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Simple Summary: Personalized medicine has significantly changed the clinical outcome of oncogene-
driven non-small cell lung cancer (NSCLC) due to the efficacy of molecular targeted therapies. Despite
the advances in the management of this group of patients, the need for powerful biomarkers with
the potential for a real-time assessment of the tumor genomic profile as well as for detecting and
monitoring minimal residual disease (MRD) remains unmet. The aim of this article is to present the
current knowledge and the future perspectives regarding the prognostic value of ctDNA in NSCLC,
focusing on the most common druggable driver mutations, including those in epidermal growth
factor receptor (EGFR), anaplastic lymphoma kinase (ALK), c-ros oncogene 1 (ROS1), rearranged
during transfection (RET), kirsten rat sarcoma virus (KRAS), B-Raf proto-oncogene (BRAF), and
mesenchymal epithelial transition factor receptor (MET) genes.

Abstract: As we enter an unprecedented era of personalized medicine, molecular targeted therapies
have the potential to induce improved survival outcome in patients with non-small cell lung cancer
(NSCLC). However, a significant percentage of oncogene-driven NSCLC patients will relapse even
after definitive treatment, whereas chronic and durable response to targeted therapies is a less
common event in advanced-stage lung cancer. This phenomenon could be attributed to minimal
residual disease (MRD), defined as a population of disseminated tumor cells that survive during the
course or after treatment, eventually leading to recurrence and limiting patient survival. Circulating
tumor DNA (ctDNA) is a powerful biomarker for MRD detection and monitoring and is a non-
invasive approach of treating cancer, and especially NSCLC, based on a real-time assessment of the
tumor genomic landscape. In this review, we present the key findings of studies that have used ctDNA
with regard to its prognostic value and in respect to the most common druggable driver mutations
of genes in NSCLC, such as epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase
(ALK), c-ros oncogene 1 (ROS1), rearranged during transfection (RET), Kirsten rat sarcoma virus
(KRAS), B-Raf proto-oncogene (BRAF), and mesenchymal epithelial transition factor receptor (MET).

Keywords: ctDNA; liquid biopsy; minimal residual disease (MRD); NSCLC; driver mutations

1. Monitoring of Minimal Residual Disease Using ctDNA

Precision medicine is rapidly evolving as an integral part of modern oncology, steer-
ing the field towards tailoring of therapeutic strategies based on the unique molecular
features, tumor microenvironment, individual gene variability, environmental factors, and
lifestyle [1]. In addition, so far, insurmountable obstacles in cancer research, such as drug
resistance, genomic heterogeneity of tumors, and inadequate means for monitoring of
tumor recurrence and treatment response, are expected to be surpassed by advances in
precision medicine, finally improving the survival outcome of cancer patients [2].
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During the last decade, precision medicine has started to transform the treatment
landscape of lung cancer, which remains the leading cause of cancer-related deaths in both
men and women worldwide, with an estimated 1.8 million deaths in 2020 [3]. The vast ma-
jority of patients with lung cancer fall under the broad histologic category of non-small cell
lung cancer (NSCLC), which constitutes 85% of all cases. Adenocarcinomas and squamous
cell carcinomas are the two most common histological subtypes of NSCLC [4]. Beyond
histology, better understanding of the molecular background across all lung cancer types,
along with the emerging importance of genetic testing, largely owing to the identification
of targetable molecular abnormalities, have revolutionized the way we treat patients with
NSCLC [5].

Surgery remains the cornerstone of early-stage NSCLC treatment, while adjuvant or
neoadjuvant therapies are used in order to reduce recurrence rate [6,7]. Unfortunately,
30–50% of NSCLC patients will relapse even after undergoing a R0 tumor resection [8].
These high relapse rates suggest that a considerable fraction of these patients with theo-
retically successful initial treatment, most likely, suffer from micrometastatic disease at
the time of surgery, which is clinically undetected and persists even after resection and
adjuvant therapy, eventually acting as a latent source of local or distant recurrence [9].

In this setting, the concept of minimal residual disease (MRD) has been suggested to de-
scribe the small number of remaining cancer cells during the course or after the completion
of treatment. These early disseminated cells, under the influence of specific signals originat-
ing either from the secondary organ’s microenvironment or from pre-encoded dormancy
signatures initiated in the primary site by hypoxia, enter a dormant state that corresponds
to cell-cycle arrest [10,11]. Dormancy is a process that encompasses cancer cell quiescence,
angiogenic dormancy, where a balance between proliferating cells and those that perish
due to insufficient vascularization keeps the tumor mass constant, and immune-mediated
dormancy in which the tumor mass remains steady via persistent cytotoxic activity [12].
Residual disseminated tumor cells evade therapy until suddenly reawakened to initiate
proliferation into clinically detectable macrometastases [13]. Verifying the presence of MRD
acts as a predictive indicator for disease recurrence and overall survival in a similar manner
to lymph-node metastasis, which serves as a marker of systemic disease [14].

However, the main challenge lies in MRD detection and monitoring, especially in
solid tumor patients due to the technically difficult isolation of circulating tumor cells
(CTCs) or factors that cancer cells extrude into the bloodstream, such as circulating tumor
DNA (ctDNA). In particular, apoptotic and necrotic tumor cells release their fragmented
DNA into the bloodstream, creating a new pool of genetic material, which can be used for
further disease exploration in clinical settings [15]. The foremost advantage of ctDNA is
that it reflects more accurately cancer spatial and temporal heterogeneity and, thus, allows
tracking of the metastatic burden [16]. Furthermore, ctDNA profiling allows us to monitor
the subclonal origin of cancer metastasis [17,18] and has emerged as a promising blood-
based biomarker with the dynamics to advance the current understanding of metastasis [19].
Based on the growing volume of data, both the US Food and Drug Administration (FDA)
and European Medicines Agency (EMA) approved in 2016 the first ctDNA-based “liquid
biopsy” for the identification and quantification of somatic epidermal growth factor receptor
(EGFR) mutations that allows us to pinpoint patients with NSCLC who will benefit from
targeted therapy, specifically in cases where we are not able to obtain a tissue biopsy [20,21].

The unavailability of tissue samples for molecular profiling is a common problem in
daily clinical practice. Tumor sampling in its entirety is invasive and challenging, while
repeated tissue biopsies of suspicious primary or metastatic lesions may be difficult to be
scheduled on time and lead to potential procedure-related complications [22]. In parallel,
tumor dynamics or sensitivity to treatment, which reflect plasticity and heterogeneity of
cancer, are not properly detected using conventional approaches. In addition, regarding
follow-up of NSCLC patients, the most crucial disadvantage of radiological assessment
is that imaging is not able to detect minimal residual disease, but only space-occupying
lesions. Furthermore, imaging modalities harbor a relatively small but existing risk of
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radiation over-exposure [23]. On the other hand, diagnosing and screening through non-
invasive methods represents an important paradigm shift in precision medicine. With the
development of sensitive techniques that can detect genetic or epigenetic alterations, we
can determine the heterogeneous tumor landscape and even capture its dynamics over
time, using a simple blood sample. In this context, liquid biopsy approaches enable MRD
monitoring, thereby contributing towards the identification of those who face a high risk of
disease relapse following initial therapy [24].

In this review study, we focus on the available data regarding the prognostic value of
ctDNA in patients with NSCLC who carry druggable genetic driver mutations in significant
genes, such as epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK),
c-ros oncogene 1 (ROS1), rearranged during transfection (RET), Kirsten rat sarcoma virus
(KRAS), B-Raf proto-oncogene (BRAF), and mesenchymal–epithelial transition (MET). Due
to the immense literature on the predictive value of ctDNA in NSCLC, the scope of our
study was limited to the prognostic significance of ctDNA analysis (Figure 1).
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with oncogenic-driven NSCLC.

2. Minimal Residual Disease, ctDNA, and Oncogene-Addicted NSCLC

NSCLC is a heterogeneous entity that encompasses several druggable mutations,
each of which needs distinct treatment management with particular clinical outcome [25].
Oncogene-addicted NSCLC is mainly characterized by a somatic mutation detected in a
specific oncogene that drives tumor proliferation and is predictive of drug activity [26].
In this setting, the latest guidelines recommend up-front testing for EGFR activating mu-
tations, ALK and ROS1 fusions, and activating exon 15 V600E BRAF point mutations [7].
Furthermore, other therapeutically targetable driver and resistance alterations include MET
amplifications and MET exon 14 skipping variants, as well as RET and NTRK rearrange-
ments. Numerous ongoing clinical trials are currently testing therapies that target HER2
activating mutations, although data are still accumulating [27]. Activating variations in
the KRAS gene should also be evaluated at NSCLC diagnosis since their presence excludes
other targetable driver mutations and are prognostic of poor survival [18,28]. In addition,
KRAS p.G12C has been documented as a sensitizing mutation associated with respon-
siveness to the oral RAS-GTPase inhibitor sotorasib, offering an additional therapeutic
option for the targeted treatment of NSCLC [29]. Similar to sotorasib, adagrasib is the
second selective KRAS G12C inhibitor to have been shown with clinical efficacy against
patients with previously treated KRAS G12C-mutated NSCLC, according to the results of
the KRYSTAL-1 multi-cohort phase II study (NCT03785249) [30].

Although the aforementioned genomic targets in NSCLC can be effectively identified
through sensitive and comprehensive sequencing of tumor specimens, they can also be
assessed using plasma samples and ctDNA. In fact, the concordance of driver mutation
detection between tissue and blood specimens in patients with NSCLC has been well estab-
lished in various publications [31]. For example, in a prospective study which compared
tissue with ctDNA genotyping in newly diagnosed stage IIIB–IV NSCLC, clinical sensitivity



Cancers 2022, 14, 4954 4 of 18

of ctDNA for the detection of actionable genomic alterations was greater than 98.2% with a
significantly shorter turnaround time [32].

Furthermore, ctDNA evaluation can also be used as a predictor of relapse risk in
NSCLC patients [22]. It is well known that the benefit of adjuvant chemotherapy in
early-stage NSCLC is modest, translating into an absolute 5-year survival advantage of
approximately 5% [33]. These data suggest that there is lack of biomarkers that can predict
innate tumor behavior and can identify high-risk patients. The possibility of better defining
the small proportion of patients most likely to derive survival benefit from adjuvant
therapy and sparing patients who do not need complementary treatments is, therefore,
particularly important. MRD is under assessment in several ongoing trials in which NSCLC
patients, treated with curative intent, are recruited, including the phase III MERMAID-1
and 2 trials. The aim is to identify and monitor residual disease after primary stage II–III
NSCLC surgical resection, improving outcomes in the adjuvant setting. Eventually, this
approach might turn the therapeutic focus exclusively towards MRD-positive patients
destined to recur; following genomic characterization, these patients would be the only
ones to receive targeted treatment against the isolated tumor subclone. Looking back, the
TRACERx study was one of the first, which investigated the ability of ctDNA to predict
postoperatively NSCLC relapse, by performing multiplex-PCR next generation sequencing
(NGS) of pre- and post-surgical ctDNA [17]. Specifically, Abbosh et al. analyzed resection
specimens to develop a patient-specific panel of single nucleotide variants present in the
primary lung tumor. Based on this mutational panel, they showed that persistent detection
of ctDNA after surgery predicted relapse in 93% of patients with an average time gap
of 70 days prior to radiologic diagnosis of cancer recurrence. Alternatively, Chaudhuri
et al. adopted a non-targeted deep sequencing approach that does not require detailed
information for each patient and demonstrated that in 94% of patients with localized
lung cancer, postoperative ctDNA detection was correlated with subsequent relapse [34].
Interestingly, ctDNA detection preceded radiological progression in 72% of patients, with
a median lead interval of 5.2 months. Furthermore, patients with detectable ctDNA on
a blood sample collected less than four months after surgery had a significantly worse
outcome, in terms of relapse-free survival and overall survival compared to the cases,
where ctDNA was deemed undetectable. The DYNAMIC study further substantiated the
notion of MRD monitoring, by prospectively exploring ctDNA perioperative alterations in
early-stage lung cancer patients [35]. The authors demonstrated that ctDNA quickly decays
after radical tumor resection, whereas detectable MRD three days or one month after R0
resection was linked to shorter disease-free survival, but not when measured within one
day. These results showed that timing of sampling matters when trying to establish a
potential baseline for post-excision lung cancer monitoring.

All the above-mentioned data clearly show that ctDNA analysis provides a multitude
of benefits for real-time monitoring of MRD in postsurgical patients. ctDNA overcomes
the constraints of tissue biopsies in capturing tumor heterogeneity by providing the whole
clonal spectrum [36]. Another advantage is that obtaining a plasma sample is a minimally
invasive process that only requires a blood withdrawal. A new shift in the era of precision
oncology relies on the capacity to treat lung cancer in respect to each patient’s targetable
genetic alterations, in a precise and timely manner. However, there have been several tech-
nical challenges in the detection rate and sensitivity of MRD detection since ctDNA levels
in early-stage cancers and postsurgical patients are low. Today, an array of sensitive ctDNA
detection systems in patients with actionable NSCLC driver gene mutations, such as the
Amplification Refractory Mutation System (ARMS), the digital PCR (dPCR)/digital droplet
PCR (ddPCR), or the Next-generation sequencing (NGS), have been used to overcome chal-
lenges such as insufficient DNA input amount and high costs [37]. These advantages have
facilitated the conduction of several studies that are looking at using ctDNA to demonstrate
the clinical utility of detecting MRD in driver-mutant NSCLC and treating recurrent disease
earlier, and in the following section, we present the most impactful ones.
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3. ctDNA in the Prognosis of EGFR-Mutant NSCLC

One of the main challenges in EGFR status assessment remains the availability as
well as the quality of obtained tissue sample. It has been reported that insufficient tumor
biopsy samples that yield inconclusive molecular results occur in 8–26% of patients [38].
To this significant problem, EGFR evaluation using ctDNA represents a clinically useful
alternative [39]. The diagnostic accuracy of ctDNA analysis in detecting EGFR mutations
in NSCLC patients’ plasma has been confirmed in several studies, where a high level of
concordance compared to traditional tissue genotyping has been observed [40].

Currently, the focus has shifted towards the most commonly described mutations
in EGFR (exon 19 deletions, p.L858R point mutation in exon 21). The frequency of these
somatic activating mutations in the EGFR gene is estimated to be ranging from around
50% in Asian patients with NSCLC to approximately 10% in Caucasian patients [41,42].
Guidelines advocate for molecular testing for EGFR mutations since progression-free
survival (PFS) is longer with use of EGFR tyrosine kinase inhibitor (TKI) monotherapy in
patients with common EGFR mutations compared to cytotoxic systemic treatment [43–45].
Additionally, identification of less commonly observed alterations in EGFR, such as exon
19 insertions, p.L861Q, p.G719X, and p.S768I, have been associated with responsiveness to
certain EGFR TKIs, such as osimertinib and afatinib, on a mutation-specific basis [46].

The prognostic value of ctDNA monitoring has raised the scientific interest focusing
on this subpopulation since early MRD detection is crucial for extending survival [47]. Nu-
merous studies have investigated the prognostic clinical significance of ctDNA in NSCLC
patients harboring EGFR mutations. The most significant findings of the relevant studies
are presented in Table 1. Interestingly, a recent pooled analysis showed that the location of
metastatic site influences the diagnostic accuracy of ctDNA-based EGFR-mutation testing
in NSCLC patients, showing higher sensitivity in patients with extrathoracic compared
to intrathoracic metastases and implying a better prognosis for the latter subgroup of
patients [48]. Another interesting observation is that detection of EGFR mutations in both
tissue and ctDNA in NSCLC patients has been associated with higher frequency of distant
metastases, as well as with significantly decreased disease-free survival (DFS). Obviously,
this finding reflects the impact of MRD, which has been associated with disease relapse [49].
In another interesting study, Liu et al. showed, in a subset of EGFR-positive NSCLC pa-
tients, that allele frequency heterogeneity (AFH) defined by ctDNA is associated with poor
prognosis and shorter overall survival [50]. It has also been documented that liver/bone
metastases or 3–5 sites of progression of patients with EGFR mutant NSCLC, during
the treatment with first line TKIs against EGFR, are associated with informative EGFR
ctDNA testing, noting a close correlation between number and location of advanced disease
with EGFR ctDNA. Additionally, detection of EGFR ctDNA mutations (with exception of
T790M) is proposed as a negative prognostic factor, potentially reflecting higher burden
of metastatic disease [51]. Furthermore, ctDNA copy number alterations have also been
assessed as an independent predictor for shorter progression-free and overall survival [52].
It is also well documented that L858R mutation has been correlated with a shorter median
OS (13.7 months) for mutation carriers versus wild-type patients (27.7 months) [53]. Other
researchers used a blocker displacement amplification-derived method as a tool for MRD
monitoring, to examine sequential blood samples from an EGFR-mutated NSCLC patient
who exhibited no evidence of radiologic recurrence [37]. This patient was then treated with
icotinib. Strikingly, ctDNA EGFR L861Q mutation was detected in a blood sample taken
six months after surgery and shortly after, the patient relapsed showing multiple bone
metastases in the magnetic resonance imaging scan. Cases like this clearly demonstrate the
possible benefits of ctDNA-assessed MRD in clinical decision making.
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Table 1. Studies and findings focusing on prognostic ctDNA-based analyses in patients with oncogene-driven NSCLC.

Study (Year) Inclusion Criteria n Sample Detection Method Follow-Up Prognostic Relevance

Guo et al., 2021 [49] Stage I–III EGFR-mutated
NSCLC 174 Blood Real-time PCR

ARMS 5 years

• 5-year survival rate ctDNA EGFR mut+ 18.5% vs. EGFR mut- 76.9%
• median OS ctDNA EGFR mut+ 29.00 ± 2.55 m vs. EGFR mut- not reached
• ctDNA EGFR mut+ independent prognostic risk factor for DFS, OS
• ctDNA EGFR mut+ patients shorter DFS of 19.00 ± 2.50 m
• Probability of developing distant metastasis ctDNA EGFR

mut+ 81.5% vs. EGFR mut- 25.2%

Liu et al., 2019 [50] Advanced EGFR-mutated
NSCLC under first-line TKIs 259 Blood Targeted NGS Jan 2012 to

December 2018
• EGFR-TKIs cohort: presence of allele frequency heterogeneity in ctDNA

significantly associated with shorter OS

Pender et al., 2020 [51] Advanced EGFR-mutated
NSCLC 177 Blood ddPCR February 2018 to

March 2019
• Median OS ctDNA EGFR mut+ patients 8.18 m vs. EGFR mut- 25.3 m
• EGFR mut and ≥6 sites of progression = higher risk of death

Yu et al., 2020 [54]
Metastatic EGFR-mutated

NSCLC treated with
osimertinib/ bevacizumab

49 Blood ddPCR August 2016 to
May 2018

• Persistent detection of EGFR mut ctDNA at six weeks associated with
shorter median PFS (16.2 m vs. 9.8 m) and median OS (10.1 m)

Buder et al., 2021 [55] Advanced EGFR-mutated lung
adenocarcinoma, PD under TKI 43 Blood ddPCR August 2015 and

January 2019
• Somatic copy-number alterations in ctDNA independent predictor for

shorter PFS and OS

Yu et al., 2021 [56]

Advanced treatment-naïve
EGFR-mutant lung

adenocarcinoma treated
with gefitinib

180 Blood ddPCR December 2014 to
June 2019

• PFS and OS of patients with ctDNA TP53-wt tumors significantly
longer vs. TP53-mut tumors (OS: 21.2 m vs. 32.0 m; PFS: 8.4 m vs. 12.81 m)

• Patients with ctDNA TP53 and EGFR exon 19 mut significantly longer PFS
and OS vs. TP53 and EGFR L858R mutations (26.8 m vs. 21.5 m)

Karachaliou et al.,
2015 [53]

Advanced EGFR mutated
NSCLC treated with erlotinib

or chemo
97 Blood T-PCR (TaqMan) assay 2007 to 2011 • Median OS in ctDNA L858R mut+ 13.7 m vs. exon 19 del 30.0 m

• ctDNA L858R mut marker of shorter OS and PFS

Xu et al., 2022 [37] NSCLC Stage IB (T2N0M0)
EGFR L861Q-mutated 1 Blood

Personalized Analysis of
Cancer (blocker

displacement amplification)

March 2020 to
March 2021

• ctDNA EGFR L861Q mutation detected in blood sample two months prior
to radiologically identified metastasis

Nygaard et al., 2013 [57]
NSCLC stage III orIV, no

previous chemo, PS ≤ 2 and
age > 18 years

246 Blood ARMS-qPCR 2007–2010
• Median OS ctDNA KRAS mut+ 4.8 m vs. KRAS wt 9.5 m
• Median PFS ctDNA KRAS mut+ 3.0 m vs. KRAS wt 5.6 m
• Independent prognostic value of KRAS in OS

Gautschi et al., 2007 [58] NSCLC 180 Blood RFLP–PCR April 2001 to
December 2004 • OS ctDNA KRAS mut+ significantly worse vs. KRAS wt

Camps et al., 2011 [59] NSCLC stage IIIB or IV prior to
cisplatin/docetaxel chemo 308 Blood Fluorogenic RT-PCR 9.68 months • PFS similar between KRAS wt and KRAS mut+ (5.77 m vs. 5.43 m)

• OS similar for both KRAS genotype groups (9.07 m vs. 10.03 m)

Ramirez et al., 2013 [60] NSCLC aftercurative surgery 50 Blood PCR October 1998 to
September 1999 • Significantly worse survival for serum KRAS mut+ patients

Li et al., 2020 [61] ALK-positive NSCLC 150 Blood Not Available Not Available
• ctDNA baseline 57 ng/mL vs. 30 ng/mL post-surgery
• ctDNA deviations within 7 months of surgery significant predictors

for RFS
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Table 1. Cont.

Study (Year) Inclusion Criteria n Sample Detection Method Follow-Up Prognostic Relevance

Zhang et al., 2020 [62] ALK-positive NSCLC, PD
under TKI 75 Blood NGS March 2016 to

March 2019
• Significant correlation between ctDNA burden and disease burden as

assessed by RECIST, volumetric segmentation analysis, quantitative
tallying of organ-specific metastasis

Christopoulos et al.,
2021 [63]

Consecutive TKI-treated
ALK-positive NSCLC 56 Blood NGS 2014 to 2019

• OS of ctDNA ALK mut+ patients with extracranial progression shorter
(mean 52 vs. 69 m)

• ctDNA detectability not associated with outcome of patients with
CNS-only progression

Kwon et al., 2020 [64] ALK-positive advanced
NSCLC 92 Blood NGS April 2015 to July 2019

• Un-detectable ctDNA at baseline associated with longer median PFS
(36.1 vs. 11.6 m) and OS (not reached vs. 27.9 m)

• ctDNA clearance at two months longer median PFS (25.4 vs. 13.9 m) and
OS (not reached vs. 25.7 m)

• Co-occurring ctDNA TP53 mut at baseline shorter PFS (7.0 vs. 12.5 m)

Yang et al., 2020 [65] Stage IIIB/IV ALK-positive
NSCLC, PD after crizotinib 182 Blood NGS September 2017 to

July 2019
• Higher ctDNA amount associated with liver/bone metastases, TP53 mut,

and tumor burden
• High ctDNA levels and TP53 mut at baseline associated with poor PFS

Madsen et al., 2020 [66] ALK-positive non-squamous
NSCLC 24 Blood ddPCR December 2015 to

November 2018
• Detectable ctDNA prior to treatment worse median PFS (8.7 vs. 15.2 m)
• ctDNA within two months after treatment predicted inferior median PFS

(4.6 vs. 14.5 m)

Dziadziuszko et al.,
2022 [67]

Advanced NTRK or
ROS1-fusion protein NSCLC 85 Blood NGS November 2015 to

May 2018
• Median duration of response to erlotinib significantly differed between

ctDNA ROS1 mut+ 5.6 vs. ROS1 mut- vs. 17.3 m

Mezquita et al., 2020 [68]
ALK- and ROS1-

fusion–positive advanced
NSCLC

128
(101 ALK+,
27 ROS+)

Blood NGS October 2015 to
August 2018

• Absence of ALK ctDNA mut at TKI failure associated with prolonged
median OS (44.1 vs. 105.7 m)

• ROS1 G2032R predictive of rapid PD (<3 months) under TKI

Ikeda et al., 2018 [69] Cancer Patients 102
(12 MET+) Blood NGS June 2014 to July 2016

• ctDNA MET alterations correlated with bone metastasis and
TP53/PTEN abnormalities

• MET mut+ shorter median time to metastasis/recurrence
(1.0 m vs. 10.4 m) and poorer survival (30.6 m vs. 58.4 m)

PCR: polymerase chain reaction, ddPCR: droplet digital polymerase chain reaction ARMS: Amplification Refractory Mutation System, PFS: progression free survival, RFS: recurrence
free survival, OS: overall survival, PD: progressive disease, PS: performance status, Chemo: chemotherapy.
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Another attempt highlighted the prognostic significance of TP53 mutations in ctDNA
in advanced EGFR-mutant lung adenocarcinoma patients treated with gefitinib in the
context of a phase 2 clinical trial [56]. Of note, NSCLC patients with TP53-mutant tu-
mors, especially in exons 6 and 7, were significantly associated with inferior PFS and
OS, compared to EGFR-positive patients with TP53-wild type tumors. Interestingly, the
synchronous presence of both TP53 and EGFR L858R mutations in ctDNA was equivalent
to worse survival. All in all, current knowledge reflects the future potential of decipher-
ing the association between blood-based EGFR detection and MRD dynamic monitoring,
which could further support the early detection of NSCLC recurrence and the targeted
individualized prognosis prediction.

4. ctDNA, KRAS, and NSCLC Prognosis

KRAS encodes a small GTPase which is part of the MAP/ERK signaling pathway. It
has been characterized as proto-oncogene playing an important role in the EGF signaling
cascade, by acting as downstream mediators after the binding of EGF to the EGFR [70].
According to epidemiological data, KRAS G12C tends to be identified in NSCLC patients
with prior smoking history [71]. Smoking has been associated with the transversion of the
first base (G to T), switching the wild-type glycine (GGT) to cysteine (TGT) [60]. KRAS
mutations are found in approximately 25% of patients with adenocarcinomas, representing
the most frequent genomic driver entity in NSCLC [72–74]. Based on the role of KRAS
in NSCLC, novel agents have been added to the therapeutic arsenal against NSCLC and
are currently used in clinical practice, such as the oral KRAS p.G12C inhibitors, small
molecule drugs that were specifically designed for this mutation [29]. Identifying a KRAS
mutation has additional value since its detection excludes the presence of EGFR, ROS1, ALK
and BRAF mutations, due to the low probability of overlapping driver mutations [75,76].
Importantly, in advanced NSCLC, KRAS mutations have been linked to worse prognosis
and shorter survival, compared to patients with wild type disease. Even in early-stage
disease, KRAS mutations have been associated with worse DFS after complete resection of
lung adenocarcinomas [77]. Therefore, KRAS lung tumor specific mutations are considered
established prognostic biomarkers [78,79].

In this perspective, the use of ctDNA offers an intriguing opportunity to gain molec-
ular information on lung cancer prognosis without the challenges of obtaining a tissue
biopsy. Although driver gene mutations revealed by ctDNA profiling are similar to those
of standard tissue-based genotyping, there have been some discrepancies reported, such as
lower KRAS frequency rates in plasma [80]. Interestingly, ctDNA measurements regarding
KRAS in perioperative patients are an emerging tool that can be used to predict the proba-
bility of disease recurrence even in KRAS-mutated malignancies [35,81]. Specifically in lung
cancer, investigators showed in a noteworthy pre-clinical work based on a KrasLSL-G12D

mouse model, that ctDNA levels are measurable in mice harboring pre-malignant lung
lesions detected by longitudinal micro-computed tomography (CT), suggesting ctDNA
is an early-stage biomarker [82]. In addition, a study by Nygaard et al. investigated the
prognostic value of plasma ctDNA in NSCLC patients with mutated KRAS, showing that
patients with advanced NSCLC and a detectable KRAS ctDNA had a significantly shorter
OS (4.8 months vs. 9.5 months) and PFS (3.0 months vs. 5.6 months) compared to the wild
type carriers, confirming the independent negative prognostic effect of baseline KRAS posi-
tive mutational status [57]. Furthermore, in a prospective study, dynamic changes of KRAS
mutant ctDNA were observed in association with treatment course in NSCLC patients,
whereas the poor prognosis of patients with high levels of ctDNA was also shown [17].
This inverse relation has been confirmed by numerous studies, suggesting that ctDNA
levels reflect aggressiveness as well as the potential metastatic dynamic [58].

On the other hand, there are some contradictory reports stating that there are no
significant survival differences between patients with or without KRAS mutations in ctDNA,
in respect to their PFS and OS [59]. However, the investigators focused solely on two KRAS
mutations at codon 12, whereas the above-mentioned study of Nygaard et al. included
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six KRAS mutations at codon 12 and one at codon 13, making direct comparisons difficult.
In addition, methylation patterns in the KRAS codon 12 have been examined in serum
ctDNA of NSCLC patients after curative surgery [60], with no correlation being observed
with survival. Interestingly, the same study revealed a high concordance between the
methylation patterns of the primary tumor and serum samples, indicating that methylation
assessment in peripheral blood can be a useful tool for tailoring NSCLC management.
Therefore, it is well documented that comprehensive ctDNA detection in early-stage KRAS-
mutant NSCLC and repeated postsurgical MRD monitoring could be used for the follow-up,
improving the outcome of this subset of patients.

5. ALK Rearrangements as a Surrogate MRD Marker

ALK is a tyrosine kinase receptor, which is found rearranged in approximately 5%
of NSCLC patients, constituting a distinct molecular and therapeutic subgroup [83]. Test-
ing lung adenocarcinomas for ALK rearrangements has become standard practice since
remarkable responses in ALK rearrangement-positive NSCLC patients treated with oral
TKIs (i.e., alectinib, brigatinib, ceritinib, crizotinib, lorlatinib) have been documented [84].
Carriers of somatic ALK rearrangements do not respond adequately to EGFR TKIs despite
displaying similar clinical characteristics to patients with EGFR mutations, including never
exposure to smoke and adenocarcinoma histology [85]. According to clinical practice
guidelines, ALK gene rearrangements, which generally harbor a conserved breakpoint in
intron 19/exon 20 of ALK, can be detected using fluorescence in situ hybridization (FISH),
immunohistochemistry (IHC), numerous NGS technologies, and targeted PCR assays [7].

The clinical utility of ctDNA regarding recurrence in ALK-rearranged NSCLC has
been shown in numerous studies [86–94]. In patients with ALK-positive NSCLC, ctDNA
levels have been associated with disease burden being useful as surrogate marker of
MRD. In particular, it has been shown that short-term monitoring of ctDNA variations can
facilitate early risk detection and improve control of ALK-rearranged NSCLC. Recently, in
a study in which 150 NSCLC patients with ALK mutations were enrolled, ctDNA levels,
which declined post-surgery and exhibited deviations within 7 months after surgery, were
also associated with higher risk of relapse [61]. It has also been documented by analyzing
ctDNA and imaging studies in patients with ALK-positive NSCLC who experienced disease
progression while on ALK TKIs that there is a significant correlation between ctDNA yield
and disease burden on imaging [62]. The authors noted that allelic frequency (AF) of plasma
alterations is higher in cases with extrathoracic metastatic disease, especially in liver, bones,
and adrenal glands. These findings come as no surprise, since ctDNA deriving from
apoptotic or necrotic cancer cells primarily enters the blood stream through passive release
mechanisms, suggesting that patients with oligoprogression might have negative liquid
biopsies indicative of a more indolent course. The correlation of ctDNA with metastatic
sites as well as clinical outcome of patients with ALK-positive disease was assessed in a
recent study by Christopoulos et al. [63]. The authors showed that positive ctDNA liquid
rebiopsies in ALK-mutated NSCLC are indicative of a more aggressive disease, which is a
common observation in extracranial but rare in CNS-only progression.

In addition, ctDNA seems to be a promising marker to assess prognosis and longi-
tudinally monitor the dynamic changes of genomic alterations in ALK-positive NSCLC
treated with ALK TKIs. Characteristically, the absence of detectable ctDNA at baseline
was associated with longer PFS and OS [64]. Interestingly, ctDNA clearance during ALK-
targeted therapy was also considered a marker of better prognosis since tumors responding
to the treatment release less DNA in the blood. Finally, the co-occurrence of ctDNA TP53
mutations along with ALK fusions was deemed as an indicator of shorter PFS [64]. Sim-
ilarly, the presence of two or more ALK resistance mutations has been associated with
worse survival outcome, probably reflecting polyclonal and resistant tumors or compound
mutations [68]. Preliminary data from a phase II clinical trial (NCT03215693), in which
ensartinib was evaluated, showed that higher ctDNA amount was positively correlated
with tumor burden and poor PFS [65]. Finally, longitudinal monitoring of ctDNA revealed
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inferior PFS in ALK-positive NSCLC patients with detectable ctDNA before initiation of
treatment, but also showed that an increase in ctDNA levels was prognostic of progression,
preceding the radiologic determination of PD by 69 days [66].

6. ROS1 Rearrangements, Prognosis, and ctDNA

ROS1 rearrangements are reported in approximately 2% of NSCLC cases, resulting in
the constitutive activation of a chimeric fusion protein and the dysregulation of a tyrosine
kinase-mediated signaling pathway [95]. The protein encoded from ROS1 gene belongs
to the insulin receptor family and is functionally related to ALK; however, several studies
have clearly distinguished these molecules among each other. For example, ROS1 onco-
genic rearrangements are characterized by structural complexity since multiple breakpoints
throughout introns 31–35 may occur, in contrast to ALK fusions which mainly occur at a
highly conserved breakpoint found in intron 19 [96]. Furthermore, more than 15 distinct
fusion partners are known to interact with ROS1, among which the most common include
CD74 molecule (CD74), solute carrier family 34 member 2 (SLC34A2), and Golgi-associated
PDZ and coiled-coil motif containing (GOPC) [97]. ROS1 fusions are usually detected in
lung tumor samples using fluorescence in-situ hybridization or NGS [98]. The spectrum of
ROS1 fusions can also be captured through ctDNA genotyping, which has been proposed
as a promising approach to detect mutations that drive resistance to ROS1-directed thera-
pies. However, the inconsistency of fusion partners and potential breakpoints make assay
optimization technically challenging [86,99]. This could explain why the number of studies
utilizing ctDNA as a prognostic factor in ROS1-rearranged NSCLC is limited. In addition,
the FDA has approved crizotinib for the treatment of advanced ROS1-rearanged NSCLC
patients, based on the findings of a single-arm trial, in which the objective response rate
was 72% [100]. Subsequently, other tyrosine kinase inhibitors, such as ceritinib, entrectinib,
and lorlatinib, have demonstrated efficacy in the treatment of metastatic ROS1-rearranged
NSCLC [101–103].

Regarding the clinical value of ctDNA in NSCLC patients with ROS1 rearrangements,
a growing number of published studies has confirmed its significance. In particular, in
patients with advanced NSCLC that harbored CD74-, SLC34A2-, SDC4-, or EZR-ROS1
fusions, those with isolated central nervous system progression and positive ctDNA faced
higher risk of extra-CNS progression (32% vs. 7%) [104]. In addition, Dziadziuszko et al.
investigated the clinical validity of an FDA approved pan-tumor liquid biopsy assay using
ctDNA in identifying patients with fusion positive ROS1 NSCLC receiving entrectinib and
subsequently assessed the pre- and post-treatment genomic landscape of these patients [67].
Interestingly, the authors noted that the median duration of response was significantly
shorter in ctDNA ROS1-fusion positive patients (5.6 vs. 17.3 months). It has also been
documented that ctDNA profiling not only allows the detection of ALK/ROS1 fusions, but
also enables the identification of resistance mutations, such as ROS1 G2032R, in patients
treated with TKIs, whereas the absence of ctDNA mutations has been associated with
improved OS [68]. Therefore, current approaches enable us to detect and quantify ROS1
rearrangements and other somatic mutations in plasma ctDNA, including driver mutation-
mediated drug resistance, paving the way for its application in monitoring tumor dynamics
in a clinical setting.

7. ctDNA in BRAF-Mutant NSCLC

BRAF mutations, which are detected in 1–2% of patients with NSCLC, with the most
common resulting in the substitution of glutamate with valine at codon 600 (V600E),
have become a promising therapeutic target [75]. The inhibition of BRAF V600E and its
downstream effector MEK with oral inhibitors (dabrafenib and trametinib, respectively)
is the most effective strategy in terms of activity and efficacy in metastatic BRAF V600E
NSCLC [105]. If the combination is not tolerated, single-agent vemurafenib or dabrafenib
are also available treatment options [75,106]. However, acquired resistance is a phenomenon
commonly observed after the administration of targeted therapies; therefore, liquid biopsy
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approaches could be utilized for the assessment of these resistance mutations that emerge,
ensuring the avoidance of repeated biopsies in some cases.

In a prospective study, in which BRAF V600E mutant NSCLC patients were treated
with BRAF/MEK inhibitors, amplicon-based NGS analysis on ctDNA obtained at pro-
gression was performed [107]. Interestingly, the longitudinal evaluation of the molecular
alterations in BRAF was in line with the course of the disease, with ctDNA levels rising at
disease progression. Additionally, the detection of ctDNA mutations was highly dependent
on disease dissemination, with ctDNA being detectable in cases of systemic metastasis and
not in cases of intrathoracic or brain disease. For the latter cases, a case report noted that
NGS analysis of cerebrospinal fluid ctDNA in BRAF-mutant NSCLC patients with brain
metastasis, may potentially provide more accurate information about intracranial lesions
than blood serum ctDNA, due to the blood-brain barrier [108]. Furthermore, detection of
BRAF mutations that activate MAPK and PI3K signaling pathway effectors in ctDNA has
also been correlated with patient outcomes. Particularly, ctDNA BRAF alterations detected
during radiological disease progression were associated with poor overall survival [109].
In this context, monitoring of BRAF-mutant alleles could act as an identifier of residual
disease and an early indicator of progression, as it has been displayed in BRAF-mutant
melanoma [110].

8. Prognostic Significance of ctDNA in RET-Rearranged NSCLC

RET is also a known proto-oncogene that affects cell proliferation and differentiation.
In NSCLCs, rearrangements may occur between the RET gene and other genomic regions,
especially Kinesin Family Member 5B (KIF5B), Nuclear Receptor Coactivator 4 (NCOA4),
and Coiled-Coil Domain Containing 6 (CCDC6), which are the most common and the best
characterized upstream fusion partners [111]. Approximately 1–2% of NSCLC patients
harbor a fusion in the RET proto-oncogene. They are more frequent in patients with
adenocarcinoma histology who have none or minimal history of tobacco use. Unlike ALK
and ROS1 rearrangements that were previously discussed, RET fusion genes cannot be
adequately detected by IHC; instead NGS, FISH, and RT-PCR can be used as alternative
diagnostic tools [112].

Current guidelines recommend testing for RET rearrangements in eligible patients
with metastatic NSCLC, based on a clinical trial that led to the FDA approvals of selective
RET inhibitors selpercatinib and pralsetinib [113,114]. Towards this direction, plasma-based
ctDNA analysis may be particularly useful. Interestingly, using a comprehensive NGS assay
in 14,639 patients with metastatic NSCLC, ctDNA analysis revealed 125 RET alterations,
with KIF5B-RET fusions being highly specific for NSCLC [115]. Furthermore, a recent case
report described a patient with KIF5B-RET fusion-positive advanced NSCLC, in whom
ctDNA assessment identified a previously undetectable RET-KIF5B fusion during treatment
with an oral RET-inhibitor [116]. The re-emergence of the activating fusion prompted early
CT imaging and resulted in immediate detection of disease progression, highlighting the
benefit of serial liquid biopsies as a useful, minimally invasive method to detect relapse.

9. MRD, MET Amplifications, and MET Exon 14 Skipping Variants in NSCLC

Tumorigenesis usually involves the activation of the growth-promoting gene MET,
while the relevant protein is another targetable molecule with available targeted thera-
pies [117]. Interestingly, a somatic genomic alteration that results in loss of MET exon 14 oc-
curs in NSCLC, leading to promotion of tumor cell growth, survival, and invasion [118,119].
NGS-based testing is the primary method for detection of these events in contrast to
IHC, which is not a suitable method for the detection of METex14 skipping variants. For
NGS-based results, a copy number greater than ten is consistent with high-level MET
amplification, which is a driver event in lung cancer [120]. Notably, available targeted
agents with activity against high-level MET amplifications are currently available, namely
crizotinib [121], capmatinib [120], and tepotinib [122].
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Attention has been called to the detection of MET mutations in plasma ctDNA [123].
For example, in a comprehensive genomic profiling study of ctDNA from 1552 NSCLC
patients, METex14 skipping mutations were detected in 1.9% of cases. Among them, three
cases stood apart that harbored additional activating single-nucleotide variants of MET
(p. L1195V, p. D1228H, p. Y1230C) [124]. Regarding the clinical associations of detecting
MET ctDNA aberrations, they have been correlated with poor prognostic indicators, such
as bone metastases, co-existing somatic genomic alterations, and a worse OS and shorter
median time to recurrence or metastases in patients with diverse malignancies, among them
NSCLC [69]. It seems that the potentials of liquid biopsy and especially the assessment of
ctDNA for optimizing the risk assessment of disease recurrence and treatment response
has become apparent.

10. Conclusions

Precision medicine requires the accurate molecular profiling of patients with NSCLC in
order to secure the most appropriate therapeutic interventions. In mutation-driven NSCLC,
the use of liquid biopsies is highlighted as an emerging trend in the era of personalized
medicine. In this perspective, the potential of ctDNA is better displayed due to the recent
FDA approval of EGFR mutational assessment on plasma ctDNA in patients with advanced
NSCLC. Furthermore, the results of the phase II DYNAMIC trial that were recently an-
nounced in ASCO 2022, which was the first study to use ctDNA to direct adjuvant therapy
in colon cancer, highlighted the ability to implement a ctDNA-guided management [125].
Indeed, serial ctDNA analysis in biofluids is a minimally invasive approach for the de-
tection and tracking of cancer driver mutations, for monitoring therapeutic response to
personalized targeted therapies, and for identifying minimal residual disease, allowing
for a more precise assessment of disease recurrence risk and patient selection for adjuvant
therapy. These are all clinically relevant parameters that impact oncologic lung cancer
management in a real-world setting. Overall, the reviewed studies provide evidence that
monitoring the status of druggable genetic driver mutations in ctDNA can be used as
a promising prognostic biomarker associated with targeted NSCLC therapeutic options.
We also collectively highlight the importance of early identification of residual disease
that allows us to target and stratify patients according to their recurrence risk in a more
individualized manner.
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