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Precise tumor segmentation is a crucial task in radiation therapy planning. Convolutional neural networks
(CNNs) are among the highest scoring automatic approaches for tumor segmentation. We investigate the
difference in segmentation performance of geometrically distorted and corrected diffusion-weighted data us-
ing data of patients with head and neck tumors; 18 patients with head and neck tumors underwent multipa-
rametric magnetic resonance imaging, including T2w, T1w, T2*, perfusion (ktrans), and apparent diffusion
coefficient (ADC) measurements. Owing to strong geometrical distortions in diffusion-weighted echo planar
imaging in the head and neck region, ADC data were additionally distortion corrected. To investigate the
influence of geometrical correction, first 14 CNNs were trained on data with geometrically corrected ADC
and another 14 CNNs were trained using data without the correction on different samples of 13 patients for
training and 4 patients for validation each. The different sets were each trained from scratch using randomly
initialized weights, but the training data distributions were pairwise equal for corrected and uncorrected
data. Segmentation performance was evaluated on the remaining 1 test-patient for each of the 14 sets. The
CNN segmentation performance scored an average Dice coefficient of 0.40 � 0.18 for data including dis-
tortion-corrected ADC and 0.37 � 0.21 for uncorrected data. Paired t test revealed that the performance
was not significantly different (P � .313). Thus, geometrical distortion on diffusion-weighted imaging data in
patients with head and neck tumor does not significantly impair CNN segmentation performance in use.

INTRODUCTION
Precise delineation and segmentation of tumors is an essential
step in radiation therapy planning. Good segmentation accuracy
is a prerequisite for both effective tumor treatment and preser-
vation of functionality of surrounding healthy tissue and
thereby for prolonged patient survival (1, 2). Manual segmen-
tation of lesions is a tedious task, and hence automatic detection
methods have been proposed as tools for diagnostics, treatment
planning and response evaluation (3). With these automatic
segmentation methods, problems such as interobserver variabil-
ity in target volume definition, definition and assessment of
tumor heterogeneity, and tumor classification may be overcome
(4, 5).

Early segmentation solutions were focused on image signal
intensity–based methods or semiautomatic computer learning
algorithms with manually selected or linearly learned image
features (6-13). Many of these segmentation methods made use

of multiparametric imaging based on data from multiple cross-
sectional imaging modalities (eg, positron emission tomogra-
phy, magnetic resonance imaging [MRI], computed tomogra-
phy). A key feature of MRI however is the possibility to create
multiparametric imaging data in a single modality and in a
single imaging session—thus, physical, functional, and anatom-
ical features can be imaged during the same examination ses-
sion and in a (nearly) identical patient position, which facilitates
the alignment of image data before segmentation.

Today, the highest scoring algorithms for automatic tumor
segmentation use (convolutional) neural networks [(C)NNs] (14).
NNs feed a set of input data through a number of processing
layers, where each layer consists of a number of neurons that are
activated by a nonlinear function depending on a linear com-
bination of input data and a bias. With increasing number of
layers, the ability to represent nonlinear relationships between
input and output increases, effectively enabling a deep NN to
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learn any functional relationship given enough input data is
available. In addition, a CNN is capable of implementing con-
textual information and can therefore learn high representa-
tions of the data such as edge information (15).

In multiparametric MRI for tumor segmentation, different an-
atomical image contrasts (T1- and T2-weighted) are combined with
functional information acquired with perfusion und diffusion mea-
surements. Particularly diffusion-weighted imaging (DWI) has
proven to contribute valuable additional information for tumor
delineation (16-18). For the DWI images, an echo planar imaging
(EPI) pulse sequence is commonly used. Despite its advantages, the
EPI technique has a major disadvantage: it is very sensitive to
off-resonances caused by inhomogeneity in the B0 magnetic field,
which leads to severe geometrical distortions (19). Several groups
have worked on solutions on the pulse sequence level, such as
readout segmented (rs)EPI (20) which has been shown to dramati-
cally decrease image distortions (21, 22). As these methods alone
cannot remove image distortions completely, the necessity to
quantify the effect of image distortion on automatic tumor seg-
mentation becomes evident.

Image distortions are especially pronounced in MRI of head
and neck tumors, where the complex geometry of head, neck,
and shoulders severely limits B0 shimming. This results in an
increased field inhomogeneity and thus stronger image distor-
tions than in other body regions like the brain. In addition, in
tumors with hypoxic subareas, [18F]-fluoromisonidazole posi-
tron emission tomography can be used as a metabolic marker for
hypoxia localization (23-25), which is important for individu-
alized treatment schemes, for example, by dose painting. In
these patients, MRI would be a desirable imaging alternative if
the effect of geometric distortion on tumor segmentation per-
formance could be controlled.

In this work, CNNs were used for the segmentation of
multiparametric MRI data of patients with head and neck tumor,
and the effects of geometric distortion of diffusion-weighted
input data on the segmentation performance were analyzed.

MATERIALS AND METHODS
Head and Neck Tumor Patient Trial
Patient data were taken from a prospective clinical trial in
patients with head and neck squamous cell carcinoma, which
helped investigate the correlations between tumor response un-

der radiotherapy and hypoxic tumor subvolumes in patients
with head and neck squamous cell carcinomas. Written in-
formed consent was obtained from each patient, and the insti-
tutional review board approved the study (Approval No. 479/
12). Patients received anatomical and functional MRI before
undergoing radiochemotherapy and 2 and 5 weeks into treat-
ment. In this work, the pretherapeutic MRI data were used for
analysis to avoid therapy-related bias. In total, multiparametric
MRI data from 18 patients were available.

For MRI, a clinical 3 T whole-body magnetic resonance
(MR) system (Siemens Tim Trio, Erlangen, Germany) was used.
Patients were placed in an individually fitted therapy mask,
which was fixed at the patient couch of the MR system. A
flexible receive coil was wrapped around the anterior part of the
neck, which was used in combination with the additional spine
array coils for MR signal reception. The MR protocol of the study
consisted of anatomical T1w and T2w MRI, T2* maps from
multiecho gradient echo MRI, perfusion MRI including the vas-
cular permeability ktrans, quantified using contrast-enhanced
dynamic T1-weighted MRI, and the apparent diffusion coeffi-
cient (ADC) that was assessed with diffusion-weighted echo-
planar imaging. DWI data were acquired using standard and
readout-segmented diffusion-weighted EPI sequences. Conven-
tional EPI was used with an echo time of 69 ms, acquisition time
(TA) � 5 min, while the rsEPI (readout segmentation of long
variable echo-trains, RESOLVE) sequence used echo time � 51
ms, TA � 7 min, with 7 segments. Both diffusion sequences used
a 3-direction trace scan with b-values of 50, 400, and 800 s/mm2

to quantify the ADC, with phase-encoding (PE) along the ante-
rior–posterior direction. All relevant sequence specifications are
listed in Table 1.

Data Preprocessing
Owing to additional acquisition times, only 12 of 18 patients
tolerated the additional rsEPI protocol. If available, rsEPI images
were used in the study. For the other patients, conventional EPI
images were used.

Perfusion ktrans was determined according to the Tofts
model (26). Both ktrans and T2* were calculated with the software
platform SyngoVia (Siemens Healthcare), while monoexponen-
tially fitted ADC-maps were determined with the MR systems’
postprocessing software. To improve the performance of the sub-

Table 1. List of Input Channels and Corresponding Sequence Details

Sequence TE [ms] TR [ms] Resolution [mm3] Comments/Other

T1 Fast Spin Echo 11 504 0.7 � 0.7 � 4.0

T2 Fast Spin Echo 100 5000 0.7 � 0.7 � 4.0

Multi-Echo GRE 5-33 600 1.1 � 1.1 � 3.0 nEchoes � 12, reconstructed map: T2*

Dynamic T1w Perfusion
Measurement

1.56 4.65 1.4 � 1.4 � 3.0 nTimepoints � 36, reconstructed map: ktrans

DWI (rsEPI) 51 2510 2 � 2 � 3 b � {50,400,800} s/mm2, reconstructed map:
ADC, nSegments � 7

DWI (Conventional EPI) 69 3500 2 � 2 � 3 b � {50,400,800} s/mm2, reconstructed map:
ADC
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sequent CNN analysis and to ensure comparability between sub-
jects, T1- and T2-weighted images were normalized to zero mean
and unitary standard deviation. Images were then interpolated to a
1 mm isotropic resolution using cubic splines, and image coregis-
tration was performed using standard MATLAB (The MathWorks,
Natick, MA; Version 2016b) tools (eg, imregister), based on simi-
larity transformations with a mutual information metric.

Additional DWI Preprocessing
Head and neck regions are especially challenging for DWI as the
complex geometry imposes severe limitations to magnetic field
shimming (27). To study the influence of the geometric accuracy
on the CNN performance, an algorithm was developed to geo-
metrically correct ADC maps.

The problem of geometric distortions between 2 MR images
due to field inhomogeneities is well known, but the imaging
protocol did not include additional field map measurements so
standard correction schemes (19) could not be applied. Instead,
a postprocessing method from optical microscopy (28), 2-pho-
ton imaging (29, 30) or particle imaging techniques (31), was
adapted that has been developed to correct for nonrigid motion
in between acquisitions. The distorted DWI and a geometrically
more precise T2w image are treated as 2 images of the same
region. The distortion field in between the 2 images is then
estimated according to the Lucas–Kanade (32) method imple-
mented in a pyramidal layout (33). Our MATLAB 3D implemen-
tation of the algorithm makes use of the mutual information
metric to account for the different contrasts of the images. As
distortions are expected in only the PE direction owing to the
low effective PE bandwidth, the spatial degrees of freedom in the
distortion field were limited to the PE direction.

The implementation was validated with volunteer data ac-
quired using a 3 T MRI system (Tim Trio, Siemens, Healthineers)
using T2w and DWI contrasts together with a B0 field map. With
the correction algorithm, geometrically corrected ADC maps
were calculated for all 18 patients as an additional preprocessing
step for the CNN analysis. Distortion fields were extracted from
the b � 50 s/mm2 images only, as the low b-value provides
optimal signal-to-noise ratio, and the same image distortion is
expected at higher b-values.

CNN
Finally, a 3D CNN was configured to perform the segmentation
task on the patient data. To study the effect of image distortion
on the segmentation result, 2 separate NNs were trained: the first
network included the original, uncorrected ADC maps, while the
second used the geometrically corrected ADC maps.

For the calculations, the DeepMedic (34) CNN architecture was
used. DeepMedic is a 3D CNN which uses 2 calculation pathways, a
normal one and one with 3 times lower spatial resolution, to
combine local fine structure with coarser contextual image infor-
mation. Each pathway consisted of 8 hidden layers with {40 40 50
50 60 60 70 70} channels using 33 kernel sizes followed by 2 fully
connected layers of 100 channels each, which combine high- and
low-resolution pathways. In this layout, the following 5 input
channels were used: T1-weighted images, T2-weighted images,
ktrans maps, T2* maps, and ADC maps. As ground truth, gross tumor
volumes (GTVs) were used that were contoured by a radiation
oncologist and a radiologist on the basis of MR data. For contour-

ing, all original MR data were available; however, most volumes
were drawn on the basis of T1w imaging and copied to all other
contrasts in the process.

The data were divided in groups, with 13 patients in the
training set, 4 patients in the validation set, and 1 patient in the
testing set. A leave-1-out cross-validation was performed for 14
test patients, both with and without geometrically corrected
ADC data. For better comparability, the 14 uncorrected and
corrected data samples were chosen to have pairwise equal
distributions in validation, training and testing sets. Using this
set of networks, a statistical analysis for the 2 cases was used
using the Dice coefficient as a measure for segmentation per-
formance. The Dice coefficient is calculated as Dice � 2 TP/
(2 TP � FN � FP) (35), where TP are true positives, FN false
negatives, and FP false positives. A paired t test on the resulting
Dice coefficients for the 14 training cases was used to test
whether a significant difference could be observed.

RESULTS
The verification of the distortion correction algorithm on the ran-
domly distorted MR-image showed a substantial decrease in Eu-
clidean image distance from 0.69 � 0.06 to 0.21 � 0.03. The
volunteer experiment shows that the algorithm reproduces the
general structure of a measured field map with minor deviations in
the fine structures (Figure 1A). The Euclidean image distance be-
tween the measured field map and the calculated distortion field
amounts to 2.1 � 2.3 pixel. In few regions of strong distortions, for
example, on the boundaries of the trachea, distortions are so severe
that both registration methods do not deliver clinically acceptable
results; however, this was the case in only 6 patients and it equally
affected corrected and uncorrected data. As these irreversible dis-
tortions affect only parts of an image, the corresponding cases
could still be used in the evaluation process. Figure 1 shows the
results of subsequent correction—both methods realign anatomical
areas well with the corresponding T2w reference image, while
severe misalignments are seen without correction. The calculated
distortion fields for all patient cases measure a total mean of 0.46
and a standard deviation of 4.24 pixels, which clearly illustrate the
need for correction (Figure 1B).

The CNN was trained on the patient data for 35 epochs per
sample case. Figure 2 shows the training progress for an exemplary
case. The training progress appears to be largely the same for both
input cases of corrected and uncorrected ADC data. However, as
can be seen in the validation curve, there is a noticeable difference,
especially in the sensitivity metric between the two cases. Figure 3
shows the subsequent segmentation result of the corresponding test
sample. Both methods, with and without distortion correction,
labeled some areas far from the GTV as tumor tissue, but in general,
a good overlap between the ground truth (GTV) and the segmen-
tation results with and without distortion correction was found
with Dice coefficients up to 0.68 and 0.65, respectively. Figure 4
shows the segmentation performance over all test sessions in a
scatter plot. As seen, despite the presence of severe image distor-
tions in the ADC maps, the distortion correction did improve the
segmentation performance of the CNN, however, not to a statisti-
cally significant degree (P � .313). The mean Dice coefficient for
segmentation with distortion-corrected ADC-maps was 0.40 �
0.18, while for uncorrected data, it amounted to 0.37 � 0.21.
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DISCUSSION
In this work, a CNN was defined and trained to segment head
and neck tumors using clinical data from patients undergoing
radiation therapy. In particular, 2 input cases were compared
with respect to the segmentation performance: 1 with geometric

distortion correction of the input DWI data, and 1 without. In
this study with 18 patients already a good segmentation could
be achieved, and no significant differences between the distor-
tion-corrected and -uncorrected cases were found with regard to
the segmentation performance.

A B

Figure 1. (A) Top: Overlay of T2-weighted (T2w) image (purple) and readout segmented echo planar imaging (rsEPI)-image
(green). Left: Original image with distortions. Center: Corrected diffusion-weighted imaging (DWI) using the correction algo-
rithm with the T2w image as a reference. Right: Corrected DWI using a measured B0 field map for correction. Bottom: The
corresponding distortion fields used for correction. Both fields show the same general behavior, while some fine structure, es-
pecially in regions of strong distortions around the trachea, cannot be resolved using the algorithm. White arrows mark loca-
tions where the misalignment of T2w and DWI is clearly seen. (B) A histogram showing the relative amount of displacements
within all diffusion images that were included in the study. The standard deviation is 4.2 pixels, which shows the large effect
of the distortion correction.

Figure 2. Training process of
the convolutional neural network
(CNN) for 1 training example.
After training for 35 epochs, the
network seemed to have reached
peak performance. The plots for
corrected and uncorrected train-
ing data show great similarity,
which is reflected in the compari-
son of Dice coefficients for testing
data.
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Still, the correction algorithm severely reduced image dis-
tortion. The approach is capable of registering different con-
trasts, such as T2w and DWI image data. Registration could not
provide satisfactory results, whenever signals from multiple

voxels were mapped to the same location during the imaging
process. Neither method, algorithm- or field map-based, could
then recover the original, distortion-free image. This happened
on a few sharp tissue–air boundaries and is therefore only a
small limitation to the study.

Owing to the limited number of complete patient data sets,
a modified leave-1-out cross-validation method was chosen for
statistical analysis. The method is limited by the incomplete
number of possible permutations in training, validation, and
testing set. A complete leave-1-out cross-validation could not
be performed owing to high calculation times for each of the 42
840 possible combinations of the 3 sets. Therefore, 14 permuta-
tions with the given numbers of patients in training, validation,
and testing categories have been used. Each permutation had a
different data sample in the testing category, but the rest was
randomly distributed among training and validation sets. This
random selection was necessary owing to long calculation times
required to completely train a network, taking several days on a
Tesla C2075 GPU. To alleviate the challenge of small data sets,
additional images after therapy starts could be used for training
and testing. However, the tumors often drastically shrink in size,
leading to changes in signal intensity for ADC and ktrans (36).
Therefore, owing to vanishing tumors, the amount of available
during-treatment data is too small for using deep learning tech-
niques. This can already be seen in the present data set, which
shows failure of segmentation in 2 of the cross-validation sets
(Figure 4). These kinds of statistical fluctuations are to be ex-
pected more frequently with a smaller amount of available data.
Thorough use of cross-validation must then be applied to extract
statistically relevant information. However, there is a lower limit
on the amount of data to be used with deep NNs, which can, in
most cases for CNNs, be determined only experimentally.

A B

DC

Figure 3. 3D visualization of the
CNN segmentation with (A) and
without (C) distortion correction.
In addition, corresponding trans-
verse slices of the region of inter-
est are shown (B, D). The ground
truth is shown in green, and the
segmentation results are plotted in
red. Both segmentations show
good overlap with the gross tumor
volume (GTV). With a Dice coeffi-
cient of 0.59, the overall segmen-
tation of the geometrically cor-
rected data was much higher than
that of a Dice of 0.40 in the un-
corrected case. However, both
segmentations generally included
too much tissue on the anterior
side, as well as some isolated
areas in the neck.

un
co
rr

corr

Figure 4. Comparison of Dice coefficients with and
without geometrically corrected input data for all 14
training rounds. The dashed line marks the line of iden-
tity. A paired t test on the data did not show a signifi-
cant difference in Dice coefficient for corrected or
uncorrected data. Mean Dice coefficient with distortion
correction is 0.40 � 0.18, and 0.37 � 0.21 without
correction. Points below the line of identity indicate an
improvement in segmentation performance for geomet-
rically corrected ADC data. The 2 different DWI-
sequences are shown in yellow and blue.
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From other tumor entities such as prostate or breast cancer
it is known that DWI plays a vital part in tumor segmentation
and definition (37-39), and similar behavior is found in head
and neck cancers (40-42). In a preliminary study, we could also
show that the overall segmentation performance of head and
neck tumors in MRI is critically dependent on diffusion data
(43). Therefore, it is surprising that the analysis of the segmen-
tation performance of the CNN with and without distortion
correction does not show significant differences. This could be
caused by different reasons: In the training process the CNN
could have learned a correction scheme to undistort input data
within its receptive field. Because each layer consists of a num-
ber of convolutions with input data taken from the previous
layer, local translation of features can be implemented. In ad-
dition, the standard deviation of the displacement map within
the primary tumor over all included subjects is 2.29 pixel, while
the standard deviation over all other pixels within all subjects is
4.28 pixel. This shows that distortions are far less pronounced
within the tumor than in the rest of the FOV, especially in
contrast to areas with tissue–air boundaries such as the nasal
cavities where high distortions are to be expected in particular
for EPI methods.

It is also important to note that the ADC maps constitute
only 1 of 5 input channels. The high-resolution T2w images, for
example, offer a much higher anatomical contrast and are
nearly unaffected by distortion, whereas conventional DWI im-
ages can be heavily distorted. Hence, it is to be expected that
feature maps linked to the ADC channel will show an effective
decrease in feature resolution, while high-resolution informa-
tion is taken from different input channels such as T2w data. In
general, the quality of the ADC data in this study was limited by
noise, which reduces the ability to differentiate between tumor
and normal tissue. To increase the signal-to-noise ratio, DWI
acquisitions can be averaged, which often increase the acquisi-
tion times to durations, which are no more compatible with
clinical study times. Alternatively, during the ADC calculation,

noise can be explicitly modeled, which has been shown to
reduce ADC heterogeneity (44, 45). In addition, the choice of the
b-values of the DWI acquisition can be optimized, which re-
quires prior knowledge about the target ADC values (46, 47).

In general, a strong limitation of this study is the size of the
training data set. The small size of only 18 patients can lead to a
false-positive segmentation far from the GTV owing to geometric
distortions (as discussed above) and owing to the selection of the
training regions: the algorithm was programmed such that in a
statistical mean, the same number of tumor-containing (fore-
ground) and nontumor-containing (background) input patches is
selected, leading to an effective underrepresentation of background
in the training process. A larger data set could help to train a CNN
that can detect more subtle differences in the segmentation perfor-
mance as the high standard deviation observed in the resulting Dice
coefficients in the 14 data samples is expected to converge against
a common mean value.

In many studies, data sets with �60 to �250 patients have
been used (14, 34). Although other studies showed Dice coeffi-
cients in the range of 0.6 up to 0.9 (48), depending on the
segmentation target (mostly brain tumors and subregions of
brain tumors), our data set focused on a completely different
tumor entity. This work offered special insight into the perfor-
mance of a CNN in a body region with strong imaging chal-
lenges, as the head and neck regions show stronger field inho-
mogeneity than brain regions. Also, in contrast to most brain
regions, the head and neck area cannot be assumed to be rigid.
Although the head is immobilized using a thermoplastic mask,
swallowing and tongue movement lead to intrinsic misalign-
ment of images taken at different time points, as can be seen in
Figure 5. Because the CNNs were trained on multiparametric
data, some errors—especially on the GTV edges—are present in
the ground-truth labels, leading to worse segmentation results
than in rigid body areas. In addition, the interobserver variabil-
ity of head and neck cancer is already much higher than, for
example, that of the brain tumors (49, 50). Despite the intrinsic

Figure 5. T2w (left) and T1-
weighted (T1w) (right) images
showing the same anatomical
area, but acquired 10 minutes
after each other. Motion in the
trachea leads to slightly differ-
ently located tumor borders. This
effect introduces errors in the
ground truth labels and de-
creases the maximum achievable
segmentation performance.
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limitation on image quality, the trained network yielded good
tumor segmentations, and it was shown that distortion correc-
tion of ADC data does not significantly improve segmentation
performance. To reduce the effect of motion-related misalign-
ment, a nonlinear registration method could be applied. How-
ever, successful application of these methods is particularly
demanding in the head and neck area and thus simultaneous
signal acquisition, that is, intrinsic coregistration, would be
preferred (51). Simultaneous acquisition of multiple signal pa-
rameters could be implemented by MR-fingerprinting, as has
been shown in the prostate before (52).

In a next step, the contribution of each CNN input channel
(eg, T2w or ADC images) to the segmentation performance needs
to be quantified. This will not only allow for better analysis and
understanding of the segmentation but also help optimize the
imaging protocol with regard to increased patient comfort, that
is, gathering more relevant information in less time, and treat-
ment outcome.

In summary our data showed that within the highly chal-
lenging anatomic head and neck region, even a CNN trained on
nondistortion-corrected data can provide good-quality tumor
segmentation. Considering the strong changes in the head and
neck anatomy during radiochemotherapy, adaptive replanning
strategies may help improve dose coverage of tumors and better
sparing of organs at-risk (53, 54). This might ultimately result in
better locoregional control rates and decreased treatment-
related toxicities (55). The advent of MR-guided radiotherapy
concepts, especially using hybrid MR-LINAC systems, facilitates
daily MR-based replanning strategies that in turn require
swift segmentation tools to allow real-time treatment adap-
tation (56). To deliver daily imaging-adapted treatment plans,
CNN-enabled MR-based autosegmentation strategies are cru-
cial. Our data therefore could provide important information
about the design and implementation of CNNs for MR-based
autosegmentation.
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