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technique for robust detection and classification of recurrent CFAE patterns is
described.

Method: CFAE were obtained from the four pulmonary vein ostia, and from the
anterior and posterior left atrium, in 10 patients with paroxysmal AF and 10 patients
with longstanding persistent AF (216 recordings in total). Sequences 8.4 s in length
were analyzed (8,192 sample points, 977 Hz sampling). Among the 216 sequences,
two recurrent patterns A and B were substituted for 4 and 5 of the sequences,
respectively. To this data, random interference, and random interference + noise were
separately added. Basis vectors were constructed using a new transform that is
derived from ensemble averaging. Patterns A and B were then detected and classified
using a threshold level of Euclidean distance between spectral signatures as
constructed with transform coefficients.

Results: In the presence of interference, sensitivity to detect and distinguish two
patterns A and B was 96.2%, while specificity to exclude nonpatterns was 98.0%. In
the presence of interference + noise, sensitivity was 89.1% while specificity was 97.0%.

Conclusions: Transform coefficients computed from ensemble averages can be used
to succinctly quantify synchronized patterns present in AF data. The technique is
useful to automatically detect recurrent patterns in CFAE that are embedded in
interference without user bias. This quantitation can be implemented in real-time to
map the AF substrate prior to and during catheter ablation.
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Background

Radiofrequency catheter ablation is often used for successful treatment of atrial fibrillation
(AF), and is guided in part by the morphology of electrograms recorded from the catheter
tip. Of particular interest are complex fractionated atrial electrograms (CFAE), which are
composed of multiple deflections with varying baseline, or continuous deflections with
low voltage [1]. The CFAE may represent the arrhythmogenic substrate for AF. Ablating
CFAE can increase the cycle length of the arrhythmia, suggesting the importance of some
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of these regions as drivers to maintain AF [2]. Ablation of CFAE may improve outcome of
the catheter ablation procedure [3]. Progress in the development of signal processing al-
gorithms to identify CFAE can improve the efficacy of ablation strategies [4, 5]. Although
AF may originate in the pulmonary veins (PV), in many patients, particularly those with
the longstanding persistent type, other areas of the left atrium must be ablated to suc-
cessfully stop the arrhythmia. However, the precise characteristics of atrial electrograms
that would suggest that a particular area should be ablated is currently the subject of de-
bate. Moreover, differing techniques for CFAE quantitation do not necessarily identify the
same areas for ablation [6, 7]. Furthermore, CFAE identified outside the PVs often repre-
sent a large surface area of tissue that when ablated in its entirety, can increase procedure
time and the possibility of patient morbidity. Thus the need to recognize CFAE with spe-
cial quantitative characteristics that when ablated can improve outcome. The presence of
morphologic differences and repetitive patterns in CFAE have been observed and quan-
tified as a way to distinguish paroxysmal from longstanding persistent AF patients [8, 9].
If such patterns could be distinguished from one recorded sequence to the next, then the
substrate could be mapped based on pattern recurrence, which is likely related to degree
of arrhythmogenicity [8, 9].

In previous work we described a method of spectral estimation and transformation for
analysis of atrial fibrillation data [10-12]. Since this transform is data-driven, the orthog-
onal basis vectors are unique to the particular data set being analyzed. Thus it is possible
to extract the original patterns from which the signals were generated from any additive
noise and interference that may be present. As is shown in this study, if a recurrent pat-
tern is present in CFAE, it can be detected by generating and then comparing transform
coefficients, and is robust to presence of additive random noise and interference. Pattern
recognition techniques are then used to distinguish two recurring patterns from nonpat-
terns present in the CFAE [13, 14].

Methods
A Clinical data acquisition
Electrograms were recorded in a series of twenty patients referred to the Columbia Univer-
sity Medical Center cardiac electrophysiology (EP) laboratory for catheter ablation of AF.
These recordings were obtained prospectively as approved by the Internal Review Board
at Columbia University Medical Center, but analyzed retrospectively after the catheter ab-
lation procedures were completed using our standard clinical protocols. Ten patients had
documented clinical paroxysmal (acute) AF, with a normal sinus rhythm as their baseline
rhythm in the electrophysiology laboratory. Atrial fibrillation was induced by burst pacing
from the coronary sinus or the lateral right atrial wall, and the arrhythmia persisted for at
least 10 minutes for those signals to be included in the retrospective analysis. Ten other
patients had persistent (longstanding) AF, and had been in AF without interruption for
1-6 years prior to the catheter mapping and ablation procedure. Bipolar electrograms of
at least 10 seconds in duration, recorded from the distal ablation electrode during arrhyth-
mia, were bandpass filtered by the system at acquisition to remove baseline drift and high
frequency noise (30-500 Hz), sampled at 977 Hz, and stored. Although the bandpass high
corner was slightly greater than the Nyquist frequency, negligible signal energy resides in
the region [11].

Only digitized signals identified as CFAE by two cardiac electrophysiologists were in-
cluded in the retrospective analysis. The CFAE recordings were obtained from two sites
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outside the ostia of each of the four PVs. Similar recordings were obtained at two sites on
the endocardial surface of the left atrial free wall, one in the mid-posterior wall, and an-
other on the anterior ridge at the base of the left atrial appendage. From each of these
recordings, 8.4-second sequences (8,192 sample points) were extracted and analyzed.
A total of 240 such sequences were acquired - 120 from paroxysmal and 120 from long-
standing AF patients. Subsequently, only 216 of the recordings were confirmed as CFAE,
and only these were used for subsequent analysis. All CFAE signals were normalized to
mean zero and unity variance prior to further processing [12].

B Transform coefficients and the spectral signature

In previous work a mathematical transformation was derived based upon ensemble aver-
aging [12]. For averaging, approximate stationarity of the noise process is assumed. The
ensemble average vector ¢, of length w is then calculated by averaging # successive mean
zero segments of signal x having a length N, with each segment being of integer length
w:

e,=1/n-U, x (1a)

n = int(N/w) (1b)
The summing matrix is given by:
U, = [Iw L, - Iw] (2)

The I,, are w x w identity submatrices and are used to form the signal segments of length
w that are extracted from x and summed. Thus e, is computed by summing segments
of the signal having period w sample points. The summing matrix U, is padded at right
and bottom edge if N/w is not an integer, as described elsewhere [12]. The relationship
between frequency f and period w is given by:

f =sample rate/w (3)

For this study, a range of w = 1000 — 50 sample points (f = 0.977 Hz — 19.54 Hz) was used
for analysis. The power in the ensemble average at period w is given by:

P,=1/w el.e (4a)

=1n*w x"-UTU, x (4b)

The scaling terms 1/w and 1/n account for the w summations used to calculate the power,

and the #n summations used to form each ensemble average. The transformation matrix is:

T,=Ul U, (5a)
L, I, L,
I, L, - I,

- (5b)
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Signal x of length N can then be decomposed using the linear transformation:
=1/n T, -x (6)

where a,, are basis vectors, # is the number of summations for ensemble averaging, and
a, and x are N x 1 in dimension. The basis vectors a,, for all w characterize the peri-
odic behaviors present in signal vector x, and they are linearly independent except when
small integer relationships exist between periods w; and w; of any particular pair [12].
Columnwise, each identity submatrix in Equation 5b extracts and sums one segment of w
sample points in x (Equation 6), with the sum total being projected onto the canonical ba-
sis. Rowwise the identity matrices serve to repeat the ensemble average of length w over a
total length N during construction of 4,,. Thus the transformation matrix of Equations 5a
and 5b decomposes the signals into periodic ensemble averages. These orthogonal basis
vectors can be used to project signal x into ensemble space:

a_cTw_zW:l/nZw x0T,  -x=P, 7)
where as in Equation 4b, the inner products are again scaled to account for the total num-
ber of summations. Equation 7 states that if each signal segment of length w is correlated
with the ensemble average at w (LHS), the resulting transform coefficient is the ensemble
average power at w (RHS). The power spectrum can either be plotted versus period w, or
versus frequency f, and to level the noise floor, which depends on the number of summa-
tions for averaging, it is scaled by </# when graphed [12]. The transformation process can
be analyzed by expanding Equation 7:

" a,=1n*w x'-ULU,-x=P, (8)

In the middle part of Equation 8, when the mathematical operations are done from right
to left, then starting with signal x, the ensemble average is generated by U, x, orthogonal
basis vectors are formed by UL U, x, and transform coefficients by x UL U, «.

Now consider two signals x and ¥, such that:

z=x+y ©)
When the inner product between signal z and the basis vectors of z is computed:

n*w z'-UlU,.-z=P,, (10)
it is evident that the transform coefficients are also power spectral coefficients P,,, which
are nonnegative. By comparison, when the inner product is computed for signal x or for
signal y with the basis vectors of z, the resulting transform coefficients are not power spec-
tral coefficients since they can be negative as well as positive. Instead they can be signified
by coefficients C,,:

Un*w 27Ul U, z=Cyp (11a)

1N

n*w y'-UIU,-

1N

= Cuy (11b)
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Thus unlike power spectral coefficients Py, the coefficients C,, and C,, plotted for all
w are not power spectra. Rather, they represent the power in each basis vector derived
from z that is correlated to x and to y, respectively. Hence they can be defined as spectral
signatures, having similarities to the_power spectra of x and y respectively, but using, for
reconstruction, basis vectors that are only partially correlated with each signal. Consider-
ing the relationship between x, y, and z, several inequalities should be noted:

UNU, 272" UL U, 2 (12)
y Uy U, y#y" UL U, 2 (13)
xT u’u, §+ZT UaUW y

7z UL U,z (14)

As the similarity of x and y to z increases, the inequalities described by Equations 12-14
tend toward becoming equalities. The relationship between the spectral signatures of x
and y, and the power spectrum of z, is given by:

T UpU, z+y U U, 2

_ T T
=z 'Uw

c

Equation 15 states that the sum of the spectral signatures of x and y with respect to z equals
the power spectrum of z. B

Now suppose that z is an average of many signals, some of which contain a particular
pattern A or a different pattern B. These two repeating patterns A and B will be reinforced,
and the random content will be reduced, by the summation that forms z. The basis vectors
formed from this average will therefore mostly be constructed from a combination of the
features from pattern A and those of pattern B. Hence we would expect that if a particu-
lar input signal happened to contain pattern A or pattern B, then the resulting transform
coefficients C,, would be similar to P,. In contrast, if the input signal is a random vector
unrelated to pattern A or B, the resulting transform coefficients C,, for all w would ap-
proach zero and contain both positive and negative values, due to the lack of correlation
of the signal with the basis vectors. These properties can be exploited for detection of two

recurring patterns A and B, as described in the next section.

C Paradigm for recognition of recurrent patterns in atrial fibrillation signals

Patterns A and B described in the last section can be detected as shown in the flow dia-
gram in Figure 1. Consider a set of m random signals, a few of which contain pattern A
or pattern B embedded in additive random noise and interference, as represented at top
left in Figure 1. If the m signals are averaged, only recurring patterns will be reinforced
in the resulting mean signal (top middle, Figure 1). When the power spectrum P is gen-
erated from this mean signal (middle portion of Figure 1), it will contain elements of any
recurring patterns. If the transform coefficients of each of the m individual signals are
obtained using the basis vectors constructed from the mean signal, the resulting spectral
signatures S; will be similar to P only for those signals which contain a recurring pattern.
As suggested previously [12], the Euclidean distance (ED) between power spectrum P and
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Figure 1 Flow diagram for pattern recognition in atrial fibrillation signals. ip = inner product,

¥ = summation, — = difference, p = pattern, S = signature, £ = number of candidate patterns selected by the
Euclidean distance threshold value. The number of initial CFAE recordings m = 216. After addition of
interference, the total number of recordings m — 2 is 214. After comparison of the 214 spectral signatures with
the power spectrum of the mean signal, based on a first threshold level Th1 for Euclidean distance ED1, £
candidate patterns are selected. By comparing the spectral signatures of the £ candidate signals using a
second threshold level Th2 for Euclidean distance ED2, selections are made as to whether each candidate
contains pattern A, pattern B, or no pattern.

a particular spectral signature S; will be large if S; lacks a recurring pattern, and small if it
contains a recurring pattern. A first threshold level (Thl) of Euclidean distance ED1 can
therefore be used to detect the presence of a candidate pattern in S;, for all i (lower right,
Figure 1). Once the candidate patterns in the series are detected, their spectral signatures
can be compared one to another using a second Euclidean distance and threshold (ED2
and Th2). The Euclidean distance will be shorter if S; and S; are generated from two sig-
nals i and j containing the same pattern. The Euclidean distance will be longer if S; and
S; are generated from signals containing different patterns, or if one or both of the signals
contain no pattern. The latter can occur if the first threshold is set to a longer value of
Euclidean distance, so that some random signals lacking patterns are initially identified
as candidate patterns. Therefore, threshold selection is a tradeoff between excluding ac-
tual patterns (shorter Euclidean distance) versus including nonpatterns (longer Euclidean
distance).

The method described above can be automated to detect recurring patterns without
manual intervention, except to set threshold level Thl for pattern detection, and thresh-
old level Th2 to cluster and classify the detected patterns. For the procedure to work, the
patterns contained in the signals must be synchronous so that they reinforce upon averag-
ing. This can often be achieved either by simultaneously recording from many atrial sites,
or by successive recording using a suitable trigger such as an F wave peak when present
in the electrocardiogram.

To test the method, signals containing patterns were simulated as follows. Of the 216
CFAE recordings, two were selected at random to be patterns. The first of these, pattern
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A, was substituted for four other recordings while the second, pattern B, was substituted
for three other recordings, selected at random from recording 2 through 215. Thus pattern
A was made to occur five times and pattern B four times among the set of m = 216 record-
ings. This set was summed to form the mean signal (top in the block diagram, Figure 1).
Interference was then added by combining each signal with the preceding and following
signal in the series without replacement, that is:

Xi=Xio1 + % + X1, 1=2,...,215 (16)

Of the final series of m — 2 = 214 signals with interferences, 27 thus contained one of two
recurring patterns A and B due to the method of combination described in Equation 16.
This final set was used for transformation, with patterns A and B detected according to the
flow diagram in Figure 1. Since the values of w ranged from 50 to 1,000, each spectrum and
spectral signature was 951-dimensional. The process was repeated with different patterns
selected at random for a total of 10 trials. As an additional test, all of the steps above were
repeated with random noise added to each CFAE as well as interference. The random noise
vectors with Gaussian distribution were approximately mean zero, and truncated with a
standard deviation of £2 millivolts, twice the normalized CFAE standard deviation.

The sensitivity and specificity of the method was computed separately for CFAE with
interference, and for CFAE with interference + random noise, by considering those signals
containing a pattern to be positives and those signals lacking a pattern to be negatives.
Thus:

Sensitivity = TP/(TP + FN)
= Correctly identified patterns/All patterns
Specificity = TN/(TN + FP)

= Correctly identified nonpatterns/All nonpatterns (17)

Results
In Figure 2 are presented examples of signals and additive interferences. Identical scales
are used in all panels. In panel A is shown a CFAE from the right superior pulmonary
vein ostia in a paroxysmal AF patient. In panel B is depicted a CFAE from the anterior left
atrial free wall in another paroxysmal AF patient. Both signals have mostly continuous
activation, and the large deflections have different shape and timing at each occurrence.
Only 1,000 of 8,192 sample points are shown for clarity (approximately 1 second), although
8,192 points were used for the calculations described in the Methods. The signals of panels
A and B in Figure 2 were used as patterns A and B, respectively, which were made to occur
five and four times, respectively, in the final data set of 214 signals used for analysis. Exam-
ples of additive interference are shown in corresponding panels C and D. The interferences
are each a combination of two AF signals unrelated to signals patterns A and B. The same
patterns after addition of the interferences are shown in the corresponding panels E and
F in Figure 2. With the additive interferences, the original signals are almost completely
unrecognizable visually. Most of the original signal deflections are masked by interference.
The spectrum of the combined patterns A and B from Figure 2A, B is shown in Fig-
ure 3A in the range 1-12 Hz, where pattern A (signal x) + pattern B (signal y) form the
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Figure 2 Examples of atrial electrograms used as patterns A and B to be detected in the set of 216
initial recording sequences (panels (A) and (B)). When two interferences are added (panels (C) and (D)) the

corresponding original signals are not very discernable (panels (E) and (F)).

combined signal z. Several prominent peaks are present in the spectrum of z, likely re-
lated to individual components of the two signals. The transform coefficients of x and y
with respect to the basis vectors of z were separately calculated and then added togethe;
and plotted as a red trace in Figure 3B, shown with overlapping z spectrum from Figure 3A
(black). There is perfect overlap in accord with Equation 15. In contrast, when the spectral
signatures of two other signals not related to x or y are obtained with respect to z, their
magnitude throughout the frequency range is relazively small and the transform coeffi-
cients are both positive and negative (panels C and D; same 5-unit range in ordinate scale
as in Figure 3A, B).

To further elucidate the process, when the spectral signatures of x and y with respect to z
are separately plotted (Figure 4A, B, respectively), there are similarities to the z spectrum
of Figure 3A. Therefore, elements of the z spectrum (Figure 3A) are maintained in the
spectral signatures of x and y (Figure 4A, B respectively), suggesting that the Euclidean
distances between them will be relatively small. In contrast, the elements of the z spectrum
are not maintained in the spectral signatures of random interferences such as those shown
in Figure 3C, D, suggesting that the Euclidean distances between them will be relatively
large. Finally, the spectral signatures of x and of y with respect to z, shown again as black
traces in Figure 4C, D, are similar, but not the sz;me, as the spectra of x and y, which are
denoted as red traces in Figure 4C, D. Based on Figures 3 and 4, the spectra_l signatures
of x and y with respect to z are related to the actual frequency content in signals x and y.
However,_the x and y spectra do not resemble each other since they are uncorrelated. B

The Euclidean distance between the spectral signatures of each of 214 signals with dif-
fering additive interference, versus the spectrum of the mean signal containing two pat-
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Figure 3 Example of transform coefficients when two patterns A and B are embedded in interference.
The basis vectors used to compute the transform coefficients were derived from all 216 recordings summed
to form a mean signal. (A) The spectrum of the mean signal from 216 individual recordings. (B) The spectrum
of the mean signal z (black) and the sum of transform coefficients from pattern A + pattern B (red) are
identical and overlapped. (C) Transform coefficients for a nonpattern, which is uncorrelated to either pattern
A or pattern B. (D) Transform coefficients for another nonpattern, which is also uncorrelated to either pattern
A or pattern B.

terns A and B, is shown in Figure 5A. There are a number of downward projections which
indicate increased correlation and possible instances of pattern recurrence. If the lower
threshold is used, nine possible instances of repetitive patterns are selected (shown in bi-
nary form in panel B). When the upper threshold is used, eleven possible instances of
repetitive patterns are selected (shown in binary form in panel C). The detected pattern
type (A or B) or nonpattern (n) are shown at the bottom of panels B and C. The selection
of a threshold higher along the ordinate axis in the Euclidean distance graph of panel A
would enable the detection of more candidate patterns. However, whatever threshold is
used, to determine and identify the presence of actual recurring patterns necessitates the
last step at lower right in the pattern recognition flow diagram of Figure 1, i.e., the spectral
signatures of the signals selected by threshold in Figure 5 must be compared. Due to the
method of constructing signals plus interference (see the Methods), each downward pro-
jection in Figure 5B, C represents a set of three successive signals with pattern, of which
the middle was used for statistical calculation.

The Euclidean distances for all pairings of spectral signatures using the upper threshold
in Figure 5A (shown in binary form in Figure 5C) are given in Table 1. The first column and
first row in Table 1 note the actual pattern that was selected by the upper threshold in Fig-
ure 5, and correspond to the sequence shown in Figure 5C. Since the two patterns A and B
occurred only nine times in the sequence, two of the selections in Figure 5, top threshold,
were of nonpatterns (n). In the case of the pairing of a spectral signature from a particular
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Figure 4 The spectral signatures of pattern A and B computed from the basis vectors derived from
the mean signal. (A) Spectral signature of pattern A. (B) Spectral signature of pattern B. (C) Comparison of

spectral signature of pattern A (black) to spectrum of pattern A (red). (D) Comparison of spectral signature of
pattern B (black) to spectrum of pattern B (red).
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Figure 5 The Euclidean distance between the power spectrum of the mean from 216 recordings, and
the spectral signatures of 214 individual recordings with interference added (panel (A)). Two
thresholds are shown (horizontal lines) which produce different binary functions for recognition (panels (B)
and (Q)).
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Table 1 Euclidean distance between candidate patterns

Pattern A n A B A A A B B n B

A 0.000  0.142 0056  0.133 0.092 0074  0.065 0.128  0.35 0.221 0.135
n 0.142  0.000  0.151 0.149  0.166  0.123 0.131 0.188 0.156  0.143  0.122
A 0.056  0.151 0000 0136 0097 0068 0068 0143 0.145 0214  0.138
B 0.133 0.149 0136 0000 0.167 0127 0144  0.01 0.096 0185  0.063
A 0092 0166 0097 0167 0000  0.095 0.101 0196 0206  0.271 0.151
A 0074 0123 0068 0127 0095 0000 0082 0156 0.124  0.191 0.116
A 0.065 0.131 0068  0.144  0.101 0.082 0000 0156  0.151 0212  0.152
B 0.128 0.188  0.143  0.101 0.196  0.156  0.156 0000  0.105 0.241 0.102
B 0.135 0.156  0.145 0096 0206 0124  0.151 0.105 0.000  0.161 0.104
n 0.221 0.143 0214  0.85 0.271 0.191 0212 0241 0.161 0.000  0.168
B 0.135 0.122  0.138  0.063 0.151 0116 0152 0102 0104 0.168  0.000

A - pattern A, B - pattern B, n - nonpattern. There is symmetry about the main diagonal.

Table 2 Statistics for pattern classification

Trial number sen:int spe:int sen:int+n sen:int+n
1 100.0 100.0 91.1 100.0

2 97.8 100.0 97.8 95.0

3 933 100.0 82.2 100.0
4 95.6 100.0 889 100.0

5 933 100.0 889 100.0

6 91.1 80.0 889 75.0

7 95.6 100.0 889 100.0

8 97.8 100.0 91.1 100.0

9 978 100.0 844 100.0
10 100.0 100.0 889 100.0
mean 96.2+3.0 980+6.3 89.1£4.1 970£79

sen - sensitivity, spe - specificity, int - interference, n - noise.

signal with itself, the Euclidean distance is zero (main diagonal in Table 1). There is sym-
metry above and below the main diagonal (half the table is redundant). Smaller values in
Table 1 indicate shorter Euclidean distances, i.e., spectral signatures that are more similar.
The Euclidean distances tend to be small for spectral signatures of pattern A embedded
in one interference versus pattern A embedded in another interference, and similarly for
pattern B embedded in one interference versus pattern B embedded in another interfer-
ence. The Euclidean distances tend to be large for spectral signatures of pattern A versus
pattern B embedded in interference, for spectral signatures of pattern A or B embedded
in interference versus nonpatterns (interference only), and for spectral signatures of non-
pattern versus nonpattern. Thus the patterns and nonpatterns with interference can be
distinguished based on a threshold level Euclidean distance.

From inspection of Table 1, a threshold level of 0.105 normalized units would be estima-
tive to distinguish patterns and nonpatterns with 100% sensitivity and specificity. Those
pairings above 0.105 would indicate that the same pattern is not present on both signals,
while pairings less than or equal to 0.105 would indicate the same pattern being present
on both signals. Using the threshold 0.105 for clustering and classification in all 10 trials,
the results are shown in Table 2, left-hand columns. For 10 trials, the sensitivity to cor-
rectly detect and distinguish patterns was 96.2%. The specificity to exclude nonpatterns
was 98.0%. For the test of interference + noise, a threshold value for Th2 of 0.132 was
found to be efficacious in a test trial, and was then used in all trials. The results are shown
in Table 2, right-hand columns, with mean values of 89.1% for sensitivity and 97.0% for
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Figure 6 Example of pattern A before interference is added (top graph) and after five different
interferences are added (lower panels).

specificity. Thus the technique is nearly as efficacious for classification when random noise
as well as interference is added to CFAE.

To show visually how an entire set of patterns with interference and interference + ran-
dom noise are affected, graphs of these interactions are shown in Figures 6, 7, 8, 9 and 10
for a selected trial. In Figure 6, pattern A is shown at top for the range 0-1,000 sample
points. There are large deflections representing local electrical activation, but these differ
in shape and timing from one instance to the next. The five instances of interference added
when this pattern occurred among the 214 CFAE sequences are shown in the lower set of
graphs. Only a few elements of the original pattern remain recognizable when embed-
ded in interference, such as the large downward deflection between 500 and 600 sample
points. In Figure 7, the pattern is repeated in the top graph and in the lower graphs, the
pattern is embedded with interference + random noise (same interferences as in corre-
sponding panels of Figure 6). The resulting traces do not appear to be correlated to one
another. Similarly, pattern B is shown at top in Figures 8 and 9. In the lower traces in
Figures 8 and 9 are shown the four instances of pattern B with additive interference, and
with additive interference + random noise, respectively. As for pattern A, there is little
evident similarity of these traces to one another or to pattern B itself. Finally in Figure 10
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Figure 7 Example of pattern A before interference + noise is added (top graph) and after five
different interferences + noise are added (lower panels).

is shown an example of a nonpattern (top), the nonpattern with interference (middle) and
the nonpattern with interference + random noise (bottom). The nonpattern is mostly un-
recognizable in the lower traces. Overall, the test for distinguishing CFAE patterns with
additive interference mostly identified and distinguished traces such as those in Figure 6,
lower panels (pattern A), from traces such as those in Figure 8, lower panels (pattern B),
from nonpatterns (Figure 10 middle panel). Similarly, the test for distinguishing CFAE pat-
terns with additive interference + noise mostly identified and distinguished traces such as
those in Figure 7, lower panels (pattern A), from traces such as those in Figure 9, lower
panels (pattern B), and from nonpatterns (Figure 10 bottom panel).

Discussion

Summary

In this study a new transform was used to characterize recurring patterns in CFAE. First,
ensemble averages were computed from signal segments of length w, repeated for all w
in the frequency range of interest as given by Equation 3. From each ensemble average an
orthogonal basis vector is constructed by repeating the ensemble average of length w for
the entire signal length N (Equation 6). The inner product between basis vector and orig-
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Figure 8 Example of pattern B before interference is added (top graph) and after four different
interferences are added (lower panels).

inal signal produces a transform coefficient, which is the signal power at that frequency
(Equation 7). The power spectrum is a plot of the entire series of transform coefficients
versus frequency. Transform coefficients resulting from the inner product of one signal
with the basis vectors of another signal can take on negative as well as positive values, and
will have an average level near zero if the signals are uncorrelated (Equations 11a and 11b).
The correlation coefficients formed from correlated signal x with the basis vectors of z, as
described in the Methods, can be similar to the spectrum of x and is termed the spectral
signature. Transform coefficients were used to detect two recurring patterns in a sequence
of CFAE, embedded in interference and random noise, and to distinguish them from each
other and from nonpatterns. The method was implemented and repeated for 10 trials. No
manual intervention was used except to set initial threshold levels of Euclidean distance
for identification of correlated content, i.e., for pattern extraction, and to distinguish the

extracted patterns (Figure 1).

Prior work in pattern recognition

Our study made use of correlation in the frequency domain to discern repetitive patterns
from nonpatterns in CFAE. Electrogram pattern recognition using correlation waveform
analysis has also been found useful to discern electrograms arising from arrhythmia in
another study [15]. In this prior work, the electrogram shape at any particular record-
ing site was shown to remain stable during electrophysiologic study, even during such
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Figure 9 Example of pattern B before interference + noise is added (top graph) and after four
different interferences + noise are added (lower panels).

interventions as overdrive pacing and infusion of pharmacologic agents, which included
epinephrine and isoproterenol [16]. Thus we expect that our method for detecting and
discerning patterns in CFAE will likely be robust to the typical interventions that are done
during the course of a clinical electrophysiologic study. We also found the transforma-
tion to the frequency domain to be useful to characterize each signal and its relationship
to the mean signal. Similarly, in a prior study the wavelet transform was found useful to
discern atrial electrogram patterns by categorizing them into one of four classes of frac-
tionation based on frequency and phasic relationships [4, 5]. Although the patterns used
in our study were synchronized artificially for recognition, multielectrode recordings will
likely be useful to simultaneously acquire data from many recording sites in which any
patterns present will be synchronized. This would simplify the mapping procedure using
the paradigm of Figure 1. Elsewhere, it has been shown that multiple simultaneously ob-
tained recordings are indeed useful for rapid and accurate classification of CFAE patterns
[16, 17]. Although we have not yet proposed a paradigm to relate the detected patterns
to the electrophysiologic substrate, it is planned to develop such a technique for a future
prospective study. Adopting a standardized description of CFAE morphology and use of
reproducible methodology would enable ease of comparison between clinical trials [17].
Regarding the possible relationship of observed pattern to electrophysiologic properties
of the substrate, the complexity of CFAE, as determined by pattern type, is believed to be

related to the degree of organization of electrical activity [18, 19]. To reduce complexity,
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Figure 10 Example of a nonpattern (top graph), nonpattern with interference (middle graph) and
nonpattern with interference + noise (bottom graph).

adaptive template matching can be used to normalize the signals with respect to atrial
cycle length (x-scale), as well as amplitude differences (y-scale) [20]. This would be useful
to compare patterns in persistent versus paroxysmal AF independent of the dominant
frequency, which tends to be higher in the persistent type, and to compare regions of
atrial fractionation having low electrogram amplitude to areas with higher electrogram

amplitude [11].

Potential advantages of the new method

The spectral signature is a graph of the correlated content between two signals in fre-
quency space, which can be exploited for pattern recognition (see the Methods). If a series
of signals is averaged and basis vectors of the mean are used to obtain the spectral signature
of each individual signal, then there will be correlation between the spectrum of the mean,
and the spectral signature of the individual signal, when the individual signal contains a
synchronous pattern that recurs within the series. By measuring the Euclidean distance
between all individual signals having spectral signatures similar to the power spectrum of
the mean signal, patterns contained in the sequence can be identified, distinguished from
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one another, and distinguished from nonpatterns when the nonpatterns are mostly un-
correlated with respect to the mean signal. Thus the new technique is potentially useful
to automatically identify and distinguish repetitive patterns present in a series of signals,
once threshold levels for the Euclidean distance estimate to detect candidate patterns, and
to discern patterns, are established. In the latter step, if multiple patterns are present they
can also be discerned using a single threshold level, since the Euclidean distance will be
short only with respect to members of the same class.

We found that best threshold levels are sensitive to the degree of additive random noise
and interference, and differed when only interference was added versus interference +
random noise (0.105 versus 0.132, respectively). Once the threshold levels were established
based on a test trial, they were much less sensitive to particular patterns and patients i.e.,
the results for each trial were similar (Table 2).

Clinical correlates

When considering the potential for recurrent patterns to appear in CFAE signals, frac-
tionated electrogram deflection morphology is probably mechanism-dependent. Possible
sources of fractionation include areas of slow electrical activation, wavefront collision,
anchor points at regions driven by a reentrant circuit, and presence of multiple activa-
tion wavelets as triggered, for example, from ganglionated plexi [1]. These mechanisms
are potentially distinguished both by spatiotemporal occurrence, and as described in this
study by the frequency characteristics of the actual patterns. When using an automated
technique for pattern detection, user bias is eliminated as a variable for defining ablation
targets [1, 13, 14]. A goal of CFAE pattern recognition software is to visualize the spa-
tial distribution of CFAE for catheter ablation [21]. Our technique can be used for spatial
mapping of CFAE by type of pattern present at each recording site. CFAE are observed
at both PVs and the left atrial free wall, although their occurrence at the free wall is more
common in persistent AF [21]. Acute and longstanding persistent AF were shown by our
group to have CFAE that differ in morphologic characteristics and degree of repetitive-
ness [8, 9]. Therefore, patterns in CFAE and their frequency of occurrence are likely to
differ by AF type, and to present differently during mapping procedures. Although in pre-
vious work, recurring features in the form of individual deflections were measured on
the order of tens of milliseconds in duration, in the current study, patterns in the data
were measured over the entire sequence length used, 8,192 sample points (8.4 s). Thus the
new technique assumes statistical stationarity over this time interval. Indeed, it has been
shown in a previous study that 8-second lengths are ideal for characterizing the dominant
frequency of CFAE [22]. Use of a noncontact catheter during clinical electrophysiologic
study would enable simultaneous recording of CFAE from multiple sites. From the simul-
taneously recorded CFAE, far-field electrical activation patterns originating from distant
drivers can be detected and localized [23]. Analysis of atrial electrogram patterns using a
noncontact catheter is planned for future work. Recurring patterns in data obtained from
sequential recording sites using a standard catheter may also be detectable when synchro-
nized by a trigger such as the peak of the F wave in the electrocardiogram, also planned
as a future study.

Conclusions
A method was developed to recognize recurring patterns in AF data using a data-driven
transform. It was shown to be efficacious for detection of recurring patterns with addi-
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tive interferences and noise, simulated from actual data obtained from paroxysmal and
persistent AF patients. Although the additive interference and noise rendered the original
patterns almost unrecognizable by visual observation (Figures 2, 6, 7, 8 and 9), the spectral
signatures of each signal with additive interference and random noise, as related to the cor-
related content in the mean signal, were useful for detecting patterns, for distinguishing
between two different patterns that were present, and for discerning patterns from non-
patterns using two threshold Euclidean distances. This paradigm may also be useful to
develop a mechanistic understanding of paroxysmal and persistent AF, because presence
of recurrent patterns can be compared and contrasted between the two AF types. It may
also be useful to apply to other types of biomedical data such as ventricular tachyarrhyth-
mias, and to videocapsule images of the small intestine, where spectral estimation from
signal averaging has been described previously [24, 25].

Limitations

Although the method described in this study was accurate for detecting simulated recur-
ring patterns embedded in interference, real patterns may differ from one instance to the
next, for example as caused by spatial and temporal jitter, which can reduce sensitivity and
specificity [11]. Furthermore, the technique was shown to be useful for synchronous pat-
tern data only. If the patterns are highly out of phase, they will not be reinforced when the
mean signal is formed (Figure 1), and thus will not appear as correlated content. There-
fore, synchronized pattern data is necessary for accuracy, as would more likely be effected
by acquiring individual signal data from many recording sites simultaneously, or by syn-
chronizing successively recorded data, for example by triggering the onset of the atrial
recording to the presence of an F wave in the electrocardiogram.
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