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Abstract: TiO2 of controlled morphologies have been successfully prepared hydrothermally using
TiO2 aggregates of different sizes. Different techniques were used to characterize the prepared TiO2

powder such as XRD, XPS, FEGSEM, EDS, and HRTEM. It was illustrated that the prepared TiO2

powders are of high crystallinity with different morphologies such as nanobelt, nanourchin, and
nanotube depending on the synthesis conditions of temperature, time, and additives. The mechanism
behind the formation of prepared morphologies is proposed involving nanosheet intermediate
formation. Furthermore, it was found that the nanoparticle properties were governed by those of
TiO2 nanoparticles aggregate used as a precursor. For example, the size of prepared nanobelts was
proven to be influenced by the aggregates size used as a precursor for the synthesis.

Keywords: TiO2 nanoparticles; aggregates; morphologies

1. Introduction

Recently, tremendous efforts have been devoted to developing innovative strategies
to synthesize nanomaterials with the desired morphologies and properties. Particularly
the one-dimensional (1D) structure of TiO2 nanomaterials exhibits interesting properties
compared to other TiO2 nanoparticles: it has lower carrier recombination rate and higher
charge carrier mobility, thanks to the grain boundaries and junctions absence. In fact, the
electron diffusion takes place through the junctions between nanoparticles, inducing slower
charge transfer by several orders of magnitude [1]. In addition, it favors light scattering in
the photoanode, which increases the light harvesting [2]. Among the studied morphologies
and materials, semi conducting nanostructured materials such as nanowires, nanobelts,
and nanotube have received particular attention, due to their use as photoanaode for
potential applications in different areas such as photovoltaic [2], photo catalysis [3], gas
sensing [4], and water photo-splitting [5].

Tuning the size and the morphology of materials is becoming a challenging goal
in materials science. Over the past few years, various synthesis methods and protocols
have been developed to control the semi-conducting nanomaterials morphology, including
vapor–liquid–solid (VLS) [6], solution–liquid–solid (SLS) [7], template-based synthetic
approaches [8,9], arc discharge [10], laser ablation [11], chemical vapor deposition [12],
microwave [13,14], and sol–gel [15]. Among these synthesis methods, which mostly
brought contamination to the synthesis products, the hydrothermal technique has been
proven to be a simple and straightforward method using noncomplex apparatus, scalable
for large production, with high chemical purity, allowing a large rang of nanomaterial sizes
and morphologies [16,17]. Furthermore, the morphology of prepared TiO2 nanomaterials
by using hydrothermal method was demonstrated to depend on the concentration of
alkaline solution, the synthesis temperature and time, the material precursor used [17,18],
additives, Pressure, pH, and the reaction medium [19–25].
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Additionally, the hydrothermal method allows the control of the nanoparticles aggre-
gation [26]. The most reported strategy to control the morphology of oxide nanomaterials
is based on using organic surfactant, which adsorbs on a selected crystallographic plan of
growing nucleus, leading to a change of its orientation and growth rate. This results in
controlling the morphology of the obtained nanomaterial at the final growth stage [27,28].
Additionally, strategies based on aggregation/coalescence of nanomaterials were reported
and demonstrated to be efficient in controlling the morphology of the final synthesized
powder [29]. The exfoliation step was also reported to be a crucial step in the formation
mechanism of prepared morphologies [29]. Most of the studies are based on nanomaterials
aggregation/coalescence processes, and to the best of our knowledge, very few are based
on exfoliation/aggregation/coalescence processes to explain synthesized morphologies.
In the case of TiO2 nanomaterials, there is still a misunderstanding of the mechanism
behind the formation of reported morphologies and particularly nanotube, nanobelt, and
nanourchin. Some authors claimed that the Na2Ti3O7 nanosheets exfoliation step is the
crucial step in the mechanism formation of different morphologies, whereas other authors
stated that it is the dissolution of TiO2 nanoparticles into TiO6 octahedra, followed by
Na2Ti3O7 nucleation and growth, forming a nanosheet in a later stage [29]. Furthermore, it
is well accepted that different polymorphs of TiO2 nanomaterials are formed by different
arrangements of TiO6 octahedra. In fact, the growth of anatase tetragonal polymorph pro-
ceeds through face sharing arrangements of TiO6 octahedras, whereas the rutile tetragonal
phase growth takes place through edge-sharing arrangements. Furthermore, the Brookite
phase is obtained by TiO6 octahedra assembly, sharing their edge and corner; whereas in
Ti2O (B) (bronze) phase, Ti4+ ion form two distinct geometries with oxygen: octahedron
in one case and a square pyramidal in the other. In addition, to homogeneous size and
morphology, prepared TiO2 nanomaterials using hydrothermal method exhibit several
characteristics such as high crystallinity, an accurate control of different crystallinity phases
from anatase to rutile depending on the synthesis and annealing temperatures, and high
specific surface [30]. It is well accepted that the anatase polymorph possesses a higher
band gap energy (3.3 eV) than that of the rutile polymorph (3 eV).

In the present work, different morphologies of TiO2 have been successfully prepared
hydrothermally using TiO2 aggregates made of TiO2 nanoparticles as a precursor. The
mechanism behind the morphology control of prepared nanomaterials was discussed. It
was found that the prepared TiO2 nanomaterials properties were governed by those of
TiO2 nanoparticles aggregate. By controlling TiO2 nanoparticles and aggregate sizes, it has
been demonstrated that it is possible to control the TiO2 nanobelt sizes.

2. Materials and Methods
2.1. Synthesis of TiO2 Nanoparticles

For the synthesis of TiO2 nanoparticles, titanium (IV) oxysulfate hydrate (TiOSO4,
Sigma Aldrich, St. Louis, MO, USA) precursor was used. Furthermore, the synthesis
of TiO2 aggregates has been performed using a hydrothermal synthesis technique. The
TiOSO4 precursor solution was prepared by dissolving 6.4 g of TiOSO4 (2.5 M) in 16 mL
of distilled water under constant stirring of 750 r/min and temperature of 45 ◦C for 2 h
to get a clear solution. Then the solution of TiOSO4 was transferred into a Teflon-lined
stainless-steel autoclave of 25 mL capacity. The heating rate was of 2.5 ◦C/min, and during
the synthesis, the temperature was maintained at different temperatures of 100, 200 and
220 ◦C for 6 h depending on the aggregate size required. After this synthesis in autoclave,
a white TiO2 powder was obtained and was washed six times in distilled water and two
times in ethanol. Then the powder was dried overnight in the oven and annealed in air at
temperature of 500 ◦C for 30 min with the heat rate of 5 ◦C/min. For nanourchin, nanotube,
and nanobelt synthesis, 0.5 g powder of TiO2 aggregate was introduced in a Teflon-lined
autoclave of 25 mL capacity. Then, the autoclave was filled with 10 M NaOH solution up
to 80% of the autoclave capacity. During the synthesis, the temperature was maintained at
different temperatures of 100, 150, and 220 ◦C with the heating rate of 2.5 ◦C/min and the
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synthesis time of 360, 180, and 15 min, depending on the required morphology. Afterwards,
synthesis nanobelt particles are subjected to the washing and annealing protocols to obtain
at the end of these processes: sodium titanate. The latter product was washed many times
with diluted HCl solution to attain a pH value of 1. After that, the suspension was washed
with distilled water several times to reach a pH value of 7. Finally, the obtained powder
was dried overnight in the oven, and annealed in air at temperature of 500 ◦C for 30 min,
with the heat rate of 5 ◦C/min.

All the chemicals are of analytical grade and used without further purification. The
water used in all the experiments was purified by Milli Q System (Millipore, electric
resistivity 18.2 MΩ.cm).

2.2. The Characterizations of TiO2 Films

The morphological investigations of the prepared films were achieved with a high-
resolution Ultra 55 Zeiss FEG scanning electron microscope (FEGSEM) operating at an
acceleration voltage of 10 kV and the high-resolution transmission electron microscope
HRTEM using JEOL 2100 Plus microscope.

The crystalline structure of TiO2 was determined by an X-ray diffractometer (Siemens
D5000 XRD unit) in 2θ range from 20◦ to 80◦ by 0.07◦/s−1 increasing steps operating
at 40 KV accelerating voltage and 40 mA current using Cu Kα radiation source with
λ = 1.5406 Å.

The chemical compositions of all the samples were determined by the FEGSEM using
a Princeton Gamme-Tech PGT, USA, spirit energy dispersive spectrometry EDS system, and
by X-ray photoelectron spectroscopy XPS realized with X-ray photoelectron spectroscopy
(XPS), and for the measurements we used a Thermo K Alpha analyzer system equipped
with an AL Kα X-ray source (hυ = 1486.6 eV; spot size 400 µm).

3. Results and Discussion

Various powders were prepared using the alkali hydrothermal synthesis method
and varying synthesis temperatures and reaction times. To prepare these powders, TiO2
aggregates of spherical shape and different sizes were prepared and used as precursors.
The FEG-SEM characterization of precursor powders are shown in Figure 1, and it can be
observed that the sizes of spherical aggregates are ranging from 50 to 200 nm.

The XRD method was used to characterize the crystalline phase of TiO2 aggregate
precursors, and the obtained results are depicted in Figure 2. Several well-resolved peaks
were observed and are all assigned to TiO2 anatase phase (JCPDS No. 21-1272), which is
proof of the high purity of the prepared precursor powders. Additionally, Scherer analysis
was used to calculate the average crystallite sizes at the half-maximum width of the intense
peak corresponding to (101) crystallographic plane, and were found to be 9.8, 24.7, and
30.4 nm, for the synthesis temperatures of 100, 200, and 220 ◦C, respectively.

White powders were obtained using TiO2 aggregate precursors whatever the prepa-
ration conditions, and their corresponding morphologies are depicted in Figure 3. As it
can be observed, at the synthesis temperature of 100 ◦C, the morphology of the prepared
powder is nanourchin-like with a stretched sheet-like network (Figure 3a), whereas at
a temperature of 150 ◦C, the morphology is still nanourchin-like but with a more rolled
nanosheet-like network (Figure 3b). From these experiments, it is clear that the temperature
increase favors the nanosheet scrolling. This could be explained by the fact that the crystal-
lization enhanced by the temperature increase tends to induce the microstructure to change
into rolled nanosheet structure. In fact, to reduce the surface energy of rolled structure,
nanosheets reduce the defects and the distortion energy [31]. At a higher temperature
of about 200 ◦C, the FEGSEM characterization of prepared white powder is depicted in
Figure 3c,d. It can be observed that TiO2 powder is of nanobelt-like and nanotube mor-
phologies, with monodisperse size. The insert of Figure 3d shows a sticking of several
distinguishable nanobelts along their axis direction, forming bundles of nanobelts as a
building unit. It can also be observed that their thickness is homogeneous and it is of
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about 10 nm, their diameter is ranging from 50 to 100 nm with length of around 10 mm. In
addition, the nanobelt surface is smooth at the magnification scale, and no contamination
was observed. As indicated in Figure 3d, some curved nanobelts were observed, which
gives an indication about their high elasticity. From the described experiments, it is clear
that the synthesis temperature is an important parameter in the morphology control of
TiO2 nanomaterials.
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Figure 2. XRD pattern of TiO2 nanoparticle aggregates prepared at different synthesis temperatures
as indicated.

The crystalline structure and phase of prepared TiO2 nanobelt, nanotube, and nanourc-
hin-like powders were studied by the X-ray diffraction method. The obtained XRD patterns
are presented in Figure 4, and they show well-resolved peaks in the case of nanourchin and
nanotube mophologies attributed to (-511) and (020) crystallographic planes of pure TiO2(B)
phase (JCPDS No. 35-0088) (Figure 4a–c). In the case of TiO2 with nanobelt morphology,
the observed XRD peaks indicates that the prepared powder is a mixture of anatase (JCPDS
21-1272) and brookite (JCPDS 29-1360) phases (Figure 4d).
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150 ◦C and 360 min, (c) TEM image of Nanotube prepared at conditions of 200 ◦C and 180 min, and (d) Nanobelts prepared
at conditions of 200 ◦C and 360 min.

Additionally, among all the peaks, the most intense is the one corresponding to (121)
crystallographic plane of brookite. Further details of crystallinity are provided by HRTEM
depicted in Figure 5, clearly well resolved lattice planes are shown, and the insert electron
diffraction shows well resolved spots (Figure 5b). These spots are the signature that the
individual nanobelt is a single crystal. The interplanar distance of about 0.88 nm measured
from HRTEM image is assigned to (100) crystallographic plane of brookite, indicating that
the growth takes place along the (100) crystallographic plane, which is in good agreement
with the result from XRD experiments in terms of brookite formation.

Furthermore, the chemical composition of the powder was provided by XPS analysis,
and the obtained spectra are depicted in Figure 6. The XPS survey spectrum in Figure 6a of
TiO2 aggregates precursor shows intense peaks corresponding to O1s and Ti2p core levels,
and the very weak intensity of the peak corresponding to Na1s. However, the XPS survey
spectrum corresponding to TiO2 nanobelt-like and nanourchin-like powders (Figure 6b)
shows intense and well resolved peak, corresponding to the core level of Na1s, which is a
signature of the formation of sodium titanate (Na2Ti3O7), in addition to those of O1s and
Ti2p. It was reported that Na2Ti3O7 is constituted by corrugated strips of edge-sharing TiO6
octahedra [29]. The width of each strips is about three-octahedra, and they are connected
through their corner to form stepped layers. Within the sticking layers, sodium cations are
located at the positions between the layers.
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Figure 6. XPS survey spectra of prepared TiO2 (a) aggregate precursor (b) nanobelts after synthesis.

In Figure 7a, it is important to note that nanourchin-like nanoparticles show more
enrolled nanosheet with more dense structure, as a consequence of the annealing process.
The EDS analyses have been performed to determine the chemical composition of TiO2
nanoparticles, after just synthesis, or after washing and annealing processes. In Figure 7
the obtained EDS spectra are depicted; it should be noted that, on the EDS spectrum of
TiO2 nanoparticles, after synthesis shows the presence of Na peak Figure 7b, whereas it
is absent in the spectrum after the washing and annealing processes in Figure 7c. In fact,
during the washing processes of Na2Ti3O7 by HCl, Na+ ions were exchanged by H+ ions.
These results are a clear evidence of the important role played by Na+ ions in the formation
of TiO2 nanobelts, nanotube, and nanourchin morphologies.
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Figure 7. (a) FEGSEM images of TiO2 nanourchin obtained at synthesis temperatures of 150 ◦C, after
washing and annealing; (b,c) the corresponding EDS spectrum obtained just after synthesis and after
washing and annealing processes, respectively.

The details of TiO2 nanobelt and nanotube formation mechanisms are further investi-
gated by using high resolution transmission electron microscopy (HRTEM). The influence of
hydrothermal reaction time on the morphology of prepared TiO2 nanomaterials is studied
at 15, 180, and 360 min. At short reaction time of about 15 min, the morphology of prepared
powder is mainly stretched nanosheet-like, with some minor rolled sheet. Closer analysis
of prepared powder (Figure 8) shows different stages of the same formation mechanism.
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In fact, the observed nucleation stage can be considered as an integrated growth
process of nanobelt structure, from aggregates made of nanoparticles of about 20 nm
diameter to nanobelt of several micrometers in length. Similar evolution was observed by
other authors [4,29]. Thus, we may assume that the morphologies shown in Figures 8 and 9
represent different stages of the nanobelt growth process.
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Figure 9. HRTEM images with different magnifications (a–e) of TiO2 nanotube prepared at synthesis
temperature of 200 ◦C and synthesis time of 180 min.

It can be observed that at the earlier stage (reaction time of 15 min) of the nanobelt
growth process, coalesced nanoparticles coexist with nanosheet like particles, indicated
by zones in Figure 8a,c. Nanoparticles were located at the nanotube edges (region 1 and
2 in Figure 8c), and beside this simple attachment, an alignment of coalesced nanoparticles
takes place (region 3 in Figure 8c). In addition, the nanosheet shows both stretched
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and rolled structures. The indicated region 4 in Figure 8c shows the starting process of
nanosheet rolling. However, all these steps are a consequence of different nanobelt growth
stages, which will evolve in a later stage to a nanotube structure observed in Figure 9 and
nanobelt structure shown in Figure 10. However, at closer inspection of the nanosheet
structure at an earlier stage, with a synthesis time of 15 min, we find that it presents an
assembly of nanoparticles, whose sizes range from 5 to 20 nm, as indicated in selected
region of Figure 8a,c. This proves that these nanoparticles and aggregates are the primary
building units for the nanosheet formation process. Furthermore, it is well accepted in the
literature that the key point for the formation of nanobelt-like structure is the formation
of sodium titanate nanobelt intermediate, in which the sodium ion (Na+) is inserted into
space between TiO6 octahedra layers, balancing their negative charges [4,29]. From the
present experiments, it can be inferred that the aggregate of TiO2 nanoparticles split up into
nanosheets as a consequence of Na+ insertion and their rolling in a second stage to form
nanotube in an intermediate stage. Typical TEM and HRTEM patterns of TiO2 nanotube are
depicted in Figure 9, with similar structure of nanotube obtained using TiO2 nanoparticles
in terms of asymmetrical walls. It can be seen that the nanotube exhibits four layers on one
side and two layers on the other (Figure 9e), which indicates that the nanotubes are formed
by the scrolling of several layers of nanosheet, as previously observed by other authors. The
interplane on both sides is of 0.36 nm, which corresponds to the (010) crystallographic plane,
and is the characteristic of monoclinic H2Ti3O7. It was reported for the same materials
that the nanotube growth takes place along the (010) direction. Additionally, the interlayer
distance between rolled nanosheets is about 0.76 nm closer to different reported values [29].

From XPS and EDX analysis in Figures 6 and 7, it is clearly demonstrated that the
sodium ions are incorporated in the TiO2 nanobelt, nanotube, and nanourchin, which
suggest that it plays a role in their formation mechanisms. These observations indicate
that nanobelts are formed by an orderly sticking of nanosheet and their coalescence in later
stage; whereas nanourchins are formed by random assembly of the nanosheets.

The size dependence of the TiO2 nanobelt on the size of TiO2 aggregate precursor
was demonstrated. Different sizes of TiO2 aggregate precursors were used to prepare TiO2
nanobelt, and the obtained results are depicted on Figure 10. It can be observed that the
nanobelt length tends to increase with the increasing of the TiO2 aggregate precursor size.
Additionally, the TiO2 nanobelt width increases from 50 to 200 nm (Figure 10), when the
TiO2 aggregate precursor size increases from 50 to 200 nm (Figure 1). This confirms that
TiO2 nanoparticles play a role in the formation of different observed morphologies. In
fact, if we assume that the formation of observed morphologies goes through the TiO2
dissolution and precipitation, the TiO2 nanoparticles size will not have any effects on the
final nanoparticle size. Additionally, the observation of TiO2 nanoparticles during the
nanotube formation supports the mechanism through which sodium ions (Na+) induce
exfoliation of TiO2 aggregates by insertion into the space between TiO6 octahedra layers and
their coalescence to form nanosheets at later stage. Furthermore, the present results provide
additional arguments to support some reported works in the literature and contradict
others [30,32], in which it was claimed that during the hydrothermal synthesis process,
TiO2 is dissolved through Ti–O–Ti bonds breaking and formation of sodium titanate
nanosheet [29], which is converted to hydrogen titanate during the washing step and at a
later stage to TiO2 nanobelt after the annealing process.

It can be seen from the XRD results that the nanobelt powder, at different synthesis
stages (Figure 11), shows a changing of crystalline structure. The TiO2 aggregates precursor
is of anatase phase, with tetragonal structure, in which TiO6 octahedra are sharing their
face and get stacked in a one-dimensional zigzag chain. During the synthesis of Na2Ti3O7
nanobelts, a crystalline transition takes place, and TiO2 anatase phase is transformed into an
orthorhombic structure. In fact, the formation of sodium titanate nanobelt intermediate is
obtained through the insertion of sodium ion (Na+) into the space between TiO6 octahedra
layers, inducing the distortion of the initial structure.
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Figure 11. XRD pattern of TiO2 nanobelt at different synthesis stages as indicated and at the synthesis
temperature of 100 ◦C (A: Anatase; B: TiO2-B).

From these XRD results obtained at the synthesis temperature of 100 ◦C, it can be
inferred that the anatase TiO2 aggregate structure changes are a consequence of Na+ inser-
tion and a strong repulsion between Na+ ions, which induces a distortion of the anatase
crystalline structure. Similar behavior is observed with the insertion of Na+ ion in the case
of Na ion batteries charging/discharging cycles [33]. However, after the washing step with
hydrochloric acid solution, the H2Ti3O7 nanobelts are obtained as a consequence of proton
exchange processes of sodium trititanate. From Figure 11, it can be seen that this exchang-
ing of steps and the resulting orthorhombic structure of H2Ti3O7 (JCPDS Card No. 47-0124)
are accompanied by some XRD peak modifications, in terms of the intensity enhancement
of some peaks, and their decrease for some others [34,35]. These modifications indicate
the distortion of the initial structure after ion exchanges. Additionally, after the annealing
process and the removal of protons, a mixture of anatase (JCPDS 21-1272) and TiO2-B
(JCPDS 35-0088) phases is obtained at the synthesis temperature of 100 ◦C. The obtained
XRD pattern is similar to that obtained for the same mixture by Beuvier et al. [36]. A phase
transition was observed when the morphology changed from nanotube to nanobelt, but
with different compositions than those obtained at the synthesis temperature of 200 ◦C. It
was reported by Zhang et al. that the TiO2 nanoparticle size has a strong impact on the
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phase transformation during the growth of coalesced nanoparticles [37]. In addition, the
temperature also plays an important role in the phase transformation of TiO2 nanoparti-
cles [26]. However, as when the temperature is changed the coalescence and/or growth of
TiO2 nanoparticles take place, both the temperature and the size contribute to the phase
transformation and a formation of different phase mixtures depending on the used synthe-
sis temperature 100 and 200 ◦C. Furthermore, as it can be observed from Figures 4 and 10,
the peaks corresponding to the anatase phase are of lower intensity, which indicates that
both of the latter synthesis temperatures produce a lower proportion of anatase, in agree-
ment with different reported works in the literature [36]. During the synthesis process at a
given temperature, the phase is also changed due to the insertion of different ions, and it is
not necessary to dissolve and precipitate TiO2 octahedra. Furthermore, from these results,
it is worth noting that the synthesis temperature plays a crucial role in the phase control of
prepared nanobelt powders.

4. Conclusions

Different morphologies of TiO2 nanoparticles have been synthesized, in a large scale
using hydrothermal synthesis technique and TiO2 aggregate as a precursor. Both nanotube,
nanourchin-like, and nanobelt-like nanoparticles were obtained at low temperatures and
over short times. Furthermore, it is demonstrated that a morphology control of prepared
TiO2 powders could be achieved through the tuning of the synthesis temperature and
time. The mechanisms formation of TiO2 nanobelt-like, nanourchin-like, and nanotube
nanoparticles are illustrated to involve TiO2 nanoparticles coalescence and nanosheet
intermediate, formed thanks to Na+ ions exfoliation. Furthermore, it was found that the
prepared TiO2 nanomaterials properties were governed by those of TiO2 nanoparticles
aggregate. It has been demonstrated that it is possible to tune the nanobelt size by using
different TiO2 aggregates precursor sizes. Additionally, it was shown that the synthesis
temperature enables the tuning of the phase’s composition of the nanobelt powders. The
investigation of prepared powders performance, as anode material for Li-ion batteries, is
under progress in our group.
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