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Abstract 

Motivation:  Drug-target binding affinity (DTA) reflects the strength of the drug-target interaction; therefore, predict-
ing the DTA can considerably benefit drug discovery by narrowing the search space and pruning drug-target (DT) 
pairs with low binding affinity scores. Representation learning using deep neural networks has achieved promising 
performance compared with traditional machine learning methods; hence, extensive research efforts have been 
made in learning the feature representation of proteins and compounds. However, such feature representation learn-
ing relies on a large-scale labelled dataset, which is not always available.

Results:  We present an end-to-end deep learning framework, ELECTRA-DTA, to predict the binding affinity of 
drug-target pairs. This framework incorporates an unsupervised learning mechanism to train two ELECTRA-based 
contextual embedding models, one for protein amino acids and the other for compound SMILES string encoding. 
In addition, ELECTRA-DTA leverages a squeeze-and-excitation (SE) convolutional neural network block stacked over 
three fully connected layers to further capture the sequential and spatial features of the protein sequence and SMILES 
for the DTA regression task. Experimental evaluations show that ELECTRA-DTA outperforms various state-of-the-art 
DTA prediction models, especially with the challenging, interaction-sparse BindingDB dataset. In target selection and 
drug repurposing for COVID-19, ELECTRA-DTA also offers competitive performance, suggesting its potential in speed-
ing drug discovery and generalizability for other compound- or protein-related computational tasks.
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Introduction
Drug discovery and development are laborious, time-
consuming, expensive and challenging processes. One 
of the most important steps in developing a new drug 
or repurposing existing drugs is target identification 
and validation. A direct brute-force search is unrealistic 
because of the very large number of drug-like compounds 

and possible drug targets. Given current advances in 
computational methods and techniques, especially the 
application of machine learning in chemical and biologi-
cal research fields, computer-aided methods may be a 
great opportunity to shorten the drug discovery process 
by significantly narrowing the search space.

Apart from the prediction of binary interaction rela-
tionships between compound-protein pairs, another cru-
cial factor in candidate screening, the prediction of the 
binding affinity of compound-protein pairs, also called 
drug-target affinity (DTA), remains a challenge in drug 
discovery. Laboratory experiments conducted to measure 
the affinity value for a large-scale drug-target pool remain 
time consuming and expensive. Hence, computational 
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methods to perform binding affinity prediction have 
received increasing attention in recent years, and much 
effort has been made to accurately quantify the strength 
of binding for compound-protein pairs based on machine 
learning or deep learning. Gradient boosting machines 
are used in quantitative structure-activity relationship 
studies for regression and classification problems. Sim-
Boost [1] employs gradient boosting machines with novel 
feature engineering to extract new features from drugs, 
targets and drug-target pairs in training datasets, and 
then these features are used as inputs to models to pre-
dict the binding affinity for unknown pairs. Regularized 
least-square (RLS) is another efficient model with vari-
ous applications. The KronRLS [2] model amends RLS 
with the Kronecker products of drug-drug and protein-
protein interactions to speed up model training for DTA 
prediction and has achieved promising performance. The 
Kronecker product part of the KronRLS is a similarity-
based method in which any similarity measure could be 
used.

Recently, inspired by successful applications in diverse 
research fields, deep learning approaches have also 
been intensively used in bioinformatics and chemin-
formatics, especially in drug discovery. The first deep 
learning-based DTA prediction model was DeepDTA 
[3], which uses simplified molecular input line entry sys-
tem (SMILES), a one-dimensional representation of the 
drug compound chemical structure, as drug features, 
while the protein amino acid sequences are used to rep-
resent protein features. Furthermore, the drug SMILESs 
are labelled as encoded integer vectors and as protein 
sequences. The DeepDTA model uses a CNN with three 
1D convolutional layers with pooling for drug embedding 
to learn latent features for each drug and an identical 
CNN for protein embedding. Then, each pair of drug-tar-
get feature vectors is concatenated and fed into fully con-
nected layers for training and prediction. Another novel 
deep learning model for DTA is DeepAffinity [4], which 
represents drugs with SMILESs and proteins with struc-
tural property sequences. Because of the detailed struc-
tural information and higher resolution of sequences, 
DeepAffinity benefits DTA regression tasks. The drug 
SMILESs and protein structural sequences are both 
encoded into embedding representations by a recur-
rent neural network (RNN) auto-encoder model named 
seq2seq [5]. The seq2seq model maps raw sequences into 
vectors that are learned in an unsupervised fashion to 
capture dependencies in sequences of SMILESs or pro-
tein residues.

The aforementioned DTA models mainly focus on 
developing diverse neural network architectures to learn 
the hierarchical feature representations on given, known 
CP pairs with binding affinity values in a non-handcraft 

manner. These existing models usually take predefined 
compound molecular and protein descriptors as input 
features, especially SMILES strings and protein residue 
sequences. To be fed into deep networks such as CNNs 
or LSTMs, the raw sequence or SMILES strings are 
encoded by one-hot vectors, physicochemical property-
aware encoding or static embeddings. Such mechanisms 
deploy fixed representations, which makes the model 
characterize each amino acid or atom independently but 
do not consider the contextual information and accord-
ingly do not highlight those that are critical to the whole 
protein or molecular compound. Applicable experimen-
tal structures of protein complexes are abundant, but the 
number of available labelled drug-target pairs remains 
limited. To address the issue of insufficient labelled data, 
unsupervised encoding methods have recently been 
considered for proteins or compounds. The idea behind 
this approach is to use protein sequences and com-
pound SMILESs or fingerprints as a codified language 
for human experts with limited words and grammar. 
Similar to a linguist who extracts hidden knowledge from 
sentences of a natural language, the structure and func-
tion of chemical compounds and protein sequences can 
be processed deliberately to build novel solutions, such 
as DTA predictions, based on the level of understand-
ing. State-of-the-art representation models for NLP, such 
as BERT [6], have greatly improved downstream NLP 
tasks due to their advantages. The recent transformer-
based ELECTRA [7] model uses training data efficiently 
and shows better performance than BERT. ELECTRA 
employs a generative-discriminative model to make bet-
ter use of training data; a generator model replaces some 
tokens in the corpus, and a co-trained discriminative 
model detects these replacements. Because the corpus 
is well used in this fashion, ELECTRA is more efficient 
than BERT with comparable model sizes, especially small 
models. This paper proposes ELECTRA-based encod-
ers for molecular SMILESs and protein sequences sepa-
rately and accordingly yields a novel DTA prediction 
framework incorporating an ELECTRA encoding layer, 
a CNN network and a regression block. The proposed 
framework enhances the feature representation capabil-
ity as follows. First, the ELECTRA encoding layers used 
to represent each molecule can take advantage of exist-
ing chemical structure knowledge by pretraining on the 
PubChem database to extract useful chemical informa-
tion, and a similar prompt occurs for the amino acid rep-
resentation. Finally, the ELECTRA encoding provides the 
context-related representation for protein sequences and 
compound SMILESs, which can characterize the diver-
sity of each atom or amino acid in a variety of sequences 
or strings.
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In summary, our method consists of two major build-
ing blocks: one for feature representation and another 
for regression prediction. The first block, using two 
pretrained ELECTRA models, extracts local context 
information from drug SMILES strings and raw protein 
sequences separately. Then, the learned representations 
for both drugs and targets are passed into the second 
block, which uses a fully connected neural network 
to predict the binding affinity as a regression task. Our 
framework needs neither expert knowledge nor the 3D 
structure of the targets, so it is more convenient than 
existing frameworks. Additionally, the proposed frame-
work takes advantage of the local chemical context infor-
mation of atoms in drugs or amino acids in proteins, 
which differentiates ELECTRA-DTA from existing deep 
learning models. The main contributions of this paper are 
as follows: 

1.	 We adopt ELECTRA, a state-of-the-art NLP model, 
to extract feature representations from raw sequence 
data.

2.	 We leverage a squeeze-and-excitation convolution 
neural network block stacked over three fully con-
nected layers to capture the sequential and spatial 
features from the matrix encoded by the pretrained 
ELECTRA models for the DTA regression task.

3.	 We applied the ELECTRA-DTA model for target 
selection and drug repurposing for COVID-19 and 
again obtained competitive performance.

Methods
In this section, we first summarize the whole model. 
Then, we introduce the input representation for com-
pounds and proteins. After that, we show the training for 
ELECTRA and the representation tensor of compounds 
and proteins. Finally, we provide the details of our train-
ing and prediction model.

Overview of the ELECTRA‑DTA model
Figure 1 shows the overview of ELECTRA-DTA. It takes 
the SMILES strings of compounds and the amino acid 
sequences of proteins as the input. By incorporating a 
pre-trained ELECTRA model, ELECTRA-DTA encodes 
these sequences into feature tensors as internal repre-
sentations. Then, the model exploits a CNN network to 
learn from known drug-protein pairs in a supervised 
manner. Finally, it outputs the binding affinity for new 
pairs. The design of ELECTRA-DTA includes three main 
steps: 

1.	 The training of two ELECTRA models to encode all 
amino acids for protein sequences and characters in 
SMILESs for compounds separately;

2.	 The encoding of the whole sequence of compounds 
and proteins as feature tensors;

3.	 Model training and predicting the binding affinity 
with the proposed deep neural network.

Pretrained ELECTRA models for encoding protein 
sequences and compound SMILES strings
To encode the SMILESs/amino acid sequences, existing 
deep learning approaches such as DeepDTA and Deep-
CDA use label/one-hot encoding to represent each sym-
bol in the SMILES/amino acid sequence. However, label/
one-hot encoding often neglects the context of the sym-
bol and thus cannot reveal the functionality of the sym-
bol within the context.

Construction of the compound SMILES corpora
We need to train the ELECTRA model with an appro-
priate corpus for a specific task in advance to obtain an 
encoding layer for input sequences. Compound SMILES 
are linguistic constructs with a simple vocabulary (only 
atoms and chemical bond symbols) and a few grammar 
rules. Similar to natural language processing, compound 
SMILES strings are analogous to sentences, where each 
atom and bond symbol is a word (token). A corpus can 
then be naturally composed by collecting numerous 
compounds. For example, the SMILES string “CC(=)
OC1=C” can be listed as a sentence composed of the 
tokens ‘C’,‘C’,‘(’,‘=’,‘)’,‘O’,‘C’,‘1’,‘=’,‘C’. The corpus we constructed 
contains all canonical SMILES extracted from PubChem 
[8–10] with a total number of 1114424.

To ensure the consistency of all SMILES from differ-
ent sources, we use Open Babel [11] v3.1.0 to convert all 
SMILES strings in the corpora into a canonical format, 
which is also applied to SMILES in all datasets. Detailed 
information on the SMILES corpora we constructed is 
listed in Table 1.

Construction of the protein FASTA sequence corpora
Similar to the compound SMILES, a 1-mer schema is 
exploited to extract words from the protein FASTA 
sequences and create a protein sequence corpora; in this 
way, each residue is a single word. We utilized the Swiss-
Prot dataset from the UniProt knowledgebase [12] (Uni-
ProtKB), which included 563,552 manually annotated 
and reviewed protein sequences, to collect the proteins. 
UniProtKB/Swiss-Prot is a high-quality annotated and 
non-redundant protein sequence database. The detailed 



Page 4 of 14Wang et al. Journal of Cheminformatics           (2022) 14:14 

Fig. 1  Overview of ELECTRA-DTA
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information on the protein sequence corpora we con-
structed is listed in Table 2.

Pretraining the ELECTRA models
Our method exploits two separate ELECTRA mod-
els to separately encode the SMILESs and amino acid 
sequences into fixed dimensional vectors. In an effort 
to avoid confusion and awkward phrasing, we describe 
the procedure of training the ELECTRA model for the 
SMILESs. The procedure for the pre-trained ELECTRA 
model for the amino acids sequences is similar.

ELECTRA exploits two Transformer encoders as the 
base structure: one acts as a generator network, and the 
other acts as a discriminator network. The generator is 
typically a small, masked language model that produces 
an output distribution over the tokens. The tokens from 
a SMILES string are first masked, and some are replaced 
with a mask symbol [MASK] with a constant probabil-
ity. Then, the masked tokens are fed into the generator 
for joint pre-training with the discriminator. The gen-
erator network first learns from the masked tokens and 
then fills the missing tokens with predicted values, but 
the predicted value may not be the same as the original 
value. However, the jointly trained discriminator net-
work learns to resolve whether each token is the same 
as the original one. It uses another Transformer encoder 
to extract the contextual information as embedding 

representations, which are used to determine the prob-
ability of replacing the tokens, as shown in Fig. 2. After 
pre-training with SMILES strings, we obtain an ELEC-
TRA-M model as an encoder that can encode each 
SMILES into a feature vector in downstream tasks. 
Similarly, we obtain an ELECTRA-P model pre-trained 
with protein sequences that also encode each protein 
sequence into a feature vector.

Input representation
Protein sequence and compound SMILES are fed into the 
entire framework as input; because the SMILES strings 
and protein sequences are of different lengths, we trun-
cate them to fixed lengths for effective representation. 
As in [3], we also choose fixed lengths of 100 for SMILES 
and 1000 for protein sequences for the benchmark of 
datasets. We chose these maximum lengths based on 
the distributions of the datasets so that the maximum 
lengths cover at least 80% of the proteins and compounds 
in the datasets. Longer sequences are truncated to these 
lengths, while shorter sequences are padded with zeros to 
the fixed lengths.

Compound SMILES and protein sequence embedding
With the trained ELECTRA-M and ELECTRA-P mod-
els, the input compound SMILES strings and protein 
sequences are embedded into tensors separately. For 
individual compounds, the sequence of tokens from their 
SMILES strings, which represents atoms or structure 
indicators, is fed into the trained ELECTRA-M model 
to yield a compound encoding. Specifically, each token, 
which is one character, is converted to a vector of length 
Wc by ELECTRA-M, and then a sequence of Nc tokens is 
converted to a sequence of Nc vectors that are finally con-
catenated into a Wc × Nc tensor as the compound repre-
sentation. In the same way, one protein residue token is 
encoded into a vector of length Wp by ELECTRA-P, and 
a protein sequence of length Np vectors that are concat-
enated into a Wp × Np tensor, as shown in Fig. 3.

Table 1  Statistics of the compound SMILES corpora

No. of corpus Average length of 
the corpus

Minimum length 
of the corpus

No. of 
vocabulary

1114424 47 3 72

Table 2  Statistics of protein sequence corpora

No. of corpus Average length of 
the corpus

Minimum length 
of the corpus

No. of 
vocabulary

1868198 382 2 30
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ELECTRA‑DTA framework
In this work, the ELECTRA-DTA model incorporates 
two identical feature extractor networks and one regres-
sion network, as shown in Fig.  4. Each feature extrac-
tor network is a typical convolutional neural network 
equipped with two layers of stacked squeeze-and-exci-
tation (SE) blocks in addition to one global max pooling 
filter layer. The feature extractor network takes the com-
pound or protein tensor as input to learn latent features 
during the supervised training process and then produces 
feature vectors as a representation. Two feature vectors 
are then concatenated into a single vector, which is fed 
into the regression network for the prediction.

Inside the feature extractor network, the main blocks 
are two SE block layers. These are recently proposed 
CNN units that can be stacked for extremely effective 
generalization across different datasets, especially image 
processing. The SE block improves the joint encoding of 
image spatial and channel information by removing the 
spatial dependency with global average pooling to learn 

a channel-specific descriptor. This block is capable of fea-
ture recalibration by using global information to selec-
tively emphasize informative features over the others. 
The SE block of the ELECTRA-DTA model is shown in 
Fig.  5. We use one-dimensional convolution to project 
the input compound or protein tensor X ∈ R

T×256 into 
the feature maps U ∈ R

T×C to perform feature recali-
bration. This one-dimensional convolution is in the fea-
ture direction. Therefore, these feature maps U are first 
squeezed and produce a channel (or feature) descriptor 
by global average pooling in the feature direction. The 
interaction information is accumulated in this descrip-
tor. The squeezing operation is followed by an excitation 
operation with a fully connected layer and ReLU activa-
tion, which produces modulation weights from the fea-
tures by a simple self-gating mechanism. The output of 
the SE block is in the form of the feature maps U scaled 
by these modulation weights. The stacked SE block fur-
ther enlarges this interaction information between 
features.
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The regression network contains two tandem parts, as 
shown in Fig. 4. The first tandem part consists of a stack 
of fully connected layers with a simple gating mecha-
nism. The second tandem part has four fully connected 
layers of different sizes. The simple gating mechanism 
in the first part is adopted from [13] to better regulate 
information flow in consecutive training epochs. Each 
layer consists of two gates called a Carry and a Transform 
that separate information flow to two streams-one modi-
fied, the other untouched-to the next iteration. Finally, 
all information flows through four fully connected layers 
and then produces the predicted affinity score.

Model validation
Datasets
This study evaluated ELECTRA-DTA using three com-
mon benchmark datasets: the KIBA dataset [14], the 
Davis dataset [15], and the BindingDB dataset [16]. The 
Davis dataset consists of 442 proteins and 68 compounds 
forming 30,056 DT pairs, while the KIBA dataset con-
tains 229 proteins and 2111 compounds forming 118,254 
DT pairs. BindingDB is a web-accessible public dataset, 
and the filtered version is exploited in this study to main-
tain consistency with a previous study [4]. Table  3 pro-
vides the statistics of these datasets.

However, the versions of these datasets used here share 
one crucial problem: the same DT sequence has differ-
ent or duplicate affinity values. Duplicated samples may 
harm the effectiveness of the deep learning DTA model, 
while sample inputs (DT pairs) with different labels 
(binding affinity values) may be detrimental to training 

the deep learning DTA model. We thus removed these 
samples from the original datasets. Table 4 describes the 
details of the refined datasets.

It can be observed that these datasets differ signifi-
cantly in terms of the number of interactions per protein 
or compound. For the Davis and KIBA datasets, the aver-
age number of interactions per protein and compound is 
higher than 50, whereas BindingDB contains much fewer 
interactions for both compounds and proteins, suggest-
ing that the connections between compounds and pro-
teins are sparse, which would make the training of the 
prediction models challenging. In addition, all of these 
datasets have skewed distributions.

Evaluation metrics
The performance of all models was measured by the con-
cordance index [17] (CI), the mean squared error (MSE), 
Pearson correlation coefficient, the r2m index [18, 19] and 
the area under precision recall (AUPR) curve score. CI 
indicates the ranking performance of the models and can 
be calculated by equations (1).

The r2m index defines the possibility of an acceptable 
model and is calculated by equation (2), where r20 and r2 
are the squared correlation coefficients with and without 
intercepts, respectively.

(1)

CI =
1

Z

�

δx>δy

h
�

bx − by
�

, where h(m) =







1, if m > 0

0.5, if m = 0

0, if m < 0

Table 3  The detailed statistics of the datasets, containing the number of proteins, compounds, interactions and average number of 
interactions per protein and per compound

No. Proteins No. Compounds No. Interaction No. interactions 
per protein

No. interactions 
per compound

No. inactive 
interactions

No. non-
inactive 
interactions

Davis 442 68 30056 68 442 2502 27554

KIBA 229 2111 118254 516 56 24828 93426

BindingDB 1620 87461 144525 89 2 47608 96917

Table 4  The detailed statistics of the refined datasets, containing the number of proteins, compounds, interactions and average 
number of interactions per protein and per compound

No. Proteins No. Compounds No. interaction No. interactions 
per protein

No. interactions 
per compound

No. inactive 
interactions

No. non-
inactive 
interactions

Davis 361 68 24548 68 61 1649 22899

KIBA 229 2052 117184 511.720 57.107 24543 92641

BindingDB 1615 129109 144525 79.944 1.541 41487 87622
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Generally, a model with an r2m index greater than 0.5 on 
a test set can be considered acceptable. The AUPR curve 
score is generally adopted for binary prediction; therein, 
we converted the regressions on these datasets into their 
binary forms by thresholding similarly to DeepDTA. The 
Pearson correlation (R) is a metric that measures the cor-
relation between two continuous variables.

There are three variant ELECTRA models: ELECTRA 
small, with 14M parameters, ELECTRA base, with 110M 
parameters, and ELECTRA large, with 335M param-
eters. Due to limited computing resources, we only pre-
train two ELECTRA small models, one for compounds 
and another for proteins. We use code from simple-
transformers to train these two ELECTRA small mod-
els. Unlike with the NLP ELECTRA models, we use the 
atom tokenization method for the compound SMILESs 
and protein amino acid sequences. The pre-training task 
of the ELECTRA small models takes 6 days with a batch 
size of 256, a learning rate of 1e-5, and an epoch of 100 by 
using 8 NVIDIA GeForce RTX 2080 Ti GPUs. The choice 
of hyper-parameters for pretrained ELECTRA models 
are follows the original paper [7].

The hyper-parameters optimization for the feature 
extraction block is done for the number of the filters 
(same for proteins and drugs) searched over [16, 32, 64, 
128, 256,512], and the learning rate search over [3e-3,1e-
3,5e-4,3e-4,1e-4,1e-5]. The feature extraction block 
comprises 2 convolutional layers, one with 256 and the 
other with 512 channels. All convolutional layers apply 
3 convolution kernels and are activated through rectified 
linear unit (ReLU) activation function. The regression 
block has 4 FC layers with 1024, 1024, 512, and 1 node. 
Each of the first two FC layers is followed by a dropout 
layer with a rate of 0.4. These 4 FC layers also use ReLU 
as the activation function. The Adam optimizer was used 
to train the parameters of the feature extraction block 
and regression block with the default learning rate of 
0.001 for each DTA dataset. The detailed settings are 
summarized in Table 5.

(2)r2m = r2 ∗

(

1−

√

r2 − r20

) Results
Results of predictive performance of random splitting 
settings
Four baseline approaches were selected for comparison 
with the proposed ELECTRA-DTA, including two classical 
machine learning-based prediction models, KronRLS and 
SimBoost, and two state-of-the-art deep learning-based 
models, DeepDTA and DeepCDA [20], when using the 
original datasets. It should be noted that to avoid poten-
tial errors from the implementation and training of these 
models, the results of the baseline approaches reported in 
the following tables are taken directly from their original 
publications. As the authors for DeepCDA did not provide 
details on the hyperparameters of the network, we were 
unable to reproduce their methods. Therefore, we com-
pared our method with another state-of-the-art method: 
AttentionDTA [21].Given the output of ELECTRA layer 
layerk , we used average of all token vectors from 12 Trans-
former layers for the feature extractor network.

To quantify the prediction performance in an unbi-
ased and consistent manner, we carried out 5-fold cross-
validation similar to that used for DeepDTA, DeepCDA 
and SimBoost; that is, we split the data arbitrarily into six 
equivalent parts in which one part is selected as the inde-
pendent test set. Any one of the remaining parts is used 
as the validation set and the others as the training set. 
The purpose of this division is to determine the hyper-
parameters via 5-fold cross validation. Tables 6,  7 and  8 
report the results of all the evaluated models and their 
average CI, MSE, R, r2m and AUPR curve scores with the 
original and refined KIBA, Davis and BindingDB data-
sets, respectively.  

For the original KIBA dataset, the proposed ELEC-
TRA-DTA and DeepCDA achieve the best performance 
metrics, with ELECTRA-DTA outperforming Deep-
CDA by 0.014, 0.024 and 0.045 for MSE, R, and the r2m , 
respectively, while DeepCDA achieved the best CI and 
AUPR curve score. Both models achieved much better 
prediction performance than DeepDTA, SimBoost and 
KronRLS. As seen from Table  6, the proposed ELEC-
TRA-DTA achieved values of 0.892, 0.143, 0.892, 0.780, 
and 0.805 for CI, MSE, R, r2m and AUPR curve score, 

Table 5  The detailed training settings of ELECTRA-DTA

Parameter Setting Parameter Setting

CNN kernel size 3 Learning rate (lr) 3e-4

Length of SMILES sequence 100 Length of protein sequence 1000

Vector dimension 256 Number of filters 256;512

Epoch 100 Batchsize 256

hidden neurons 1024; 1024; 512 dropout 0.4
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respectively, for the refined KIBA dataset. Except for the 
R metric, our proposed method outperformed DeepDTA 
and AttentionDTA.

For the original Davis dataset as in Table  7, ELECTRA-
DTA outperformed the next-best model in terms of the 
CI and r2m index by 0.006 and 0.035, respectively. Addi-
tionally, the MSE error was 0.238, which was lower than 
that of the state-of-the-art methods. It should also be 
noted that DeepCDA performed better than ELECTRA-
DTA in terms of the AUPR curve score. For the refined 

Davis dataset, the proposed ELECTRA-DTA-AVG model 
had the highest CI. Our methods did not generate the 
best results for the other metrics, but the differences 
were small.

Table 8 summarizes the evaluation metrics of the vari-
ous methods for the original and refined BindingDB 
datasets. ELECTRA-DTA outperformed the baseline 
approaches for all evaluation metrics. For the original 
dataset, ELECTRA-DTA obtained a 0.01 increase in 
the CI, while the MSE value of our method was 0.151 

Table 6  Comparison of all baseline approaches and ELECTRA-DTA on the KIBA datasets

Bold values represent the best performance over all competitive methods

Dataset Model CI MSE R r
2
m

AUPR

Original KIBA Dataset KronRLS 0.782 0.411 - 0.342 0.635

SimBoost 0.836 0.222 - 0.629 0.760

DeepDTA 0.863 0.194 0.848 0.673 0.788

WideDTA 0.875 0.179 - - -

DeepCDA 0.889 (0.002) 0.176 0.855 0.682 (0.008) 0.812 (0.005)
ELECTRA-DTA 0.889 (0.003) 0.162 0.879 0.727 (0.004) 0.795 (0.006)

refined KIBA Dataset DeepDTA 0.892 (0.026) 0.152 0.896 0.766 (0.085) 0.798 (0.063)

Attention-DTA 0.880 (0.001) 0.158 0.883 0.742 (0.015) 0.795 (0.003)

ELECTRA-DTA 0.892 (0.002) 0.143 0.892 0.780 (0.014) 0.805 (0.005)

Table 7  Comparison of all baseline approaches and ELECTRA-DTA on the Davis datasets

Bold values represent the best performance over all competitive methods

Dataset Model CI MSE R r
2
m

AUPR

Original Davis Dataset KronRLS 0.871 0.379 – 0.407 0.661

SimBoost 0.872 0.282 – 0.644 0.709

DeepDTA 0.876 (0.004) 0.261 0.846 0.630 (0.017) 0.714 (0.010)

WideDTA 0.886 0.262 – – –

DeepCDA 0.891 (0.003) 0.248 0.857 0.649 (0.009) 0.739 (0.006)
ELECTRA-DTA  0.897 (0.003) 0.238 0.844 0.671 (0.032) 0.698 (0.010)

refined Davis Dataset DeepDTA 0.882 (0.016) 0.191 0.843 0.690 (0.035) 0.695 (0.03)
Attention-DTA 0.888 (0.007) 0.195 0.836 0.697 (0.005) 0.677 (0.022)

ELECTRA-DTA 0.896 (0.002) 0.195 0.838 0.637 (0.048) 0.685 (0.026)

Table 8  Comparison of all baseline approaches and the ELECTRA-DTA on the BindingDB Dataset

Bold values represent the best performance over all competitive methods

Dataset Model CI MSE R r
2
m

AUPR

Original BindingDB Dataset DeepDTA 0.812 (0.002) 0.832 0.824 0.623 (0.02) 0.443 (0.01)

DeepCDA 0.822 (0.001) 0.844 0.808 0.631 (0.002) 0.459 (0.003)

ELECTRA-DTA 0.832 (0.004) 0.693 0.852 0.645 (0.012) 0.807 (0.002)
refined BindingDB Dataset DeepDTA 0.826 (0.001) 0.703 0.845 0.669 (0.004) 0.795 (0.003)

Attention-DTA 0.804 (0.003) 0.844 0.811 0.619 (0.009) 0.764 (0.004)

ELECTRA-DTA 0.837 (0.002) 0.650 0.860 0.670 (0.027) 0.811 (0.001)
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lower than that of DeepCDA. The most substantial 
improvement was observed for the AUPR curve score, 
which increased from 0.459 for DeepCDA to 0.807. For 
the refined BindingDB dataset, our ELECTRA-DTA 
exceeded DeepDTA and AttentionDTA for all evalua-
tion metrics, with ELECTRA-DTA yielding the best per-
formance. Among all evaluation metrics, MSE has the 
most noticeable difference, which decreasing from 0.844 
for AttentionDTA to 0.626. The improvement in the CI 
was distinct, achieving the highest value (0.837) over 
the baselines. The r2m index, R and the AUPR curve score 
improved substantially relative to those of AttentionDTA 
and DeepDTA. It should be noted that ELECTRA-DTA 
achieved better results in the BindingDB dataset in all 
metrics than the baseline models, likely due to differ-
ences in the dataset distribution. According to an analysis 
of these datasets, the BindingDB dataset has sparser sam-
ples, thereby making it more difficult to train prediction 
models. This suggests that our model has more robust-
ness and reliability.

Interestingly, we observed that the CIs for DeepDTA 
and ELECTRA-DTA increased significantly from the 
original to the refined datasets. The reason for this is that 
different proteins or drugs have identical representations 
in the original datasets, and consequently, in the deep 
learning-based methods, the network becomes confuses 
as to how to learn an effective representation for these 
proteins or drugs.

According to the reported results in Tables 6, 7 and 8, 
ELECTRA-DTA and DeepCDA consistently performed 
the other DTA models in terms of all metrics, with 
ELECTRA-DTA-AVG being responsible for 10 of the 15 
best scores for the refined datasets, indicating that our 
model has more reliable and accurate predictive perfor-
mance than the other models.

Ablation Study
The use of pretrained-embeddings in theory lets the 
model leverage a much larger training set to help the 
neural network “understand” biochemistry. To under-
stand the contribution of the pretrained-embeddings to 
the overall performance in our method, we replaced the 

pretrained-embeddings with one-hot encoding from our 
model. We called the replaced version as Onehot-DTA 
in the following. We conducted the ablation experi-
ment using the refined datasets. As shown in Table  9, 
the model using the pretrained embedding feature has 
an improvement of 0.046, 0.009 and 0.007 on CI metric 
for Davis, KIBA and BindingDB datasets. This ablation 
experiment emphasizes the advantage of using the pre-
trained embedding as the proteins and drugs representa-
tions, which can provide high-level protein information 
and molecular information.

Results of predictive performance of cold splitting settings
One of the key difficulties in DTA prediction is gener-
alization of the model and the discovery of the binding 
affinity for unseen drugs or targets. Therefore, in these 
experiments, three splitting schemes were used for all 
refined datasets: 

1.	 Cold-drug setting: Every drug in the test set is absent 
in the training set.

2.	 Cold-target setting: Every target in the test set is 
absent from the training set.

3.	 Blind splitting: the target and the drug are both 
absent in the training set.

The cold-drug, cold-target and blinding splits deliver 
realistic and more difficult appraisal schemes for the 
DTA problem. In the real DTA prediction setting, the 
data redundancy problem caused by similar proteins or 
drugs may lead to “easy predictions”, which may mislead 
the performance evaluation of different algorithms. To 
conduct an objective evaluation, we use the single-link-
age clustering [22] to ensures that the compounds (or 
proteins) within the same cluster, which share high simi-
larities, are either all used in the training set, or all used 
in the test set. More specifically, the distance between 
two protein pi and pj is defined as

(3)Distance(pi, pj) = 1−
SW (pi, pj)

√

SW (pi, pi)SW (pj , pj)

Table 9  Results of ablation experiments

Bold values represent the best performance over all competitive methods

Dataset method CI MSE R r
2
m

AUPR

Davis ELECTRA-DTA 0.896 (0.002) 0.195 0.838 0.637 (0.048) 0.685 (0.026)
Onehot-DTA 0.850 (0.005) 0.301 0.739 0.525 (0.018) 0.561 (0.029)

KIBA ELECTRA-DTA 0.892 (0.002) 0.143 0.892 0.780 (0.014) 0.805 (0.005)
Onehot-DTA 0.883 (0.002) 0.157 0.881 0.744 (0.012) 0.792 (0.003)

BindingDB ELECTRA-DTA 0.837 (0.002) 0.650 0.860 0.670 (0.027) 0.811 (0.001)
Onehot-DTA 0.830 (0.001) 0.700 0.849 0.659 (0.037) 0.799 (0.004)
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where SW (·, ·) stands for the Smith-Waterman alignmen 
score [23] between two sequences.

The distance between a pair of compounds ci, cj is 
defined as

where MF(·) stands for the Morgan fingerprints calcu-
lated by RDKit [24] and Jaccard(·, ·) denotes the Jaccard 
similarity.

The single-linkage clustering threshold in this experi-
ment is 0.3. Compounds (proteins) belonging to the same 
cluster were assigned to same folds, so that compounds 
(proteins) in the test fold would not be similar to those 
in the training fold. In the cold-drug setting, there can be 
no compound protein pairs with compounds from the 
same cluster between the training set, validation set and 
test set. Similar settings exist in the cold-target setting. 
For the cold-drug and the cold-target settings, the ratio 
of training set, validation set and test set is approximately 
7:1:2. In the blinding setting, both compound clusters and 
protein clusters cannot be shared across training, valida-
tion and test sets. We chose nine-fold cross-validation 
for the blinding setting because no protein or compound 
clusters can be shared between training and test sets in 
this case. In particular, We divided protein clusters into 
three folds at random and then divided compound clus-
ters into three folds within each fold of protein cluster-
ing. The compound-protein pairs were then partitioned 
into a 3× 3 grid. We chose a single grid as the test set and 
eliminated the four grids that shared protein or peptide 
clusters with the test set. Finally, we trained the model 
using the remaining four grids. There was no shared pro-
tein or peptide cluster between the training and test sets.

The quantitative results for ELECTRA-DTA and base-
line methods are shown in Fig.  6 (see Additional file  1: 
Table for more details). Note that the AUPR scores were 
not comparable among these three settings, due to the 
different distributions of binding affinity values. For these 
three cold splitting settings, ELECTRA-DTA attained the 
best performance in most of our experiments. It can also 
be seen from the Fig. 6 that ELECTRA-DTA is close to 
other methods in terms of CI values under the blinding 
setting, but from the perspective of MSE, r2m and R scores, 
our method still has certain advantages. Compared to the 
random splitting settings, the performance of all meth-
ods is decreased drastically. Besides, all the methods 
could not obtain good r2m in these three cold splitting set-
tings. The main results may lie in that the test set not only 
contain new proteins or/and compounds, but also consist 
of very dissimilar proteins or/and compounds compared 
to the training set. And the machine learning algorithm 
requires that the training set and test set come from the 

(4)Distance(ci, cj) = 1− Jaccard(MF(ci),MF(cj))

same distribution. These results were consistent with the 
previous study [20, 25, 26].

We also noticed that Figure 6 reports a seemingly con-
tradictory phenomenon: all methods perform better in the 
cold-target setting with the Davis dataset but worse with 
the BindingDB dataset than in the cold-drug setting. We 
see that the prediction performance of the deep learning-
based methods is correlated to the data distribution of the 
dataset. Combined with the data in Table 4, it can be seen 
that when the number of drugs in the training set is large 
and the number of targets is small, the cold-target split-
ting scheme tends to yield a more challenging problem 
than the cold-drug splitting scheme; on the other hand, 
when there are many targets and few drugs, the cold-target 
predictions appear to be better than the cold-drug predic-
tions. We hypothesize that the reason behind such con-
tradictory results could be that the models become more 
stable with greater knowledge on entities (drugs or targets) 
in the training sets. In addition, we also observe an inter-
esting phenomenon in which the gap between the cold-
drug and cold-target predictions is different over the KIBA 
and Davis datasets. The cold-drug and cold-target predic-
tion CIs are similar in the KIBA dataset, even though it has 
2052 drugs and only 229 targets. Along this line, one might 
conclude that the model needs many more types of drugs 
than targets to learn their chemical representations.

Additionally, we realized that the blinding split schemes 
that had fewer drug-target pairs turned out to be the 
most challenging for the deep learning based models. We 
can observe that all the models’ performance decreased 
drastically while our methods usually exhibited a rela-
tively stable performance on the three datasets. Such test 
results suggested that ELECTRA-DTA can achieve better 
and more robust performance than the baseline methods 
under all cross-validation settings.

As shown in Fig.  6, the performance of Onehot-DTA 
was lower compared with that of ELECTRA-DTA, dem-
onstrating that the pretrained embedding with ELEC-
TRA indeed plays a key role in DTA prediction task. 
Thus further supporting the the proposed pretrained 
ELECTRA model can extract the abundant information. 
In summary, ELECTRA-DTA has the best performance 
compared with the baselines and variants, which com-
pletely signifies that the pretrained embedding is benefi-
cial to DTA prediction tasks.

Case study on drug repurposing for COVID‑19
We conducted a case study to showcase the use of our 
proposed ELECTRA-DTA for biomedical researchers for 
the repurposing of existing drugs. Here, we took key pro-
tein 3CL from SARS-CoV-2 as our targets and selected 
a potential drug dataset from the work of REDIAL [27]. 
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Fig. 6  Performance evaluation for ELECTRA-DTA and baseline methods on cold splitting settings, on both Davis, KIBA and BindingDB datasets. The 
error bar shows the standard error
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It should be noted that the dataset from REDIAL only 
provides the activate/inactivate for the drug-protein pair, 
so, we changed our method to a classification model. 
Specifically, we replaced the loss function of MSE with 
binary cross entropy, and set the activation function of 
the last layer as sigmoid. The performance of our method 
was evaluated by several classical classification evalua-
tion metrics, such as sensitivity (SEN), accuracy,(ACC), 
F1-score (F1), precision (PREC), and the area under the 
receiver operating characteristic curve (AUC). The radar 
plots of ELECTRA-DTA and REDIAL models are shown 
in Fig. 7. It can be seen from Fig. 7 that the performance 
of our method is basically similar to that of REDIAL. Our 
method achieves higher AUC and sensitivity but lower 
precision. The behind reason can be attributed to the fol-
lowing aspects:

•	 The REDIAL uses a consensus model based on 15 
classifiers and 22 features;

•	 Our model was originally designed for regression 
tasks, which pays more attention to the ranking 
between data. So we get a higher AUC. A higher 
AUC means the model can order the data very well.

To confirm the utility of our models, we also used the 
additional dataset of 3CL (Mpro) inhibitors: ebselen, 
disulfiram, tideglusib, carmofur, shikonin and PX-12. 
Among these six inhibitors, our ELECTRA-DTA cor-
rectly predicted disulfiram, tideglusib, shikonin and 
PX-12 as actives.

Discussion
This study presented ELECTRA-DTA, a DTA predic-
tion approach with two trained ELECTRA models for 
encoding protein amino acid sequences and compound 
SMILESs separately in an unsupervised manner. For 

compound SMILES strings, all characters found in dif-
ferent SMILESs were treated as the vocabulary, and 
selected compounds from the PubChem dataset were 
used as a corpus to obtain vector representations of each 
character, subsequently yielding a vector sequence for 
each compound SMILES. The unsupervised training on 
a large-scale sample space incorporated additional con-
textual information, including potential substructures 
or function groups. The ELECTRA-based embedding 
mechanism and the design of our network architecture 
ensured a better predictive ability than that of state-of-
the-art baseline methods; moreover, they provide a fea-
sible encoding module that can be stacked over other 
feature representation networks as the embedding layer 
for protein sequences or compound SMILESs in various 
learning tasks. In addition, they can also effectively train 
a new embedding model by constructing domain-specific 
corpora for specific downstream tasks.
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