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Cardiovascular disease (CVD) is currently one of the primary causes of mortality and
morbidity worldwide. Nanoparticles (NPs) are playing increasingly important roles in
regulating stem cell behavior because of their special features, including shape, size,
aspect ratio, surface charge, and surface area. In terms of cardiac disease, NPs can
facilitate gene delivery in stem cells, track the stem cells in vivo for long-term monitoring,
and enhance retention after their transplantation. The advantages of applying NPs in
peripheral vascular disease treatments include facilitating stem cell therapy, mimicking
the extracellular matrix environment, and utilizing a safe non-viral gene delivery tool.
However, the main limitation of NPs is toxicity, which is related to their size, shape,
aspect ratio, and surface charge. Currently, there have been many animal models
proving NPs’ potential in treating CVD, but no extensive applications of stem-cell therapy
using NPs are available in clinical practice. In conclusion, NPs might have significant
potential uses in clinical trials of CVD in the future, thereby meeting the changing needs
of individual patients worldwide.
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INTRODUCTION

Cardiovascular disease (CVD) is one of the primary causes of mortality and morbidity around the
world (GDB 2017 DALYs and HALE Collaborators, 2018). According to the latest data, ischemic
heart disease remains the primary cause of death among various CVD (Prajnamitra et al., 2019).
Although the current pharmacological treatments and surgical procedures have improved the
survival rate of the patients with cardiac disease, none of these therapies mentioned above can
replace the cardiac tissue lost after infarction (Calin et al., 2013). Peripheral vascular disease (PVD),
which is characterized by the narrowing of the peripheral vasculature, has a significant unfavorable
impact on the health of patients (Bartolo et al., 2019). However, traditional strategies have limited
efficacy in treating PVD (Tu et al., 2015; Hedhli et al., 2017). Therefore, regenerative medicine
is urgently needed to achieve the functional recovery of damaged tissues. Stem cell therapy is a
potential alternative approach to achieve therapeutic angiogenesis with several unique advantages
over growth factor therapy or gene therapy. However, the efficacy of stem cells to treat CVD remains
controversial. A meta-analysis of 52 preclinical animal studies of MSC therapy for ischemic heart
disease showed that it is safe and associated with moderate (∼7.5%), but significant improvements
in left ventricular ejection fraction, but the effect of cell therapy on left ventricular ejection fraction
decreased slightly after 8-week follow-up (van der Spoel et al., 2011).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 August 2020 | Volume 8 | Article 947

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2020.00947
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fbioe.2020.00947
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2020.00947&domain=pdf&date_stamp=2020-08-14
https://www.frontiersin.org/articles/10.3389/fbioe.2020.00947/full
http://loop.frontiersin.org/people/856822/overview
http://loop.frontiersin.org/people/862980/overview
http://loop.frontiersin.org/people/1045734/overview
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00947 August 12, 2020 Time: 19:53 # 2

Sun et al. A Review of Nanoparticles

Nanoparticles and structures have been used by humans in
the fourth century AD by the Roman, which demonstrated
one of the most interesting examples of nanotechnology
(Bayda et al., 2019). The use of nanoparticles (NPs) can help
overcome some of the obstacles as mentioned above and
augment the benefits of cell therapy through delivering genes
to stem cells, enhancing stem cell retention, facilitating the
proangiogenic effect of stem cells and mimicking the extracellular
environment. This review mainly focuses on the types, physical
characteristics, adverse effects of NPs, and the mechanisms by
which NPs have improved stem cell-based treatment strategies
for cardiovascular regeneration in recent years. Furthermore, we
also aim to illustrate the challenges that we face in applying
nanotechnology for cardiovascular regeneration and its prospects
for the future.

STEM CELL TYPES

In terms of heart disease, mesenchymal stem cells (MSCs)
constitute a potential option for cell-based therapy to treat
cardiac disease. The results of the RIMECARD clinical trial
showed that human-derived MSCs could improve the cardiac
function of patients with myocardial infarction (MI) (Hare et al.,
2009). The POSEIDON-DCM trial showed that MSCs could
reduce fibrosis in scarred tissues (Hare et al., 2017). Additionally,
a clinical trial aiming to investigate the safety and efficacy of
the intramyocardial implantation of allogeneic MSCs in patients
with end-stage ischemic cardiomyopathy has been initiated, but
the results have not yet been reported. Human-derived induced
pluripotent stem cells (hiPSC) constitute another stem cell type
that might be suitable for stem cell-based therapy, and two
recent studies demonstrated that human embryonic stem cell-
derived cardiomyocytes enhance cardiac function in macaque
monkeys with large MI areas (Shiba et al., 2016; Liu et al., 2018).
However, no clinical trials have been demonstrated their effects
on patients with cardiac disease. In terms of vascular disease,
MSCs play a role in vessel regeneration that is as important as
their role in cardiac disease. A pilot study demonstrated that
adipose-derived MSCs injections might be a safe alternative to
achieve therapeutic angiogenesis in patients with critical limb
ischemia (a severe manifestation of PVD). However, the sample
size was small, and the results are, therefore, insufficient (Lee
et al., 2012). A phase II clinical trial shows that the use of MSCs
combining with endothelial progenitor cells (EPCs) therapy is
safe and effective for increasing blood flow in the ischemic
legs of patients with limb ischemia (Lasala et al., 2012), also,
EPCs have been applied in bovine models and murine models
of peripheral arterial disease and can be isolated from hiPSC
(Asahara et al., 1997; Boyer et al., 2000; Samuel et al., 2013;
Peters, 2018).

However, several limitations of treating CVD with stem cells
exist, including the low survival rate of implanted cells (Yun and
Lee, 2019), the rapid apoptosis of the transplanted cells because
of exposure to a hypoxia environment (Tang et al., 2005) and the
poor survival of the transplanted cells caused by the inflammatory
and proapoptotic environment in ischemic tissue (Zhang et al.,

2001; Toma et al., 2002). Many studied have shown stem-cell
therapy with NPs.

NPs STRUCTURE AND TYPES

The Definition of NPs
The published recommendation for the definition of
nanomaterials refers to a nanomaterial as a natural, incidental
or manufactured material consisting of particles in an unbound
state, aggregate or agglomerate consisting, and indicates that 50%
or more of the particles should be in a size distribution range
from 1 to 100 nm based on one or more external dimensions
(Piperigkou et al., 2016). Because of their unique physical and
chemical properties, NPs have played an increasingly important
role in determining and regulating stem cell behavior, including
tracing the fate and distribution of stem cells in vivo, inducing
directed differentiation of stem cells, ascertaining the origin of
stem cell diseases, stimulating the paracrine behavior of stem
cells and regulating the microenvironment of tissues around
stem cells (La Francesca, 2012; Le et al., 2017). Various types of
NPs exist, including metal NPs, SPIONs, SNPs, carbon NPs. In
this section, we will review the common types of NPs used in
cardiovascular regeneration.

Physicochemical Properties of NPs
Particle Size and Surface Area
Particle size and surface area play significant roles in the
interaction between materials and biological systems (Talkar
et al., 2018), for example, how a system responds to absorb,
distribute, and eliminate the materials (Powers et al., 2007).
According to the size of the NPs, the uptake modes can be
categorized as phagocytosis and pinocytosis. Large particles are
mainly absorbed through phagocytosis, while small particles can
be absorbed through either phagocytosis or pinocytosis, with the
larger particles internalized by the cells with the most enormous
phagocytosis capacity (Aillon et al., 2009).

Particle Shape and Aspect Ratio
The processes of endocytosis and phagocytosis are affected by
the shape characteristics of the material. Spherical particles are
more natural to endocytose than particles of any other shape.
Non-spherical nanomaterials are more likely to flow through
capillaries, causing other biological consequences (Lee et al.,
2007; Verma and Stellacci, 2010; Kim et al., 2012).

Surface Charge
The surface charge of NPs has a significant influence on
the biological system, and the surface charge on the particles
determines many of their interactions (Georgieva et al., 2011).
The mammalian cell membrane has a negatively charged surface.
Therefore, cationic particles are more likely than negative or
neutral particles to interact with cells.

Other Characteristics
The crystalline structure, aggregation potential, and surface
coating of the NPs can also affect their biocompatibility and
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toxicity (Pietroiusti et al., 2011). Concentration may be the main
factor contributing to the toxicity of large particles (Gatoo et al.,
2014; Talkar et al., 2018).

The Most Commonly Used Types of NPs
in CVD
SPIONs
In magnetic resonance imaging (MRI), SPIONs exhibit
magnetism in the region exposed to the magnetic field, and
when the external magnetic field is removed, the magnetism of
the SPIONs also disappears. SPIONs, as T2 magnetic contrast
agents, mainly affect MRI R2 relaxation, shorten the T2 time,
and weaken the weighted T2 signal. They are characterized by
having a size in the nanometer range, with intense penetration,
and a relaxation rate of 7∼10-fold higher than that of Gd3+
at the same concentration, which enables MRI at very low
concentrations, revealing a region of signal reduction that forms
a contrast with the signals of the surrounding tissues (Urdzíková
et al., 2006). The magnetic properties of SPIONs, which are
influenced by external magnetic fields, are used as cell markers
(Cromer Berman et al., 2011). Among cell marker SPIONs,
magnetic Fe3O4 has the most application prospects. SPIONs
have the characteristics of superparamagnetism, low toxicity,
excellent biocompatibility, and directional movement under
an external magnetic field (Bull et al., 2014). These NPs have
broad application prospects as cell markers, guide molecules,
and probes for monitoring the therapeutic effect of stem cells
on acute MI. Leveraging their magnetic properties, SPIONs are
used in MRI to tag and, effectively trace cells to determine cell
localization. SPIONs with particle sizes of 1∼100 nm are not
quickly engulfed by the reticuloendothelial system. SPIONs have
a positive surface charge and often require surface modification
because SPIONs without surface modification are unstable and
tend to polymerize in the moist environments.

Quantum Dots (QDs)
Quantum dots are important nanoscale, low-dimensional
semiconductor materials that, in three dimensions, do not
exceed twice the exciton Bohr radius of the corresponding
semiconductor material (Lei et al., 2008). QDs are generally
spherical, and their diameters are usually between 2 and 20 nm.
Because of their unique optical properties (broad excitation and
narrow emission spectra), they emit brighter and particularly
stable fluorescence (Michalet et al., 2005). A previous study
presented an immunomagnetic assay based on functionalized
magnetic beads and detachable QDs for the separation and
quantication of soluble CD40 Ligand (CD40 Ligand, also known
as tumor necrosis factor associated activation protein, is related
to atherosclerosis) from solution (Park et al., 2013). Recently, a
study firstly reported that 0D titanium carbide MXene QDs could
be incorporated into a chitosan-based hydrogel to create a 3D
platform with enhanced physicochemical properties for stem cell
delivery and tissue repair (Rafieerad et al., 2019). Furthermore,
another study demonstrated that selenium QDs can prevent
endothelial dysfunction and reduced the size of atherosclerotic
plaque in aortic arteries (Zhu et al., 2019).

SNPs
SNPs are ultrafine with a size range from 1 to 100 nm. Therefore,
they have many unique optical properties in ultraviolet light,
which can enhance the aging resistance, strength, and chemical
resistance of other materials (Tang et al., 2012). SNPs can be
divided into two categories: solid SNPs and mesoporous SNPs,
both of which have the potential uses in stem cell therapy,
including stem cell differentiation, imaging, and tracking (Tang
and Cheng, 2013; Patel and Lee, 2015). Additionally, they
have unique biological adaptability and show morphological
adjustability plasticity (Slowing et al., 2008).

Metal NPs
Among various metal NPs, the most commonly used metal-
based NPs consist of silver, gold, copper, iron, and zinc (Iravani
et al., 2014; Kandi and Kandi, 2015). Nanomaterials, including
gold NPs (AuNPs), demonstrated excellent biocompatibility
(Hung et al., 2009b, 2012) and possessed unique optical and
surface plasmon resonance properties (Singh et al., 2018).
Numerous plants and microorganisms have the potential to
produce AuNPs (Alcor et al., 2009; Singh et al., 2016, 2017;
Sánchez-López et al., 2020). These biologically synthesized
AuNPs have become potential options for use as biosensors
and in immunoassays, targeting drug delivery, photoimaging,
photothermal therapy, and photodynamic therapy (Singh
et al., 2018). The functionalization of AuNPs may enable
cardiomyocyte to differentiation to hiPSC (Jung et al., 2012;
Patel et al., 2014). Additionally, AuNPs promoted the exosome
secretion from MSCs and inhibited autophagy flux in MSCs
(Arslan et al., 2013). Exosomes secreted by MSCs play an
important role in ischemic disease and the inflammatory
response. Promoting exosome secretion is of great significance
for the use of MSCs in the treatment of MI, lower limb ischemia,
cerebral infarction, and other diseases (Arslan et al., 2013;
Chen et al., 2015).

Solid Lipid NPs (SLN)
Solid lipid NPs, with a size range of 50–1000 nm, is composed
of a solid lipid core surrounded by a layer of surfactants in
aqueous dispersion, with multiple potential combinations of
lipids and surfactants (Chauhan et al., 2016). SLN made their
first appearance almost 25 years ago and are one of the newest
members of the lipid-based nanocarriers family (Gasco, 2007;
Satterlee and Huang, 2016). SLN among the most effective
carriers for hydrophilic and hydrophobic drugs owing to their
inclusion of cationic lipids, which provide a positive surface
potential that favors binding to nucleic acids; and SLNs can be
used for gene delivery, which provides a positive surface potential
that favors binding to the nucleic acids like DNA, siRNA, miRNA
(Naseri et al., 2015; Botto et al., 2017).

Other Types
Other types of NPs include micelles (Yohan and Chithrani, 2014),
lipid-calcium-phosphate nanoparticle (Satterlee and Huang,
2016), microalgae-nanoparticle (Déniel et al., 2019), protein-
based NPs (Tarhini et al., 2017), liposomes and polymeric NPs
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TABLE 1 | The advantage and disadvantages of different types of NPs.

NPs types Advantages Disadvantages Application in CVD

SPIONs Low toxicity, excellent biocompatibility,
and directional movement under the
external magnetic field

SPIONs without surface modification are unstable
and tend to polymerize in the liquid environment;
remain in the body and produce images that
misdirect the tracer and overestimate the stem
cells’ survival

Cell markers, guide, and monitor the
therapeutic effect of stem cells on acute
myocardial infarction

QDs Brighter and more stable fluorescence;
resistance to chemical and biological
degradation

The high toxicity of QDs when they are using in vivo
systems

Used for contrasting of blood and lymph
vessels; cell labeling; tumor diagnosis and
therapy

SNPs Optical properties against ultraviolet
light; unique biological adaptability and
morphological adjustability

15 nm diameter particles have been reported to
trigger more cytotoxicity than 100 nm diameter
particles in endothelial cells

Have the potential in stem cell therapy including
stem cell differentiation, imaging, and tracking

Metal NPs Excellent biocompatibility; unique
optical and SPR properties

Severe side effects due to its oxidation state AuNPs could potentialize the cardiomyocyte
differentiation of human pluripotent stem cells
and promote exosome secretion of MSCs and
inhibit autophagy flow of MSCs

AuNPs, gold nanoparticles; CVD, cardiovascular disease; MSCs, mesenchymal stem cells; NPs, nanoparticles; QDs, Quantum dots; SPIONs, superparamagnetic iron
oxide nanoparticles; SNPs, silica nanoparticles; SPR, surface plasmon resonance.

(Tapeinos et al., 2017). The advantages and disadvantages of
different types of NPs are shown in Table 1.

STEM-BASED THERAPY WITH NPs IN
CVD

NPs’ Application in Cardiac
Regeneration
NPs Deliver Genes to Stem Cells
Previous studies have shown that genetic engineering can be
used to facilitate stem cell therapy for heart disease (Hodgkinson
et al., 2010; Marbán and Malliaras, 2012) by introducing
therapeutic genes (proangiogenic and antiapoptotic genes) into
engineered stem cells through gene vectors to prolong their
survival and enhance their paracrine secretion (Deuse et al.,
2009; Tang et al., 2009). Due to the immune responses and
low gene volume, traditional vectors have limited applications.
NP-based genes with unique biocompatibility may have higher
gene delivery efficacy when transferred to stem cells, increasing
cell survival and differentiation in the ischemic myocardium.
Several types of nanostructured gene vectors exist. Liposomes
can prevent genes from being degraded or binding non-
specifically (Pack et al., 2005; Zhang et al., 2008); polymers
can increase the efficiency, reduce the cytotoxicity and improve
targeting specificity (Cui et al., 2015); inorganic NPs have simple
fabrication requirements, inducing low cytotoxicity (Kim and
Hyeon, 2014) and can be used with blended vectors. The
mechanisms of their internalization are known as endocytic
pathways, including clathrin-mediated endocytosis, caveolae-
mediated endocytosis, and micropinocytosis and phagocytosis
(Xiang et al., 2012; Calin et al., 2013). A study used chitosan-
alginate NPs to deliver placental growth factors in a targeted
manner, which could achieve the goal of continuously releasing
placental growth factors and improving cardiac function at
the site of acute MI (Binsalamah et al., 2011). Another study
transfected MSCs with molecularly organic-inorganic hybrid

hollow mesoporous organosilica NPs with surface conjugated
polyethyleneimine loaded with the hepatocyte growth factor
gene and found that the paracrine activity of the hepatocyte
growth factor-transfected MSCs was enhanced, which reduced
the myocardial cell apoptosis and promoted angiogenesis in the
rat model of MI (Zhu et al., 2016). Several studies have shown the
application of different types of NPs in gene delivery (Table 2).

NPs Track the Stem Cells in vivo
As mentioned above, the fate, behavior, and survival of stem
cells after transplantation in vivo remain unclear. Therefore,
an efficient tool to monitor and track stem cells for long-term
monitoring is necessary. SPIONs mark stem cells in three
main ways: by attaching NPs to the cell surface through the
internalization of NPs by the cells by through endocytosis,
by receptor-mediated endocytosis, and by transfecting

TABLE 2 | NPs applications for gene delivery.

NPs Stem cells Gene Model Model

Chitosan-alginate NPs
(Binsalamah, 2011)

– PlGF MI Rat

Hpamam (Zhu et al., 2011) SkMs hVEGF-165 MI Rat

Polyethyleneimine (Ye et al.,
2011)

SkMs pHRE- VEGF MI Rabbit

Bac-NP (Paul et al., 2012) hADSCs Ang-1 MI Rat

PMSNs (Wenbin et al., 2015) MSCs CCR2-siRNA MI –

HMONs-PEI (Zhu et al., 2016) BMMSCs pHGF MI Rat

Bac-NP, recombinant baculovirus complexed with a cell-penetrating transactivating
transcriptional activator peptide/deoxyribonucleic acid nanoparticle; BMMSCs,
bone marrow-derived mesenchymal stem cells; CCR2, C-C chemokine receptor
2; hADSCs, human adipose tissue-derived stem cells; HGF, hepatocyte growth
factor; HMONs-PEI, molecularly organic-inorganic hybrid hollow mesoporous
organosilica nanoparticles with surface conjugated polyethyleneimine; hPAMAM,
hyperbranched polyamidoamine; Hvegf-165, human vascular endothelial growth
factor-165; MI, myocardial infarction; MSCs, mesenchymal stem cells; NPs,
nanoparticles; pHRE-VEGF, hypoxia-regulated vascular endothelial growth factor;
PlGF, Placental growth factor; PMSNs, photoluminescent mesoporous silicon
nanoparticles; SkMs, skeletal myoblasts.
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TABLE 3 | NPs applications for stem cell tracking during cardiac repair.

NPs Stem cells Imaging modality Model

SNPs (Fang Chen, 2020) hMSCs Ultrasound imaging In vitro

Au@BSA@PLL (Ning et al., 2019) hMSCs CT Rat

USPIO (Mathiasen et al., 2019) MSCs MRI IHD patients

PANPs (Qin et al., 2018) hESC-CMs Photoacoustic imaging Rat

Iron oxide NP (Skelton et al., 2016) hESC-CPCs MRI Pig

PFCE-NPs (Constantinides et al., 2019) CPCs MRI Rat

SiO2-NPs (Gallina et al., 2015) hMSCs Immunofluorescence analysis of tissue slices Rat

Au@BSA@PLL, gold nanoparticles (AuNPs) were synthesized on bovine serum albumin (BSA) via an in situ growth method and modified with a poly-L-lysine (PLL)
layer; CPCs, cardiac progenitor cells; CT, computer tomography; hESC-CM, embryonic stem cell-derived cardiomyocytes; hMSC, human mesenchymal stem cells; IHD,
ischemic heart disease; MRI, magnetic resonance imaging; NPs, nanoparticles; PANPs, photoacoustic nanoparticles; PFCE-NP, perfluorocarbon nanoparticles; SNPs,
silica nanoparticles.

agent-mediated endocytosis (Frank et al., 2002). For in vivo
experiments, the first approach has significant limitations, as the
reticuloendothelial system recognizes and clears SPION-labeled
cells (Suzuki et al., 2007; Nucci et al., 2015). However, through the
internalization pathway, SPIONs can persist in the cytoplasm of
stem cells where they have excellent biocompatibility. Currently,
methods to enhance SPIONs transfer across membranes include
increasing the electromagnetic fields to target SPIONs toward
irradiated sites, ligand modifications on the surface of SPIONs
to bind a receptor on the targeted cell membrane, ensuring
specific SPIONs binding to the target cell, and promoting
mononuclear-phagocytic cell phagocytosis of SPIONs, thus
promoting passive transport (Lewin et al., 2000; Frank et al.,
2002; Kraitchman et al., 2011). QDs have the potential for use in
long-term monitoring in living cells, compared with traditional
fluorescent probes (Ricles et al., 2011; Liu et al., 2019). Several
studies have reported the feasibility of labeling stem cells through
different modifications such as bioconjugated (Shah and Mao,
2011), electroporation (Sun et al., 2014), peptide delivery (Chang
et al., 2008) and encapsulation and delivery by phospholipid
micelles (Dubertret et al., 2002), all of which maintain the
stability and safety of the label (Wang et al., 2015b). Silica dioxide
NPs are applied as ultrasound contrast agents. They are usually
combined with fluorescein, helium ions, or radionuclides to
improve the imaging of the stem cells, thereby enabling stem
cell tracking (Accomasso et al., 2012). Exosome-like silica, which
has a unique morphology, provides a double-reflection interface
that confers labeled stem cells with higher echogenicity and
ultrasound sensitivity (Chen et al., 2017). In recent studies,
different types of NPs have been applied in stem cell tracking for
cardiac repair in vivo and in vitro (Table 3).

NPs Enhance Stem Cell Retention After
Transplantation
Different routes of stem cell administration include intracoronary
(Vulliet et al., 2004; Liu et al., 2016; Vilahur et al., 2017),
transendocadial method (Amado et al., 2005), systemic method
(Barbash et al., 2003), and intravenous method (Kulandavelu
et al., 2016). Extremely low cell retention after transplantation
is the most critical barrier to the application of stem cell
therapy for cardiac repair. As much as 1.5% of transplanted stem
cells accumulated in the myocardium after only 2 h (Al Kindi

et al., 2008). NPs may be a potential approach to address this
problem. It has been demonstrated that NPs can enhance stem
cell retention by providing a cardiac-specific extracellular matrix
(ECM) environment (include impacts some signal pathway),
affecting the focal adhesion complex of myocardial MSCs (Bejleri
et al., 2018), promoting the interactions with cardiomyocytes and
affecting lysosomal function in ischemic environments (Popara
et al., 2018). Magnetic NPs seem to resolve this accumulation
to some extent. This ameliorating effect may be associated with
the magnetic field, and the retention of SPION-labeled stem cells
may be significantly enhanced. The SPIONs can be applied not
only for tracking stem cells but also for studying other aspects
in a magnetic field. The advantage of magneto-electroporation in
the delivery of cardiac stem cells is that it reduces the incubation
time needed for NPs to label the cells markers (Calin et al., 2013).
A study found that using SPION-labeled MSCs in the presence of
a magnetic field might enhance cell homing of MSCs at the site
of injury and contribute to the improvement of cardiac function
and attenuation of injury after heart failure (Naseroleslami et al.,
2018). The recruitment and leaching of Ly6Chigh mononuclear
cells in the ischemic heart were associated with the signal
transduction of the chemokine ligand 2/chemokine receptor
2 (CCR2), which was required to control pro-inflammatory
monocytes and enhance the inflammatory microenvironment
that adversely affects MSCs transplantation. A study applied
photoluminescent porous SNPs and MSCs loaded with silencing
CCR2 for the treatment of ischemic myocardial injury (Lu
et al., 2015). The silencing CCR2 moiety targeted the expression
of CCR2 in Ly6Chigh inflammatory monocytes, reducing the
accumulation of these cells during infarction, thereby enhancing
the efficacy of MSC transplantation and myocardial remodeling.
Figure 1 shows the mechanisms of NPs combined with stem cells
and applied for cardiac regeneration.

NPs’ Application in Peripheral Vascular
Regeneration
NPs Facilitate the Proangiogenic Effect of Stem Cells
The advantages of cell-based therapy with NPs have been proven
in many practices. For example, MSCs have been demonstrated
to augment collateral perfusion through paracrine mechanisms
(Kinnaird et al., 2004). Compared with the use of proangiogenic
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FIGURE 1 | The mechanisms of NPs combined with stem cells and applied for cardiac regeneration. This figure sets an example of NPs used in myocardial
infarctions. NPs, nanoparticles.

TABLE 4 | NPs applications for promoting stem cells to secrete factors related to angiogenesis.

NPs Stem cells Relative factors Model

Magnetic NPs (Ishii et al., 2011) hMSCs VEGF Nude mouse

AuNPs (Chen et al., 2018) MSCs CD31, α-SMA In vitro

Cerium oxide NPs (Das et al., 2012) HUVECs VEGF, HIF-1α In vitro

ZnO NPs (Augustine et al., 2014; Ahtzaz et al., 2017) HUVECs VEGF, FGF2 In vitro

α-SMA, alpha-smooth muscle actin; AuNPs, gold nanoparticles; FGF2, fibroblast growth factor 2; hMSCs, human mesenchymal stem cells; HIF-1α, hypoxia-induced
factor 1 alpha; HUVEC, human umbilical vein endothelial cells; NPs, nanoparticles; MSCs, human mesenchymal stem cells; VEGF, vascular endothelial growth factor; ZnO
NPs, zinc oxide nanoparticles.

factors alone, the efficiency of induced angiogenesis was more
stable and lasted longer with a combination of stem cells and
NPs. Recently, a study proposed that tethering the adipose-
derived stem cells (ADSCs) surface with NPs releasing tumor
necrosis factor α, also named nanostimulators, stimulated
cellular secretory activity in situ, and the results showed that
ADSCs with tethered nanostimulators promoted vascularization
in a 3D microvascular chip and enhanced the recovery of
cell perfusion, animal walking and muscle mass in murine
ischemic hind limbs compared to the effect of untreated
ADSCs (Leong et al., 2020). Another study has proven that
human MSCs incubated with magnetic NP-containing liposomes
showed increased expression of vascular endothelial growth
factor (VEGF) and a reduced apoptosis rate in unilateral
hind limb ischemic animal models compared to these effects
in the control group (Ishii et al., 2011). Similarly, a study
showed that chitosan oligosaccharide/heparin NPs had a high
cytokine-loading capacity and allowed cytokines to maintain
stable bioactivity longer in an environment at physiological
pH in vitro (Wang et al., 2015a). In recent years, metal
nanomaterials have offered the potential to improve the efficiency
of vascular regeneration. A study in 2004 firstly proved that
AuNPs have angiogenesis properties. The plausible mechanism
could be that controlled reactive oxygen species generation
and consequently reduced redox signaling (Nethi et al., 2014).
A similar mechanism was proven in the treatment of hepatic

ischemia-reperfusion using ceria NPs (Ni et al., 2019). Later,
another study indicated that VEGF on fibronectin-incorporated
AuNPs promoted MSCs migration through the endothelial oxide
synthase/metalloproteinase signaling pathway, which promoted
MSC proliferation and increased the biocompatibility of the
particle (Chen et al., 2018). Table 4 shows NPs applications in
promoting stem cells to secrete factors related to angiogenesis.

NPs Mimic the ECM Environment
Extracellular matrix is a complex environment that plays a
role in maintaining cell and tissue structure and function
(Rosso et al., 2004), and its components and three-dimensional
ultrastructure transmit specific signals to cells (Sorokin, 2010).
Nanomaterials used for tissue engineering have been proposed to
mimic ECM. A previous experiment described the development
of hyaluronan oligomers-loaded poly NPs used for the targeted,
controlled, and sustained delivery of hyaluronan oligomers for
the elastogenic induction of aneurysms in aortic smooth muscle
cells in rat models (Sylvester et al., 2013). The ECM is a polymer-
based microenvironment that serves as a pool for signaling
molecules (Afratis et al., 2012; Mecham, 2012). EPCs are ideal
for use in inducing primary endothelial cells for vascular tissue
engineering (Hung et al., 2009a). EPCs migration and homing
to ischemic tissues are mediated by cell adhesion molecules and
chemokines (Landmesser et al., 2004). Stromal-derived factor
1α (SDF-1α) and its receptor C-X-C motif chemokine receptor
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FIGURE 2 | The mechanisms of NPs combined with stem cells and applied for vascular regeneration. This figure sets an example of NPs used in artery
atherosclerosis. ECM, extracellular matrix; NPs, nanoparticles; VEGF, vascular endothelial growth factor.

(CXCR4) are essential molecules that direct cell migration.
A study has demonstrated that collagen combined with AuNPs
nanocomposites may accelerate the proliferation and migration
of MSCs and stimulate endothelial cell differentiation to facilitate
vascular regeneration (Hung et al., 2014a). Another study showed
that EPC-seeded mixtures of polyurethane (PU, which might be
produced to individual match the microenvironment of vascular
tissue precisely) and Au-NPs differentiate into endothelial cells
in vitro, and the enhanced maturation of the EPCs with the
nanocomposites of PU-Au-NPs was more remarkable, probably
because of the SDF-1α/CXCR4 signaling pathway in vitro.
Furthermore, other experiments showed that EPCs seeded
on PU-Au-coated catheters effectively reduced thrombosis by
differentiating into endothelial cells in vivo (Hung et al., 2014b).
However, no clinical trials have explored whether this kind of
therapy would have a favorable effect on PVD patients.

NPs Act as a Non-viral Gene Delivery Tool
Adipose-derived stromal cell populations contain MSCs (Zuk
et al., 2001), which shows the potential to release VEGF, and
upregulating VEGF has been proved to enhance therapeutic
angiogenesis (Rehman et al., 2004; Cao et al., 2005). Currently,
most gene therapies for PVD are based on the use of viral vectors,
which always raises safety concerns (Hacein-Bey-Abina et al.,
2008; Keeney et al., 2013). In recent years, some studies have
begun to focus on nanomaterials, which can act as non-viral gene
delivery tools and enhance the transfection efficiency at the time
(Green et al., 2008; Yang et al., 2009). One study demonstrated the
use of NPs to transfect stem cells in vitro and suggested methods
for validating the efficacy of using VEGF-expressing stem cells
to promote angiogenesis in a murine ischemic hind limb model
(Keeney et al., 2013). Another study indicated that CXCR4
is expressed on progenitor and inflammatory cells, facilitating
cell migration toward ischemic tissues where they participate
in revascularization and tissue repair. The result of this study
showed that NP-induced CXCR4 overexpression may promote

favorable phenotypic changes in and the therapeutic efficacy of
stem cells in response to an ischemic environment in a murine
model of peripheral arterial disease (Deveza et al., 2016). In
addition, nanocapsules constitute a universal and highly efficient
biomimetic platform for the transfer of genetic material. A recent
study showed that calcium carbonate NPs, upon entering the
MSCs, will modulate the local intracellular pH, leading to a delay
in the degradation of the layers, and hampering the release of
functional RNA molecules, which led to a decrease in delivery
efficiency and indicated their higher stability (Tarakanchikova
et al., 2020). Figure 2 shows the mechanisms of NPs combined
with stem cells and applied for vascular regeneration.

THE LIMITATIONS AND FUTURE
DIRECTION OF NPs FOR CVD THERAPY

The main problem with NPs is their toxicity, including cellular
toxicity and tissue toxicity. As the size of NPs decreases, the
surface area increases, leading to a dose-dependent increase in
the oxidation and DNA destruction capacity of the nanomaterials
(Risom et al., 2005). NPs with a high aspect ratio have
the greatest toxicity (Hsiao and Huang, 2011). Also, higher
cationic charges cause severe toxicity because of hemolysis and
platelet aggregation (Gatoo et al., 2014). Approaches such as
arginine-glycine-aspartic acid peptide conjugation have been
attempted. High-performance arginine-glycine-aspartic acid-
conjugated dendrimer-modified gold nanorods exhibited great
potential in applications, such as tumor targeting, imaging, and
selective photothermal therapy (Li et al., 2010). In the future,
these nanoprobes may be applied for use in CVD therapy.

Limited knowledge regarding the fate of these NPs and
the extent of their accumulation in internal organs creates
another bottleneck in the efforts for determining the potential
side effect of their accumulation in the body. For example,
when stem cells die, SPIONs remain in the body and produce
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images that misdirect the tracer and overestimate the extent of
stem cell survival. QDs may impact the behavior of stem cells,
leading to unexpected results. For example, stem cells labeled
with QDs exhibited alterations and abnormality (Hsieh et al.,
2006). Controlled and smart liberation of nanomaterials or their
functional moieties and subsequent activation of the angiogenic
signaling cascade in a spatiotemporal manner is exceptionally
critical for positive therapeutic angiogenic outcomes.

Despite the various developments in tissue engineering, the
challenges to developing fully functional vascularized tissue that
recapitulates the complexities of the native tissue remain. The
mechanisms of angiogenesis, the role of the scaffold architecture,
and the interaction of potential biological and inorganic cues
with the developing vasculature are among the key parameters
to be considered as research progresses to a higher level. Efforts
should be taken to enhance capillary network infiltration without
compromising the physical and mechanical characteristics of
the scaffolds (Patel and Lee, 2015). Besides, the potential
accumulation of NPs in the liver and kidneys and whether
such accumulation increases organ damage must be ascertained.
In future studies, the mechanisms of stem cell-based cardiac
and vascular regeneration need to be more comprehensively
understood. Further studies are also needed for in-depth
exploration of the possible effects of NPs parameters such as
size, charge, morphology, surface characteristics (Carlander et al.,
2018), as well as their absorption, distribution, and metabolic
mechanisms in vivo (Carlander et al., 2016).

Compared with traditional treatments, NPs have shown
potential superiority for use in therapy. Their particular
chemical and physical advantages influence stem cell activity,
such as through their use as non-viral gene delivery tools.
As gene therapy for CVD has become increasingly popular,
NPs applications are promising. In tumor therapy, smart
micro/nanoparticles (MNPs) can react in a predictable and

specific manner to external/internal stimuli. These MNPs
including pH-sensitive peptides and polymers, redox-responsive
micelles and nanogels, Thermo- and magnetic-responsive
NPs, mechanical- and electrical-responsive MNPs, light- and
ultrasound-sensitive particles. Multiresponsive MNPs include
dual stimuli-sensitive nanosheets of graphene (Karimi et al.,
2016), which have been rarely applied in stem cell-based
CVD therapy.

CONCLUSION

NPs might have significant potential uses in human treatments
in the future, thereby meeting the changing needs of individual
patients worldwide.
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