitrogen adjuvants (e.g., phosphonitrile) [88–90], and phosphorus–silicon
adjuvants [91,92]. The flame-retardant mode of action of organic phosphorus in PO polymer
is the same as that of inorganic phosphorus FRs, including both a gas-phase and condensed-
phase effect [93,94].

As for the phosphorus-containing esters FRs, caged bicyclic phosphate PEPA (1-oxo-4-
hydroxymethyl-2,6,7-trioxa-l-phosphabicyclo [2.2.2] octane) [95] and SPDPC (spirocyclic
pentaerythritol bisphosphorate disphosphoryl chloride) [96] are important intermediates
for the synthesis of them (shown in Figure 8a). Moreover, a series of FRs with high phos-
phorus content can be developed by grafting other functional groups with flame-retardant
properties on the double ring cage structure of PEPA and the spiral ring structure of SPDPC.
Li et al. [97] used PEPA and phosphorus oxychloride to synthesize a novel phosphate flame
retardant with a structure of caged bicyclic, tri(1-oxo-2,6,7-trioxa-1-phosphabicyclo12.2.2]
octane-methyl) phosphate (Trimer) (in Figure 8b). It was shown that the Trimer molecule
contained three bicyclic caged phosphate units with a high phosphorus content of 21.2 wt.%
and had a highly symmetric structure, resulting in high char-forming properties and ther-
mal stability. Jiang et al. [98] mixed Trimer and APP in the weight ratio of 2:1 to obtain
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a mixture as the flame retardant for PP matrix. When 25 wt.% of them was added, the
LOI value reached 28.8% with V-0 grade in UL-94 test. Moreover, Wang et al. [99] syn-
thesized a novel phosphorus-containing flame retardant (SPDH) via the interaction of
synthesized intermediate product SPDPC with 10-(2,5-dihydroxyphenyl)-9,10-dihydro-
9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-HQ). When the content of SPDH was
40 wt.%, an LOI value of 24.6% and a V-0 classification in UL-94 test were achieved.
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Polyphosphazene, as a kind of phosphorus–nitrogen adjuvant, has excellent flame
retardancy and thermal stability. Due to its special molecular structure and flexible main
chain, polyphosphazene can play a positive role in improving the mechanical proper-
ties of polymers [100]. Wu et al. [101] synthesized a new phosphazene derivative, i.e.,
hexakis(dodecylamino)cyclotriphosphazene (H-12), as an adjuvant for flame-retardant
PP/Trimer/APP composites. The results showed that H-12 could enhance the compati-
bility of Trimer/APP with EVA polymer. Thus, it improved its flame-retardant properties
and mechanical performance. By replacing 10 wt.% content of Trimer/APP with the same
amount of H-12, the elongation at break of the sample could reach more than 900%, with an
LOI value of 29.1%. Furthermore, Ai et al. [62] synthesized an organic compound contain-
ing phosphorus and nitrogen, i.e., MPHP, which also belongs to the phosphorus–nitrogen
adjuvants, with its synthesis method shown in Figure 9a. They studied the influence of
MPHP on the mechanical performance and flame-retardant properties of the PP matrix.
The obtained results showed that, when the PP/FRs composite contained 30 wt.% MPHP,
the LOI value went up to 31.3%, and the UL-94 test achieved V-0 grade. Moreover, the
tensile strength of the material was 23.4 MPa. Afterward, 3 wt.% SiO2 was added in
the PP/30% MPHP composites as an adjuvant. Figure 9b shows that a large number of
phosphorus-containing radicals and ammonia gas will generate from MPHP after thermal
decomposition. Among them, ammonia gas can reduce the concentration of combustible
gas in the air, and this has a positive effect on inhibiting the burning intensity of PP matrix,
while phosphorus-containing radicals interrupt the chain reaction by consuming radicals,
e.g., H·and ·OH, thereby inhibiting the decomposition of PP. Meanwhile, in the condensed
phase, a heat-resistant carbon layer containing SiP2O7 was formed to cover on the surface,
so that MPHP/SiO2 FRs improved the LOI values of PP composites.

4.2. Organic Silicon

Organic silicon has always been in the frontline of co-additives in FRs systems for
PO composites because of its characteristics of high efficiency, low smoke evolution, and
environmentally friendliness [102]. Organic silicon includes silicone oil, silicone rubber,
polysiloxane, and its derivatives. Their flame-retardant mode of action is that, when the PO
composite is burning, the organic silicone can migrate to the outer surface of materials. The
-Si-O- bonds in its molecule will be transformed into -Si-C- bonds. Then the generated white
combustion residue and carbide form a composite inorganic layer covering the material to
prevent the combustion volatiles from escaping and block the oxygen from contacting the
substrate [103]. In addition, organic silicone FRs can significantly improve the mechanical
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performance of PO cable materials, because they can enhance the interface force between
the FRs and the matrix [104].
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There are two types of organic silicones used as FRs for PO substrates, i.e., additive
type and reactive type. The former means that organic silicone is added to the PO substrate
by itself or with other FRs without forming chemical bonds with PO matrix. The reactive
type mainly refers to the preparation of new flame-retardant polymers by copolymerizing
with flame-retardant units and grafting or crosslinking with macromolecules [105–107].
However, compared with reactive type of organic silicones, much more research has been
conducted on the additive type to improve the flame-retardant properties. Therefore, the
influence of additive-type silicone FRs on PO polymer is the focus of this section.

Thus far, researchers have tried a series of halogen-free flame-retardant additives to
improve the mechanical performance of PO substrates. Nevertheless, the experimental
results rarely showed a good balance between mechanical performance and flame retar-
dancy [108,109]. To overcome this problem, FRs can be modified by surface treatment
techniques with organic silicon, which has a significant effect on improving the interfacial
adhesion between the flame-retardant additive and the polymer matrix [110,111]. Pre-
viously, the traditional reagents used for surface treatment were mainly silane coupling
agents, but their effects were limited [112,113]. Recently, polysiloxane and its derivatives
have become significant surface modifiers of FRs used for PO polymers because of their
high flame-retardant efficiency, high thermal stability, and excellent compatibility with PO
substrates [114,115].

Table 4 presents the results regarding the influence of additive type of organic silicon
FRs on the performance of the PO matrix. It can be seen that most research focuses on
PP polymers, and silicones are mostly used to modify polar APP, thereby improving the
compatibility of APP with the polymer matrix. It is found that both the flame retardancy
and mechanical properties of the material are improved by adding silicone as an adjuvant.
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Table 4. Effects of different silicon FRs on the performance of PO matrix.

PO Matrix FRs Additives (wt.%) Mode of Action Results () a Reference

LDPE

MAPP (28.6)
(APP covered with KH-570
(3-(Methylacryl-oxyl)
propyltrimethoxy silane)
and SiO2) + DPER (11.4)

MAPP composites are better
dispersed and have good
compatibility with the matrix.

UL-94 (10.0 mm): V-0 (V-0);
LOI: 28.1% (26.7%);
σt: 2.7 MPa (2.4 MPa);
εb: 33.8% (24.1%)

[116]

PP

HBPPA-Si (12.5)
(hyperbranched
polyphosphamide with terminal
groups of silane) + APP (12.5)

HBPPA-Si has higher thermal
stability and more excellent
char formation.

UL-94 (3.2 mm): V-0 (NC);
LOI: 27.5% (21.3%);
σt: 28.3 MPa (26.3 MPa);
εb: 28.0% (24.0%)

[117]

PP
OA-POSS
(octa-ammonium-POSS) (1.0) +
IFR(APP:PER = 3:1) (19.0)

OA-POSS acts as a plasticizer
in the melt.

UL-94 (2.0 mm): V-1 (NC);
LOI: 29.7% (24.5%);
εb: 24.0% (23.0%)

[118]

PP
TS-POSS (trissulfonic acid
propyl-POSS) (1.0) +
IFR (APP:PER = 3:1) (19.0)

TS-POSS acts as a plasticizer in
the melt.

UL-94 (2.0 mm): V-1 (NC);
LOI: 32.4% (24.5%);
εb: 27.0% (23.0%)

[118]

PP

APID (polysiloxane containing
phosphorus, nitrogen and
benzene rings)
(10.0) + APP (15.0)

APID acts as blowing agent
and carbonization agent.

UL-94 (1.6 mm): V-0 (NC);
LOI: 29.8% (24.1%);
σt: 31.8 MPa (34.7 MPa);
εb: 72.3% (109.9%)

[119]

PP
Si-MCA (6.3)
(silicone-containing
macromolecular) + APP (18.7)

Si-MCA helps to form a
compact and thermostable
intumescent char.

UL-94 (3.2 mm): V-0 (NC);
LOI: 33.5% (26.0%);
σt: 27.4 MPa (25.6 MPa)

[120]

PP
Si-APP (APP modified with
polysiloxane) (18.75) + CA
(charring agent) (6.25)

Polysiloxane shell can enhance
thermal stability.

UL-94 (3.2 mm): V-0 (V-0);
LOI: 35.0% (32.7%); [121]

PP Polysilsesquioxane (5.0) +
IFR (APP:PER = 3:1) (25.0)

The synergism between IFR
and polysilsesquioxane
enhances char yield and form
stable C-Si bonds.

UL-94 (3.0 mm): V-0 (NC);
LOI: 36.0% (30.0%);
σt: 21.0 MPa (20.5 MPa);
εb: 33.0% (39.0%)

[122]

PP Polysilsesquioxane (5.0) +
IFR (APP:PER = 3:1) (30.0)

The synergism between IFR
and polysilsesquioxane
enhances char yield and form
stable C-Si bonds.

UL-94 (3.0 mm): V-0 (V-0);
LOI: 39.5% (32.0%);
σt: 16.0 MPa (20.0 MPa);
εb: 25.0% (32.0%)

[122]

PP

HFR (prepared with
γ-Aminopropyltriethoxysilane
and other agents) (5.0) +
IFR (APP:PER = 3:1) (25.0)

HFR helps to produce more
compact intumescent char.

UL-94 (3.0 mm): V-0 (V-0)
LOI: 36.0% (32.0%); [123]

a Value for PO composites without organic silicon added.

5. Intumescent Flame Retardants

The mode of action of IFR is to add some intumescent additives as flame retardants
in the preparation of PO materials that will decompose into an intumescent carbon layer
wrapping around the surface of the PO matrix under high-temperature conditions, playing a
role in isolating heat, combustible volatile gases, and oxygen, thus blocking the combustion
process [124,125].

In the development process of developing polymers that are flame retardant, phosphorus/
nitrogen-based intumescent flame retardants (P-N based IFR), first pioneered by Camino et al. [126]
in 1990, have played a great role. These FRs have the characteristics of high flame-retardant
efficiency, low smoke, and low negative impact on the mechanical performance of compos-
ites. A conventional IFR system consists of three components: APP, MEL, and PER [127,128].
Later, in 1994, Fukuda et al. [129] first used expandable graphite (EG) for flame-retardant
PO materials. They found that EG is highly resistant to corrosion. Moreover, EG has good
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durability, and it is environmentally friendly [130]. Since then, EG has become an important
member of the family of expandable flame-retardant materials.

5.1. P-N-Based IFR

P-N-based IFR is the most abundant and most widely used FR in the IFR systems. The
MEL, APP, and PER components are used as the gas source, acid source, and carbon source,
respectively [131]. However, conventional P-N-based IFRs cannot be uniformly dispersed
in the PO matrix due to the large addition amount and polarity difference. As a result, the
mechanical properties of the material are seriously affected. Khanal et al. [132] used an
IFR system consisting of APP and tris (2-hydroxyethyl) isocyanurate (THEIC) to prepare
flame-retardant HDPE composites, whose mechanical performance and flame retardancy
were investigated. The trends of flame retardancy and mechanical performance of the
composites, e.g., LOI, tensile strength, and elongation at break values, With the increase of
IFR contents are shown in Figure 10a. It was observed that, within a certain range, with
the increase of the flame-retardant addition, the LOI value increased, while the elongation
at break and tensile strength showed a significant downward trend. They proposed that,
since the IFR contains polar components, while the polymer matrix is a nonpolar material,
the difference in polarity between them leads to poor compatibility, which can be explained
by the obvious gaps existing between the IFR and the matrix, as shown in Figure 10b.
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Figure 10. (a) Comparison of elongation at break/tensile strength and LOI. (b) SEM images of
HDPE/IFR composites: (c) HDPE/15 wt.% IFR, (d) HDPE/20 wt.% IFR, (e) HDPE/25 wt.% IFR, and
(f) HDPE/30 wt.% IFR. Reprinted from Reference [132] with permission.

In response to the above problems, researchers have conducted a large number of
experimental studies, including the surface treatment of P-N-based IFRs, the addition of
cooperative FRs, and the synthesis of new IFRs. In the next section, the research progress
in these three directions is described in detail.

5.1.1. Surface Treatment of IFR

•Microencapsulation
The different polarities between the IFR and PO matrix leads to the poor compatibility

of IFR, which severely reduces the mechanical properties of the PO composites [133]. Up to
now, microencapsulation technology has been considered one of the effective strategies to
enhance the compatibility of IFR. The microencapsulated IFR with a core–shell structure
is isolated from the surrounding material, and this can improve its compatibility with
polymer matrix [134,135]. In general, there are several kinds of materials that can be used as
encapsulating shells for IFR and that are prepared by the methods of physics encapsulation
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or in situ polymerization, e.g., MF, silicon resin, melamine, urea-melamine-formaldehyde,
or polyurethane (PU) [136–139].

Zhang et al. [140] used HBPE, a hyperbranched polyester, to microencapsulate APP
via KH-550 (shown in Figure 11a) and investigated the flame-retardant effect of the organic–
inorganic hybrid K-HBPE@APP in PP. It was shown that, compared to adding equal
amounts of K-HBPE and APP, the addition of K-HBPE@APP not only increased the UL-94
rating (from V-1 to V-0) and the LOI value (from 31.0% to 34.2%), but also exhibited an
obvious effect on improving the elongation at break (from 83% to 375%) and tensile strength
(more than 20 MPa) of the IFR/PP materials. The abovementioned improvement is mainly
attributed to the more uniform dispersion of the microencapsulated HBPE and APP in the
PP matrix. Wang et al. [141] adopted a synthesized silicone resin called poly-DDPM to
encapsulate IFR additives and then incorporated the obtained Si-IFR into thermoplastic
polyolefins (TPO) to improve the flame retardancy and mechanical performance. The
results showed that the TPO/20 wt.% Si-IFR achieved the V-0 rating in the UL-94 test, along
with an LOI value of 32.2%. However, when adding the same amount of untreated IFR,
the LOI value was only 29.6%. Meanwhile, the elongation at break and tensile strength
reached 780% and 11.3 MPa from 750% and 10.3 MPa, respectively. Therefore, TPO/Si-IFR
exhibited excellent balances between flame retardancy and mechanical performance. As
shown in Figure 11b, TPO/Si-IFR produced a larger volume of expanded carbon layer
after combustion compared with TPO/IFR. The possible flame-retardant mode of action
of Si-IFR is proposed as follows: (i) APP/charring–foaming agent (CFA) promoted the
crosslinking and rearrangement of pyrolyzed TPO chains, which protected the TPO from
further burning; and (ii) degradation of poly-DDPM generated nano-silica, which migrated
to the surface during TPO combustion and enhanced the integrity and quality of the carbon
layer (shown in Figure 11c).
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Figure 11. (a) The synthetic route of K-HBPE@APP. Reprinted from Reference [140] with permis-
sion. (b) The photos of the char residues of the TPO sample. Reprinted from Reference [141] with
permission. (c) Flame-retardant mode of action. Reprinted from Reference [141] with permission.
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•Surface modification
Surface modification is another feasible method to get rid of the drawback of incompat-

ibility between IFR and PO. A number of modifiers were applied to promote the interfacial
compatibility, such as KH-550, KH-560, and silicone oil [142,143], which combined the
functions of coupling effects and dispersing effects to bond the IFRs and PO matrix by
chemical bonds. As an indispensable component of traditional P-N-based IFRs, APP can act
as both an acid source and gas source. However, APP itself belongs to inorganic material,
and PO polymer is organic material, and there is inevitably a problem of poor compatibility
between them in direct blending, which leads to a great reduction of mechanical properties
of composite materials [144].

To solve this problem, Lin et al. [145] used the APP, which was modified by KH-550 as
FRs for the PP matrix. The results showed that this method improved the LOI values (from
16.0% to 30.0%). Furthermore, the obtained composite had excellent mechanical properties;
when 20 wt.% modified APP was added, the elongation at break was 308%, and the tensile
strength was 26.9 MPa. Meanwhile, the values of them with unsurfaced IFR were only 269%
and 21.6 MPa. Moreover, Ren et al. [146] firstly synthesized urea-formaldehyde resin (UF)
and then modified it with KH-550 to obtain M-UF. They studied the carbon-formation effect
of M-UF and used M-UF in combination with APP as a flame retardant for PP polymers.
As illustrated in Figure 12a–c, compared with the two composites PP/30 wt.% APP and
PP/20 wt.% APP/10 wt.% UF, the sample of PP/20 wt.% APP/10 wt.% M-UF had more
intumescent carbon layer, of which the surface was more compact and consecutive with
less holes, so it had a better flame-retardant performance reflected in both UL-94 testing
grades and LOI values. The surface modification of IFR increased the elongation at break
of the composite by 104% compared to the previous one (as shown in Figure 12d).
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Figure 12. The actual combustion result photographs and SEM of residual char: (a) PP/30 wt.% APP,
(b) PP/20 wt.% APP/10 wt.% UF, and (c) PP/20 wt.% APP/10 wt.% M-UF. (d) The strain–stress trend
of PP composites (PP-1, pure PP; PP-2, PP/30 wt.% APP; PP-6, PP/20 wt.% APP/10 wt.% UF; and
PP-11, PP/20 wt.% APP/10 wt.% M-UF). Reprinted from Reference [146] with permission.
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In addition, the methods of modification for IFRs have been mentioned in other studies,
as given in Table 5. It can be seen that PP polymers are the research focus. Compared with
the untreated IFR system, the surface-treated IFR is beneficial to further improve the LOI
value and elongation at break for the PO polymers.

Table 5. Methods of IFRs modification.

PO
Matrix Methods IFR Formulation (wt.%) LOI () a

UL-94 () a
σt () a

εb () a Reference

PP
Modify traditional IFRs with a
titanate coupling agent NDZ-201
by ball milling to obtain MIFRs

MIFRs
(APP + PER + MEL) (25.0)

31.2% (29.0%)
(3.2 mm) b V-0 (V-2)

29.0 MPa
(23.0 MPa)
100.0% (15.0%)

[147]

PP

Use phytic acid (PA) and MF resin
to modified APP by
supramolecular assembly method
to obtain APP@MF-PA

APP@MF-PA
(20.0) + CFA (5.0)

35.0% (34.0%)
(3.0 mm) V-0 (V-0) [148]

PP

Decorate the surface of MPP and
dialdehyde starch (DAS) by
co-microencapsulation
technology to obtain M-MPP
and M-DAS

M-MPP (15 phr) + M-DAS
(15 phr)

28.2% (27.1%)
(3.0 mm) V-1 (V-1) [149]

PP
Microencapsulate APP with
HBPE by KH-550 to obtain
K-HBPE@APP

K-HBPE@APP (25.0) 34.2% (31.0%)
(3.2 mm) V-0 (V-1)

21.0 MPa
(24.0 MPa)
375.0% (83.0%)

[140]

PP

Use DPER, 4, 4′-diphenylmethane
diisocyanate (MDI) and MEL to
microencapsulate APP in situ
polymerization to obtain MAPP

MAPP (30.0) 32.1% (22.0%)
(3.2 mm) V-0 (NC) [150]

PP Modify UF by KH-550 to obtain
M-UF

APP (20.0) +
M-UF (10.0)

29.5% (22.0%)
(3.2 mm) V-0 (NC)

19.4 MPa
(17.9 MPa)
11.4% c (5.6%)

[146]

PP
Introduce DOPO into the
molecular structure of APP to
obtain DOPO-modified APP

DOPO-modified
APP (30.0)

30.1% (24.2%)
(1.6 mm) V-0 (NC)

31.6 MPa
(29.8 MPa)
-

[151]

PP

Microencapsulate APP with MEL,
PER, and MDI via in situ two-step
surface polymerization to
obtain MAPP

MAPP (30.0) 25.0% (20.0%)
(3.0 mm) V-1 (NC) [152]

PP
Microencapsulate APP-II with MF
resin via in situ polymerization to
obtain MFAPP-II

MFAPP-II
(30.0) + PER (8.3)

39.7% (39.0%)
(3.0 mm) V-0 (V-0) [153]

PP
Modify APP-I with
ethylenediamine via ion exchange
reaction to obtain MAPP

MAPP (40.0) 32.5% (20.9%)
(3.2 mm) V-0 (NC) [154]

a Value for PO composites with unmodified IFR added. b Thickness of the tested sample. c The elongation at
break of pure PP is 17.8% in Reference [146].

5.1.2. Adjuvants for IFR

In addition, researchers found that by adding other FRs, e.g., metal hydroxides,
carbon nanomaterials, or silicon-based materials, to replace part of the IFR, the mechanical
properties of the PO materials could be improved, while ensuring the flame retardancy.
Firstly, these adjuvants make the release of non-combustible gases more stable during the
IFR combustion process, thus helping PO polymers to form a dense and stable expanded
carbon layer. Secondly, they can also be used as supplements for IFR to enhance the gas
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phase and condensed phase barrier effects, thereby reducing the risk of combustion in
composites and positively impacting the mechanical performance of PO polymers.

•Metal-based adjuvants
Metal-based compounds have the function of accelerating the dehydration of PO

matrix and IFR to form a compact and stable carbon layer. Moreover, a small amount of
metal-based adjuvants added into the PO/IFR cable materials can have a positive effect on
the flame-retardancy efficiency.

Feng et al. [155–157] studied the synergism of three metal oxides (La2O3, MnO2, and
CeO2) on the carbon-forming mode of action of PP/IFR composites. It was found that these
three metal oxides promoted PP/IFR systems to form a more continuous and intensive
intumescent carbon layer (shown in Figure 13(a1–e2)) and significantly enhanced the LOI
value of the PP/IFR composites. Meanwhile, the materials passed a V-0 grade in the
UL-94 test. As shown in Figure 13f, with the increase of the content of these three metal
oxides, the LOI value and UL-94 grade of the PO polymer showed a trend of first increase
and then decrease. When the addition was 2 wt.%, the compounds achieved the best
flame-retardant properties. Furthermore, Qin et al. [158] investigated the influence of
nano-ATH on the flame retardancy and mechanical performance of the PP/IFR. It was
shown that 2 wt.% nano-ATH helped the LOI value of the PP/IFR composites increase
from 26.6% to 31.2%, with a V-0 grade in the UL-94 test. Nano-ATH was found to be a
very effective cooperative agent in the PP/IFR system, as it could catalyze the chemical
reactions of carbon components and acid components to form a dense, hard char layer
covering the surface of the polymer. Moreover, 2 wt.% nano-ATH increased the elongation
at break and tensile strength of PP/IFR composites from 15% and 24.2 MPa to 41% and
25.5 MPa, respectively.
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thereby promoting the PP polymer to form a stable and dense carbon layer structure. On 
the other hand, for the phosphate existing in the carbon layer, SrCO3 could generate bridge 
bonds between them, forming a crosslinked char layer rich in P element, which further 
improves the stability of the carbon layer. Therefore, the appropriate amount of SrCO3 
also contributes to the improvement of mechanical performance of PP composites. 
•Carbon-based adjuvants 

The preparation of polymer/nano-carbon composites has become an effective 
method to enhance the flame retardancy of materials [161,162]. There have been numer-
ous studies in the literature published which focus on the effect of carbon nanomaterials 
on the performance of polymers, for instance, carbon nanotubes (CNTs) [163,164], gra-
phene [165,166], and carbon black (CB) [167,168]. Carbon-based adjuvants have become 

Figure 13. (a1–a3) Digital pictures for chars of PP/IFR (a1), PP/IFR/1 wt.% La2O3 (a2), and
PP/IFR/1 wt.% MnO2 (a3), A and B are outer and inner surface of char residue of PP/IFR, and C
and D are outer and inner surface of char residue of PP/IFR/1 wt.% La2O3 and PP/IFR/1 wt.%
MnO2. (b1–c3) SEM images of char residue for PP/IFR (b1,c1), PP/IFR/1 wt.% La2O3 (b2,c2), and
PP/IFR/1 wt.% MnO2 (b3,c3) ((b1–b3): outer 500×, (c1–c3): inner 500×). (d1,d2) Digital pictures for
IFR (e1,e2) and IFR/CeO2 (e1,e2) heated at 500 ◦C for 5 min. (f) Influence of metal oxides content on
the performance of flame retardancy for PP/IFR composites. Reprinted from References [155–157]
with permission.
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Moreover, it was found that transition metal ions, such as Fe3+, Zr4+, Sr2+, Zn2+, etc.,
can also be used as catalysts for reactions of dehydrogenation and crosslinking of polyolefin
substrates [159]. Chen et al. [160] studied the cooperative influence of strontium carbonate
(SrCO3) as the cooperative agent on the mechanical performance and flame retardancy
of PP/IFR system. The cooperative effect could be observed by the enhanced LOI value
(from 36% to 36.1%) and UL-94 grade (from V-1 to V-0) of PP/IFR composites with 1.5 wt.%
SrCO3. Moreover, the tensile strength of PP composites enhanced from 26.8 to 29.4 MPa
compared with the sample without the SrCO3 addition. It was suggested that, on the
one hand, SrCO3 could catalyze the chemical reaction between MAPP and PER, thereby
promoting the PP polymer to form a stable and dense carbon layer structure. On the
other hand, for the phosphate existing in the carbon layer, SrCO3 could generate bridge
bonds between them, forming a crosslinked char layer rich in P element, which further
improves the stability of the carbon layer. Therefore, the appropriate amount of SrCO3 also
contributes to the improvement of mechanical performance of PP composites.

•Carbon-based adjuvants
The preparation of polymer/nano-carbon composites has become an effective method

to enhance the flame retardancy of materials [161,162]. There have been numerous studies
in the literature published which focus on the effect of carbon nanomaterials on the perfor-
mance of polymers, for instance, carbon nanotubes (CNTs) [163,164], graphene [165,166],
and carbon black (CB) [167,168]. Carbon-based adjuvants have become one of the most
promising “green” flame-retardant additives, with the advantages of low smoke, no halo-
gen, and high efficiency. Their flame-retardant mode of action is mainly attributed to
its large specific surface area and the ability to create a better carbon layer in condensed
phase through chemical reaction with APP during combustion, which increases the “barrier
effect” and effectively blocks the heat transfer and diffusion of combustible materials,
playing a protective role for the PO matrix [169,170]. In addition, a small amount of
carbon nanomaterials can significantly decrease the combustibility of polymers and im-
prove the mechanical properties due to the high mechanical strength and stiffness of these
carbon-based adjuvants [171].

Yang et al. [172] investigated the cooperative effect of nano-CB and APP in PP. Their
cooperative interaction could be observed by the increased LOI value (29.8%) and UL-94
grade (V-0), under the optimum specific gravity corresponding to 18 wt.% APP and 7 wt.%
nano CB. However, when adding 25 wt.% APP, the corresponding LOI and UL-94 grade of
the polymer were 20.9% and no rating. Figure 14a shows the chemical reaction between
nano-CB and APP during combustion and the formation of a crosslinked network, which
helps to strengthen the structure of the carbon protective layer. As a result, it is possible to
obtain expanded char layers with different carbon contents and compactness by adjusting
the addition of APP and nano-CB (shown in Figure 14b). The polymers with thick and
dense carbon residue correspond to a high flame-retardancy efficiency. Figure 14c shows
the schematic diagram of the flame-retardant mode of action of APP and nano-CB in PP
system. On the one hand, a chemical reaction occurred between APP and nano-CB to form
a crosslinked network structure, which can promote the formation of a more stable carbon
layer in the condensed phase. On the other hand, the “trapping radicals” of nano-CB
and APP derivatives could delay or even restrain the degradation of PP. Wen et al. [173]
studied the influence of nanosized CB as adjuvant on the flame retardancy and mechanical
performance of PP/POE-MA (maleic anhydride-grafted polyolefin elastomer)/IFR system.
They found that, within a certain range, as the nano-CB content increased, the char layer
produced by polymer combustion became increasingly dense and continuous. Moreover,
the PP composites reached the LOI value of 29.7% from 26%, with the V-1 grade in the
UL-94 test, under the addition of 3 wt.% nano-CB and 8 wt.% POE-MA. Meanwhile, POE-
MA and nano-CB, as a toughening agent and rigid nanoparticles, respectively, showed
significant improvement in elongation at break and tensile strength, reaching 215% and
32.8 MPa, respectively.
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made the UL-94 test achieve the V-0 level without ignition, and the LOI was further in-
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Figure 14. (a) Possible chemical reaction between CB and APP to form crosslinking network during
combustion. (b) Morphology of residual chars from PP composites after cone calorimeter tests from
(b1) 25APP, (b2) 3CB/22APP, (b3) 5CB/20APP, and (b4) 7CB/18APP. (c) Schematic representations
of flame retardancy mode of action of CB and APP in PP system. Reprinted from Reference [172]
with permission.

•Silica-based adjuvants
Recently, silica-based FRs have attracted extensive attention in the research on cooper-

ative flame-retardant PO/IFR composites, such as SiO2 [174,175], MMT (OMMT) [176,177],
and polysiloxane [147,178] https://www.x-mol.com/paperRedirect/1296136865981276160.

Wen et al. [179] used OMMT as an adjuvant for the IFR constructed with a hyper-
branched charring foaming agent (HCFA) and APP to achieve better flame retardancy
for the PP matrix. It was found that a proper amount of OMMT (2 wt.%) dramatically
enhanced the LOI value of PP/20 wt.% IFR from 29% to 31.5% and made it V-0 grade
in the UL-94 test. Meanwhile, Yang et al. [180] confirmed the cooperative influence of
octahedral polyhedral sesquisiloxane (OV-POSS) on PP/IFR composites. The incorporation
of OV-POSS obviously enhanced the dispersion of IFR in the PP substrate and the compati-
bility between them, thus improving the flame retardancy and mechanical performance of
PP/IFR composites. Wang et al. [181] filled kaolinite nanotubes with polysiloxane to obtain
HNTs-Si and introduced 1.2 wt.% HNTs-Si into PP/IFR to obtain polymer materials with
excellent flame retardancy and mechanical properties. The presence of HNTs-Si made the
UL-94 test achieve the V-0 level without ignition, and the LOI was further increased to 30.6%
from 29.1%. As shown in Figure 15, the cooperative effect of HNTs-Si and IFR promotes
the formation of dense and crosslinking carbon layers, which can cover the PP matrix to
effectively prevent the release of flammable gases and enhance the flame retardancy of

https://www.x-mol.com/paperRedirect/1296136865981276160
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PP composites. Meanwhile, the addition of HNTs-Si improves the extensibility of PP/IFR
composites, of which the elongation at break increased from 8.6% to 45.4% because of the
bridging effect between the PP matrix and HNTs.

Polymers 2022, 14, x FOR PEER REVIEW 23 of 43 
 

 

retardancy of PP composites. Meanwhile, the addition of HNTs-Si improves the extensi-
bility of PP/IFR composites, of which the elongation at break increased from 8.6% to 45.4% 
because of the bridging effect between the PP matrix and HNTs. 

PO
O

On

PO
O

On

 
Figure 15. The carbonization mode of action of HNTs-Si in PP/IFR composites. Reprinted from Ref-
erence [181] with permission. 

•Other adjuvants 
The three types of adjuvants above added to the PO cable materials have achieved 

significant cooperative improvements in flame retardancy and mechanical properties. For 
instance, Jia et al. [182] prepared a series of rare-earth stannates, i.e., Re2Sn2O7 (RES, Re = 
Nd, Sm, and Gd) via the hydrothermal method, which can be applied as an adjuvant for 
PO/IFR composites due to its high-temperature catalytic performance. Moreover, they 
thoroughly studied the flame retardancy and mechanical performance of the PO/IFR/RES 
composites. The results showed that RES could enhance the UL-94 classification and LOI 
value of PO/IFR composites. The LOI of PO/IFR composites increased from 30% to 34%, 
33%, and 32%, after adding Nd2Sn2O7, Sm2Sn2O7, and Gd2Sn2O7, respectively. The mode 
of action of flame retardancy is that the PO/IFR/RES composites can form a more contin-
uous and compact protective carbon layer (shown in Figure 16a), which can protect PO 

Figure 15. The carbonization mode of action of HNTs-Si in PP/IFR composites. Reprinted from
Reference [181] with permission.

•Other adjuvants
The three types of adjuvants above added to the PO cable materials have achieved

significant cooperative improvements in flame retardancy and mechanical properties. For
instance, Jia et al. [182] prepared a series of rare-earth stannates, i.e., Re2Sn2O7 (RES,
Re = Nd, Sm, and Gd) via the hydrothermal method, which can be applied as an adjuvant
for PO/IFR composites due to its high-temperature catalytic performance. Moreover, they
thoroughly studied the flame retardancy and mechanical performance of the PO/IFR/RES
composites. The results showed that RES could enhance the UL-94 classification and LOI
value of PO/IFR composites. The LOI of PO/IFR composites increased from 30% to 34%,
33%, and 32%, after adding Nd2Sn2O7, Sm2Sn2O7, and Gd2Sn2O7, respectively. The
mode of action of flame retardancy is that the PO/IFR/RES composites can form a more
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continuous and compact protective carbon layer (shown in Figure 16a), which can protect
PO substrates from the influence of oxygen and heat and effectively suppress further
degradation of PO substrates [183,184]. At the same time, RES allows PO/IFR composites
to maintain good mechanical properties (in Figure 16b). These three adjuvants (Nd2Sn2O7,
Sm2Sn2O7 and, Gd2Sn2O7) all improved the tensile strength of PO/IFR, but they have no
obvious effect on the elongation at break.
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Figure 16. (a) SEM images ((a1–d1) low magnification and (e1–h1) high magnification) of PO ma-
terials. (b) Trend of elongation at break and tensile strength with RES content. Reprinted from
Reference [182] with permission.

Moreover, there are various additives used as adjuvants with different IFRs, which are
summarized in Table 6. It can be seen that most research focuses on PP polymers. Moreover,
most of adjuvants were devoted to improving the flame-retardant performance, and the
effect is very significant.

Table 6. Studies about cooperative effect of compounds with IFR systems.

PO Matrix IFRs (wt.%) Adjuvants (wt.%) LOI () a

UL-94 () a
σt () a

εb () a Reference

LLDPE

IFRs (ADP@KH-560: neopentyl
glycol:MEL = 1.5:1:1) (25.0)
ADP@KH-560: aluminum
diethylphosphinate modified
with KH-560;

ZB (5.0) 28.7% (28.5%);
(3.0 mm) b V-0 (V-0) [185]

PP IFRs (APP:DPER = 3:1) (23.5)
DPER: double pentaerythritol

Kaol-GLY (1.5)
Kaol-GLY: introduced
glycine into layers
of kaolinite.

32.9% (27.3%);
(3.0 mm) V-0 (NC) [186]

PP Single-component IFR
(APP + PER + MEL) (24.0)

polyhedral oligomeric
silsesquioxane (1.0)

31.2% (29.7%);
(1.6 mm) V-0 (V-1)

29.0 MPa
(26.0 MPa)
-

[187]

PP IFRs (APP:PER = 3:1)
(20phr) + PP-g-MAH (4phr) 4ZnO·B2O3·H2O (1 phr) 31.2% (28.9%);

(4.0 mm) V-2 (V-2)

-
1084.0%
(1146.0%)

[188]

EVA

mixed FR
(IFRs
(APP:PER:MEL = 3:1:1) + FeOOH)
(19.0)

Fumed silica (1.0) 20.8% (21.3%);
(3.0 mm) V-2 (V-2)

19.9 MPa
(14.2 MPa);
675.0%
(615.0%)

[189]

LDPE IFRs (SiO2@MAPP:DPER = 2:1)
(23.6)

KU (1.4)
KU: The intercalation of
modified kaolin with urea.

27.2% (24.1%);
(3.0 mm) V-1 (NC)

16.6 MPa
(16.1 MPa);
554.0%
(512.0%)

[190]
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Table 6. Cont.

PO Matrix IFRs (wt.%) Adjuvants (wt.%) LOI () a

UL-94 () a
σt () a

εb () a Reference

PP IFRs (APP:PER = 2:1) (13.5)

PAMA-Mn (4.5)
PAMA-Mn: MEL phytate
supramolecular nanosheet
FR incorporating
manganese ion

31.8% (26.5%);
(3.2 mm) V-0 (NC) [191]

PP
IFRs (MCAPP:PEPA = 2:1) (25.0)
MCAPP: APP microencapsulated
with MEL

P-type hydrated silica
aluminate (HSA-P) (1.5)

35.1% (31.2%);
(3.0 mm) V-0 (V-2) [192]

PP
IFRs (MCAPP:PEPA = 2:1) (25.0)
MCAPP: APP microencapsulated
with MEL

La-loaded for P-type
hydrated silica
aluminate(HSA-P-La) (1.5)

37.5% (31.2%);
(3.0 mm) V-0 (V-2) [192]

PE IFRs (APP:PER = 3:1) (25.6) Yb(OTf)3 (0.4) 25.9% (24.2%);
V-0 (NC) [193]

PP IFRs (APP:PER = 3:1) (19.0)
Co-MMT (MMT
intercalation cobalt
compounds) (4.0)

32.1% (26.5%);
(3.2 mm) V-0 (V-2) [194]

PP IFRs (APP:PER = 3:1) (25.0) scCO2 (7.0) 35.8% (32.8%);
(3.2 mm) V-0 (V-2) [195]

PP

IFRs (OS-MCAPP:CFA = 3:1)
(29.7) OS-MCAPP: silica-gel
microencapsulated ammonium
polyphosphate

NiPO-NT (0.3)
NiPO-NT: nickel
phosphate nanotubes

33.9% (29.8%);
(3.0 mm) V-0 (V-0) [196]

PP IFRs (APP:PER = 2:1) (25.0) Ni (4.0) 34.2% (29.0%);
(3.0 mm) V-0 (V-1) [197]

PP IFRs (APP:PER = 2:1) (25.0) Ni-Al (Ni:Al = 9:1) (4.0) 36.8% (29.0%);
(3.0 mm) V-0 (V-1) [197]

PP IFRs (APP:PER = 2:1) (25.0) Ni-Mg (Ni:Mg = 9:1) (2.0) 38.1% (29.0%);
(3.0 mm) V-0 (V-1) [197]

PP IFRs (APP:PER = 2:1) (25.0) Ni-Cu (Ni:Cu = 9:1) (4.0) 36.6% (29.0%);
(3.0 mm) V-0 (V-1) [197]

a Value for PO/IFR composites without adjuvants. b Thickness of the tested sample.

5.1.3. New IFRs

In addition to the methods of surface treatment and cooperative additives, there is
another feasible solution to enhance the distribution of IFR in the PO matrix, i.e., designing
a single-component IFR by combining the components of acid, carbon, and gas into a
macromolecular structure, the so-called trinity IFR [198–200].

Based on the conventional IFR system of APP/MEL/PER, Yang et al. [180] synthesized
a novel trinity intumescent flame-retardant RMAPP (the schematic diagram is shown in
Figure 17a) and introduced it to PP with OV-POSS. The PP/RMAPP/OV-POSS achieved an
LOI of 31.3%, V-0 classification in the UL-94 test, and tensile strength of 30 MPa. Meanwhile,
Zheng et al. [201] prepared a mono-component IFR named HECPM, which had a cellulose-
based structure grafted with phosphate groups and melamine groups (shown in Figure 17b)
and applied it to the PP/IFR system, with EG as an adjuvant. The obtained results showed
that the PP composites reached 31.5% of LOI value and passed the V-0 grade in the
UL-94 test when they were mixed with 30 wt.% HECPM and 22.5 wt.% EG. Moreover,
Huang et al. [202] synthesized a biobased IFR (PIMEPA@ATH) via metal chelation and
used it for the EVA matrix. It was proposed that EVA with 35 wt.% PIMEPA@ATH
possessed good flame retardant efficiency and kept good mechanical properties with
the elongation at break over 850%. Qi et al. [203] used a novel single-component IFR



Polymers 2022, 14, 2876 24 of 40

named PSTBP, i.e., poly(spirocyclic pentaerythritol bisphosphonate-1,3,5-triazine-O-bicyclic
pentaerythritol phosphate), to improve the flame retardancy of PP. The results demonstrated
that PP/30 wt.% PSTBP mixture could attain an LOI value of 32.5% with a V-0 rating.
Xia et al. [204] prepared a trinity IFR (PPMPNG) via neopentyl glycol, piperazine, and
methylphosphonic acid to improve the performance of PE matrix. Results showed that
PPMPNG showed flame retardancy by quenching reactive radicals in gas phase and by
exerting isolation function in condensed phased. Gao et al. [205] used MEL, polyphosphoric
acid and THEIC as raw materials to prepare an integrated IFR (TPM). When 25 wt.% IFRs
were added into the PP polymer, it achieved V-0 classification in the UL-94 test, and the LOI
value increased to 29.3%. Furthermore, the PP/TPM composite had a better mechanical
performance than PP/APP/PER. In summary, the single-component IFR should be one of
the trends in the field of IFRs [206].
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Furthermore, designing new molecules as acid sources or carbon sources for IFR
systems also has a certain contribution to improve the performance in flame retardancy and
mechanical properties of materials. Table 7 summarizes papers about the new molecules or
their compounds as acid sources or carbon agents in recent years.

Table 7. Studies about the new molecules or their complexes employed as acid sources or carbon agents.

PO
Matrix New IFR (wt.%) Molecular Structure or Synthetic Method of

the Acid/Carbon Sources
LOI
UL-94

σt
εb

Reference

PP Acid source: APP (16.7)
Carbon source: BTETP (8.3)
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Table 7. Cont.

PO
Matrix New IFR (wt.%) Molecular Structure or Synthetic Method of

the Acid/Carbon Sources
LOI
UL-94

σt
εb

Reference

PP
Acid source: APP modified
with piperazine (18.75)
Carbon source: ATPIP (6.25)
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Table 7. Cont.

PO
Matrix New IFR (wt.%) Molecular Structure or Synthetic Method of

the Acid/Carbon Sources
LOI
UL-94

σt
εb

Reference

PP Acid source: APP (18.0)
Carbon source: NFR (12.0)
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Table 7. Cont.

PO
Matrix New IFR (wt.%) Molecular Structure or Synthetic Method of

the Acid/Carbon Sources
LOI
UL-94

σt
εb

Reference

PP

Acid source: IMAPP (17.2)
Carbon source: DPER (7.8)
Adjuvants: 1. antioxidant
1010 (0.1); 2. antioxidant
168 (0.2)

IMAPP is prepared by the chemical reaction
between aluminum chloride and ammonia

32.1%
V-0 [220]

LDPE
Acid source: APP (20.0)
Carbon source:
CNCA-DA (10.0)
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5.2. Expandable Graphite

EG is a layered crystalline carbon-atom-embedded compound. The acid ions between
the layers will be released when heated, causing EG to dehydrate and carbonize [130],
thus forming a compact and worm-like carbon layer covering the surface [225]. However,
the charred layer formed during combustion is very loose and easily falls off due to the
“popcorn effect”. Thus, a number of investigations are focused on cooperative effects
of EG with other additives to overcome this disadvantage [226], such as APP [227–229],
MH [230,231], and LDH [232,233].

When Yang et al. [234] used AHP as the adjuvant for EG/EVA composites, the
EVA/10 wt.% EG/5 wt.% AHP achieved a V-0 grade in UL-94 test, and the LOI value
reached 30.5% from 26.5% after the addition of 5 wt.% AHP. Meanwhile, the elongation
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at break and tensile strength of EVA composites reached 732% and 12.2 MPa, respectively.
Figure 18a indicates that the cooperative effect of EG and AHP can promote the carboniza-
tion of the EVA polymer and thus provide a good flame-retardant performance. Moreover,
Figure 18b shows the mode of action of AHP and EG for flame-retardant EVA; they can
exert flame-retardant effects in both gas and condensed phases.
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EVA/10EG/5AHP (D). (b) Schematic diagram of flame-retardant mode of action for EVA/EG/AHP. 
Reprinted from Reference [234] with permission. 
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Figure 18. (a) The digital photos of carbon residues: EVA (A), EVA/15AHP (B), EVA/15EG (C), and
EVA/10EG/5AHP (D). (b) Schematic diagram of flame-retardant mode of action for EVA/EG/AHP.
Reprinted from Reference [234] with permission.

Furthermore, various studies on the cooperative flame-retardant effect between EG
and other additives are listed in Table 8. It can be concluded that the cooperative effect
of EG and other FRs can greatly improve the flame-retardant and mechanical properties
of the materials. Moreover, EG can increase the LOI value of PO polymers to more than
30% with about 40 wt.% metal hydroxide, but it will greatly reduce the elongation at break.
For this purpose, elastomeric polymers, e.g., POE and EVA, can be added to improve the
flexibility of the material.

Table 8. Studies on the cooperative flame retardation of EG.

PO
Matrix EG FRs (wt.%) Other Additives (wt.%) LOI () a

UL-94 () a
σt () a

εb () a Reference

HDPE/
EVA

MEG (modified by
DOPO) (5.0) MH/ATH (3/2) (45.0) 38.4% (29.0%);

(4.0 mm) V-0 (NC)
21.5 MPa (20.3 MPa);
13.6% (50.8%) [235]

HDPE/
EVA

MEG (modified by
DOPO) (4.0)

1.MH/ATH (3/2) (45.0);
2.zinc borate (1.0)

37.1% (29.4%);
(4.0 mm) V-0 (NC)

23.0 MPa (20.8 MPa);
15.7% (54.8%) [235]

LDPE EG (5.0)

1.RPPMHS (modified with
poly(methylhydrosiloxane))
(5.25); 2.ATHMgst (modified
with magnesium stearate) (5.25)

25.4% (22.6%);
(2.2 mm) V-0 (V-2)

9.3 MPa (9.3 MPa);
64.9% (112.7%) [236]

LLDPE/
EVA

MEG (modified with
DOPO and silane
coupling agent) (10.0)

MH/ATH(3/2) (40.0) 32.7% (29.6%);
(2.7 mm) V-0 (V-2) [237]

LLDPE/
EVA

MEG (modified with
DOPO and KH560) (4.0)

1.MH/ATH (45.0);
2.zinc borate (1.0)

31.7% (29.0%);
(4.0 mm) V-0 (NC) [238]

PP
MEG (modified with
DOPO and silane
coupling agent) (30.0)

25.3% (18.1%);
(2.7 mm) V-0 (NC)

27.5 MPa
(31.0 MPa);
9.1% (446.3%)

[239]

EVA EG (27.0)
palygorskite@boric
acid@dodecylamine
(PGS@B-N) (3.0)

37.7% (21.2%);
(3.0 mm) V-0 (NC)

13.0 MPa;
1007.3% [240]
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Table 8. Cont.

PO
Matrix EG FRs (wt.%) Other Additives (wt.%) LOI () a

UL-94 () a
σt () a

εb () a Reference

EVA EG (10.0) LDH (20.0) 29.7% (27.0%);
(3.0 mm) V-0 (NC) [241]

EVA EG (20.0) APP (10.0) 30.7% (20.3%);
(3.0 mm) V-0 (V-2) [242]

HDPE/
EVA EG (20.0) 10.1 MPa (15.6 MPa);

315.5% (517.5%) [243]

a Value for PO and other additives without EG.

6. Summary and Perspectives

In this article, the FR compounds for PO cable sheath materials were reviewed, with
emphasis on the cooperative modification of flame retardancy and mechanical properties.
For the three typical PO materials, i.e., PP, EVA, and LDPE, Table 9 summarizes the FRs
used for modification in the literature with the best cooperative performance of flame
retardancy and mechanical property. It can be seen that LDPE shows overall properties
not as good as PP and EVA, thus indicating that it is more challenging to develop FRs for
LDPE while sustaining mechanical performance.

Table 9. The most effective FRs for PP, EVA, and LDPE, respectively.

PO
Matrix LOI UL-94 σt εb Flame Retardants (wt.%) Reference

PP

31.4% V-0 35.0 MPa 132.0% IFR (APP/PER = 3/1) (20) + nano-CB (5) + POE-MA (8) [173]

34.2% V-0 21.0 MPa 375.0% K-HBPE@APP (use HBPE to microencapsulate APP via
KH-550 to obtain K-HBPE@APP) (25) [140]

34.3% V-0 32.0 MPa 200.0%
MIFRs (modify traditional IFRs with a titanate coupling
agent NDZ-201 by ball milling to obtain MIFRs)
(25) + APID (5)

[147]

EVA

34.0% V-0 21.0 MPa 420.0% SiO2 (5.0) + ATH (120) + DCP (2) [66]

30.5% V-0 12.0 MPa 732.0% EG (10) + AHP (5) [234]

37.7% V-0 13.0 MPa 1007.3% EG (27) + palygorskite@boric
acid@dodecylamine(PGS@B-N) (3.0) [242]

LDPE

28.1% V-0 2.6 MPa 33.8% MAPP (28.6) + DPER (11.4) [116]

27.2% V-1 16.6 MPa 554.0% IFRs (SiO2@MAPP:DPER = 2:1) (23.6) + KU(the intercalation
of modified kaolin with urea) (1.4) [190]

25.4% V-0 8.3 MPa 103.8%
EG (5) + RPPMHS (modified with
poly(methylhydrosiloxane)) (5.25) + ATHMgst(modified
with magnesium stearate) (5.25) + POE (4)

[238]

Due to environmental consideration, more research will be focused on the halogen-free
flame-retardant PO cable sheath materials in future. The FR compounds can be divided into
inorganic FRs, organic FRs, and IFRs, while the IFRs include both organic and inorganic
compounds. Regarding the flame-inhibition strategies, they can be divided into two
mechanisms: gas-phase FR mechanism and condensed-phase FR mechanism. However,
in many situations, the FRs affect the mechanical performance of the PO matrix due to
the poor compatibility between them, especially when a higher loading of FR compounds
is utilized. Therefore, when designing a FR formulation for PO cable sheath materials,
the comprehensive performance of both flame retardancy and mechanical performance
should be considered. To address the compatibility of the PO matrix/flame retardant
compounds and enhance the adhesion between them, a series of methods have been



Polymers 2022, 14, 2876 30 of 40

adopted, including surface treatment, i.e., microencapsulation and surface modification;
ultra-fine treatment; and cooperative combinations of different FRs. Among them, surface
treatment techniques are often used in inorganic FR composites, e.g., metal hydroxide,
inorganic phosphorus, and inorganic silicon, to overcome the polarity difference between
them and the PO matrix, thereby improving the adhesion properties between the two
interfaces. At present, the nanoscale FRs obtained by ultra-fine processing are mainly
silicon-based materials (e.g., MMT and OMMT), carbon-based materials (e.g., C60, CNTs,
and graphene), and metal hydroxide (e.g., nano-ATH and nano-MH). By adding these
nanoscale FRs, PO cable sheath materials with improved mechanical properties can be
obtained. Furthermore, the use of different kinds of nanoscale FRs or their combination
with other P-, N-, or Si-containing FRs is a promising strategy to develop flame-retardant
polymer composites with enhanced mechanical properties. In addition, among the FRs
used in PO, IFR is attracting more attention due to its good efficiency and environment
friendliness. However, there are disadvantages in the traditional IFR system, such as the
incompatibility with PO matrix and the high loading, which would make it difficult for the
IFR to be homogeneously dispersed in PO matrix, resulting in poor mechanical properties.
In response to this problem, the aforementioned three strategies can also be adopted.

However, although some FRs have good performance on flame retardancy, and the
obtained PO composites possess acceptable mechanical performance, most of the FRs are
still in the stage of laboratory research. New FR materials that can be easily prepared with
high efficiency and environmental harmlessness will be the desired ones for flame-retardant
PO cable sheath materials in the future.
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