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ABSTRACT Pathogen transmission is a key point not only for infection control and
public health interventions but also for understanding the selective pressures in
pathogen evolution. The “success” of a pathogen lies not in its ability to cause signs and
symptoms of illness but in its ability to be shed from the initial hosts, survive between
hosts, and then establish infection in a new host. Recent insights have shown the impor-
tance of the interaction between the pathogen and both the commensal microbiome
and coinfecting pathogens on shedding, environmental survival, and acquisition of infec-
tion. Pathogens have evolved in the context of cooperation and competition with other
microbes, and the roles of these cooperations and competitions in transmission can
inform novel preventative and therapeutic strategies.

IMPORTANCE Transmission of pathogens from one host to another is an essential
event in pathogenesis. Transmission is driven by factors intrinsic to the host and to
the pathogen. In addition, transmission is altered by interactions of the pathogen with
the commensal microbiota of the host and coinfecting pathogens. Recent insights into
these interactions have shown both enhanced and reduced transmission efficiencies
depending on the makeup of the polymicrobial community. This review will discuss poly-
microbial interactions during shedding from the initial host, time in the environment, and
acquisition by the new host.
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Transmission of pathogens is a multifactorial process by which a pathogen must be
shed from an infected host, survive its transit between hosts, and then establish an

infection in a new host. Understanding transmission dynamics of pathogens is key to
control of endemic and epidemic infections. In addition, transmission is a point at
which pathogens are under selective pressures, since the ultimate “success” of a patho-
gen is related not only to its ability to cause disease in its hosts but also to its ability to
establish productive infections in new hosts. Pathogen transmission can be direct or
indirect, it can involve many host species for a pathogen to undergo a complex life
cycle, or it can be confined to a single host species. Transmission can occur over short
distances of space or time, or a pathogen can spend a long time or distance in the air
or associated with a biotic or abiotic surface between hosts.

Transmission factors can be pathogen-associated or host-associated. Some of the
best understood pathogen transmission factors are bacterial toxins involved in induc-
ing pathogen shedding, including the AB5 cholera (1) and pertussis (2) toxins, the cho-
lesterol-dependent pore-forming toxin pneumolysin (3), and the viral enterotoxin nsP4
of rotavirus (4). Host-associated transmission factors can be immune or behavioral.
Immune factors can alter both shedding and susceptibility. Naturally acquired or vac-
cine-induced immunity is mainly thought of as a way to prevent acquisition but can
also alter shedding dynamics in the vaccinated host (5). Behavioral factors for humans
are typically recreational and occupational exposures but can also be from direct
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pathogen control of behaviors, such as rabies’ induction of aggression and salivation
and Toxoplasma gondii’s reduction of rodents’ fear responses (6, 7).

Using a more expansive definition of host, we can include the microbial members of
the microbiome, mycobiome, and virome of the host and the roles that these play in shed-
ding, environmental survival, and acquisition of pathogens. In addition, we explore recent
insights into the roles of coinfecting pathogens on transmission. Beneficial and antagonis-
tic interactions between microbes can occur in the infected host to alter shedding in the
environment, in intermediate hosts to alter pathogen survival between hosts, and in the
new host, changing susceptibility to acquisition.

POLYMICROBIAL IMPACTS ON SHEDDING

The microbial community is typically considered to consist of the benign commen-
sal occupants of the surfaces and mucosal sites of humans, plants, and animals, but it
can also encompass pathogenic species. These pathogens could be asymptomatically
colonizing or causing symptoms while infecting an organism. In addition to more
intense signs and symptoms from coinfection, which can enhance shedding, infection
by multiple infectious agents can increase the pathogen load at the mucosal site and
therefore increase the likelihood and magnitude of shedding. Inflammatory molecules
and signs and symptoms, such as coughing, sneezing, mucosal discharge, and diar-
rhea, induced by one pathogen can cause increased colonization density and shedding
of other pathogens infecting the same mucosal site.

Infection with human influenza viruses (8, 9), respiratory syncytial virus (RSV)
(10–13), or human rhinovirus (12) can increase the nasopharyngeal load of bacterial
pathogens, including Streptococcus pneumoniae, Staphylococcus aureus, Moraxella
catarrhalis, and Haemophilus influenzae. This effect is also seen in murine models (14,
15) and in humans (16–18) receiving live, attenuated influenza vaccine, with higher
density and duration of colonization with pathogenic bacteria. Upper respiratory viral
illnesses have been implicated in shedding of S. aureus in neonates (19) and in adults
(20–22). The ability of influenza virus infection to facilitate increased transmission of S.
pneumoniae has been seen in murine (23, 24) and ferret (25–27) models. Influenza
infection can enhance inflammation and nasal secretions (28), impacting pneumococ-
cal colonization density, shedding, and transmission (29, 30). Recent insights have
shown that the coinfection of pneumococcus and influenza virus triggers shared inter-
feron responses, enhancing shedding of both pathogens (31). Influenza A virus (IAV) infec-
tion can also trigger S. pneumoniae’s biofilm to planktonic transition (32, 33), which
increases pathogenesis and could be a mechanism for enhanced shedding from the host.

The impact of bacterial colonization density on IAV transmission is mixed. Ferret
models of depletion of respiratory flora or restoration of respiratory flora with S. pneu-
moniae did not alter viral load in the respiratory secretions of coinfected animals (34).
However, in other studies, coinfection of ferrets with S. pneumoniae and IAV reduced
shedding of IAV, instead causing pneumonia and bacteremia (27). Infant mouse models
of IAV transmission have shown a reduced shedding of IAV in pups colonized with S. pneu-
moniae (35) in a sialidase-dependent manner. However, in humans naturally infected with
IAV, the diversity and presence of Neisseria were shown to increase the duration of IAV
shedding (36). Together, these studies support a role for the human upper respiratory
microbiome in shedding of pathogenic bacteria and viruses and suggest differential contri-
butions of the microbiome in alterations of pathogen shedding. However, the roles of the
microbiota and coinfecting pathogens in the upper respiratory tract on IAV transmission
are complicated; they may be host dependent and specific to certain regions of the upper
respiratory tract, requiring further study.

Coinfection with multiple respiratory viruses can alter shedding dynamics of each
virus. A prior infection with another respiratory virus decreased duration of RSV shed-
ding, but simultaneous infection increased the duration of RSV shedding in a house-
hold transmission study (37). In addition, simultaneous coinfection with both RSV-A
and RSV-B subtypes or with either RSV-A or RSV-B subtype and another respiratory
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virus enhances the quantity of RSV shed (38). Coinfection with other respiratory viruses
was suggested in SARS superspreading events in 2003 (39) and has been suggested as
a mode of enhanced transmission for SARS-CoV2 (40). The mechanism behind respira-
tory virus coinfection and shedding of each virus is presumably multifactorial, since
the virus infection can be immunomodulatory, causing increased mucus production,
coughing, or sneezing that could physically expel coinfecting pathogens, or could be
coincidental due to common exposure conditions for several respiratory viruses.

Respiratory coinfection in domesticated animals enhances pathogen colonization
density (41, 42) and shedding, which has relevance for animal health and welfare, in-
tegrity of the food animal supply chain, and control of zoonotic and foodborne infec-
tions. Chickens coinfected with low-pathogenicity avian influenza (LPAI) and classical
infectious bronchitis virus (a gammacoronavirus) had enhanced shedding of both
viruses (43, 44); however, compared to singly infected birds, animals coinfected with
variant infectious bronchitis virus had enhanced shedding of only LPAI (43). Mammals
with coinfecting respiratory pathogens also had enhanced shedding of IAV, with enhanced
shedding of swine influenza seen in piglets coinfected with Actinobacillus pleuropneumo-
niae and swine influenza (45). In addition, mink exhibit higher shedding of IAV when coin-
fected with Pseudomonas aeruginosa (46).

Coinfections, likewise, alter pathogen shedding at the genital mucosa. Human im-
munodeficiency virus infection can increase Neisseria gonorrhoeae and Chlamydia tra-
chomatis bacterial loads in the vagina and cervical mucus of infected people (47).
Further, epidemiological connections support the connection between coinfection
with HIV and bacterial sexually transmitted infections (STIs) (48, 49). Coinfection with
N. gonorrhoeae, likewise, increases vaginal HIV shedding in humanized mice (50), and
bacterial STIs, including infections with N. gonorrhoeae, and C. trachomatis, and proto-
zoan pathogen Trichomonas vaginalis enhance shedding of HIV in infected humans
(51, 52). However, both bacterial and viral STI acquisition are also dependent on the
vaginal microbial community, which complicates the determination of their respective
roles in pathogen shedding. Mechanisms for altered shedding are local immunomodu-
lation by vaginal lactobacilli, which reduces genital shedding of HIV without altering
systemic viral load (53), and altering vaginal communities in response to concurrent vi-
ral infection. HIV-1/HSV-2-coinfected women have higher diversities in the vaginal
microbiome, increased anaerobes, decreased lactobacilli, and increased proinflamma-
tory cytokine levels, suggesting enhancement of HIV shedding potential (54). Further,
infection with a bacterial STI or presence of bacterial vaginosis enhanced interleukin-
10 expression in cervical secretions, allowing increased viral replication and viral load,
thereby providing a mechanism for enhanced shedding of HIV (55).

Shedding of GI pathogens is also altered in both humans and domesticated animals
by coinfecting pathogens. Shedding of human noroviruses in asymptomatic children is
enhanced by coinfection with other enteric viruses (56). Zoonotic hepatitis E virus has
enhanced shedding in pigs coinfected with porcine reproductive and respiratory syn-
drome virus (PRRSV) (57) or porcine circovirus type 2 (58) with a higher hepatitis E viral
load in feces and for a longer time than hepatitis E virus monoinfected pigs. Further,
both PRRSV and porcine circovirus also enhance transmissibility of hepatitis E between
pigs and lead to a higher liver titer of hepatitis E virus, leading to potential zoonotic
foodborne infection from eating contaminated liver (59). Coinfection with Lawsonia
intracellularis or PRRSV enhances shedding of Salmonella enterica subsp. enterica (60),
another foodborne illness causative agent related to pork consumption and produc-
tion. Boiler chickens infected with infectious bursal disease virus have enhanced shed-
ding of Campylobacter jejuni due to immunosuppression by viral infection (61). Cows
with liver fluke Fasciola hepatica in their feces have increased likelihood of Shiga toxi-
genic E. coli in their feces (62). These findings provide further examples of agricultural
pathogens enhancing the risk of foodborne illness.

The beneficial gut microbiome has direct and indirect roles in blocking pathogen
acquisition, so modifying the members of the community can alter shedding of
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pathogens. Compared to noncolonized gnotobiotic pigs, gnotobiotic pigs that
received a human fecal microbiome transplant have enhanced shedding of human
noroviruses (63) and rotaviruses (64), as measured by both more days of shedding and
higher titers shed, suggesting a role for the human gut microbial community in viral
shedding. Likewise, shedding of live, attenuated rotavirus vaccine in humanized piglets
was dependent on microbial community (65), as was shedding of rotavirus vaccine vi-
rus in antibiotic-treated adult volunteers (66). Attempts to alter the bacterial commu-
nity to reduce pathogen shedding have also proven fruitful, as gnotobiotic pigs colon-
ized with probiotic E. coli Nissle strain have reduced rotavirus severity and shedding
duration (67). However, supplementing cattle feed with beneficial microbes did not
reduce the frequency of shedding nor the amount of E. coli or Salmonella shed (68).
Modifying the chicken gut microbiome with live, attenuated S. enterica vaccination or
dietary supplementation with galacto-oligosaccharides reduced shedding of virulent S.
enterica (69). Disrupting the gut microbiome with antibiotics enhances Clostridioides diffi-
cile (70), Klebsiella pneumoniae (71), and Salmonella (72) shedding in mice, supporting a
role for the microbiome in preventing hospital-associated and foodborne infections,
respectively. Antibiotic treatment led to changes in resident microbiome community com-
position, supporting the roles of the gastrointestinal microbiome in alteration of shedding
and transmission dynamics. Further, modulating the microbiome by supplementing the
diet with Lactobacillus prevents C. difficile shedding in a mouse model (73).

Pathogen shedding is not consistent across all infected hosts. Some hosts appear to
shed pathogen at a much higher frequency, a phenomenon deemed “supershedding”;
this, along with other environmental factors, leads to the phenomenon of “superspread-
ing,” where 20% of infections lead to 80% of new infections (74). The microbiome has
been implicated in supershedding of Salmonella (70) and enterohemorrhagic E. coli (75)
and to immune-mediated supershedding of E. coli (76).

Viruses such as herpesviruses that lead to a chronic infection can be shed through-
out the host’s life span. These reactivation and shedding events are often linked to
immunosuppressive events and environmental factors. However, coinfecting HIV,
beyond being immunosuppressive, has been shown to enhance salivary shedding of
human cytomegalovirus, human herpesvirus 8, and Epstein-Barr virus in patients with
high HIV titers more than in those with a suppressed HIV load (77). Finally, certain
classes of virus require infection by another virus to compete their infection cycles, and
thus, to be shed. These viruses include the satellite viruses of plants, adeno-associated
viruses of mammals, hepatitis deltavirus, and the recently recognized related deltavi-
ruses of birds (78) and reptiles (79, 80).

POLYMICROBIAL IMPACTS ON ENVIRONMENTAL SURVIVAL

After being shed, a pathogen must oftentimes survive in the environment until it
encounters a new susceptible host to infect. The external environment presents many
potential challenges for pathogen survival. In the environment, pathogens interact
with other microbes in the air, soil, on biotic and abiotic surfaces, and in and on vector
hosts. Interaction with other microbes that are simultaneously shed from the infected
host or encountered on biotic and abiotic surfaces can protect the pathogen from des-
iccation and UV light, as detailed in examples below. Alternatively, inactivation of
pathogens can be accelerated by such interactions. For example, peptidoglycan-associ-
ated cyclic lipopeptide of Bacillus subtilis destabilizes coronaviruses and other envel-
oped viruses, suggesting that these viruses may be inactivated or their infectivity may
be reduced by association with soil environments (81). Likewise, bacterial lipopolysac-
charide (LPS) destabilizes influenza A viruses (82). However, for enteric viruses, interac-
tions with bacteria and their products are stabilizing. Picornaviruses (83–85), reoviruses
(86), caliciviruses (87, 88), and astroviruses (89) are stabilized by interactions with bac-
teria or isolated bacterial envelope components such as peptidoglycan, LPS, or lipotei-
choic acid (LTA). This suggests that these enteric viruses may be stabilized during their
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environmental phase by either the bacterial components of the microbiome of the
original host or by environmental bacteria present after shedding.

Recent work has shown similar stabilizing effects from certain members of the
human upper respiratory microbial community protecting IAVs from desiccation-medi-
ated viability loss. Again, a component of the bacterial cell envelope—the polysaccha-
ride capsule of both S. pneumoniae and H. influenzae—was shown to be important for
stabilizing IAV (34). Further, depletion of the ferret upper respiratory community with
antibiotics prior to infection with IAV inhibited respiratory transmission to either antibi-
otic-depleted or untreated naive contact ferrets. Reconstitution of the donor ferret bac-
terial community with S. pneumoniae restored respiratory transmission of IAV to naive
untreated contact animals (34). This finding supports a role for the host’s bacterial
community in infection by viral pathogens. Another respiratory pathogen, the oppor-
tunistic bacterial pathogen Legionella pneumophila, which is acquired through inhala-
tion of contaminated water, has enhanced environmental survival when internalized
by fungi, protecting the bacteria from UV light (90).

The microbiome of vector hosts also has a key role in transmission of bacterial, para-
sitic, and viral pathogens. Best characterized is the role of the mosquito endosymbiont
Wolbachia pipientis in preventing infection of mosquitoes and therefore the transmission
of arboviruses (91) and Plasmodium (91). Proposed mechanisms of viral inhibition include
modulation of lipid metabolism in the mosquito host (92), direct blockade of viral entry
into mosquito cells (93), and degradation of viral RNA (94). Another mosquito commensal,
Chromobacterium sp. Panama, present in Aedes aegyptimidgut and the soil, secretes a pro-
tease that degrades dengue virus envelope protein, thereby blocking infection of mos-
quito cells in vitro and in vivo (95) and transmission of dengue virus to human hosts. The
natural microbiome of the Ixodes scapularis tick is necessary for the tick’s colonization by
Borrelia burgdorferi, the causative agent of Lyme disease (96). Endosymbionts of
Dermacentor andersoni ticks can control infection and transmission of Anaplasma margin-
ale, a rickettsial pathogen of livestock, and Francisella novicida, a bacterial pathogen related
to the causative agent of tularemia (97).

Foodborne illness is a leading cause of morbidity and mortality worldwide. In addi-
tion to the above-mentioned effects of coinfection and microbiome composition of
animal hosts in shedding of pathogens in animals used for food, large outbreaks are
increasingly being traced back to animal or human fecal contamination of produce, ei-
ther directly or through the irrigation water (98). Human and animal feces, where one-
quarter to one-half of the dry mass is bacterial in origin (99) stabilize enteric viruses on
environmental fomites (100). The endogenous microbiome of the plant and associated
soil also stabilize pathogens or promote internalization of the pathogen into the plant
cell (101), where it can be protected from decontamination. The most common food-
borne viruses are hepatitis A virus and norovirus. Both are nonenveloped and have
high environmental stability. Peptidoglycan from Bacillus subtilis, found in soil and
plant phyllosphere environments, protected a norovirus surrogate from bleach-medi-
ated decontamination (102) even in the absence of direct binding of virus to the bacte-
rial surface. Murine norovirus (103) and human noroviruses (88) directly interact with
bacteria (88, 103) and fungi (103) and therefore might be protected from decontamina-
tion to a higher degree. Bacterial burden and damage to plant tissues correlated with
higher norovirus stability on harvested leaves (104), suggesting that bacterial members
of the leaf microbiome contribute to norovirus persistence and that this can be
enhanced by harvesting or bacterial-mediated damage to the leaf tissues.

Shellfish are also a common source of foodborne infection. Since they are often
eaten raw or undercooked, the role of the normal flora of shellfish on pathogen coloni-
zation is critical to shellfish-borne infection because high heat inactivation cannot pro-
tect consumers in these cases. Shellfish can concentrate foodborne pathogenic viruses
from human and animal fecal contamination of seawater within their tissues, including
norovirus (105), hepatitis A virus (106), and hepatitis E virus (107). Human pathogens
such as Vibrio vulnificus and V. parahaemolyticus are normal commensals of oysters
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(108, 109). Further, interactions between normal commensals of oysters with S. enterica
in vitro can activate quorum-sensing virulence regulons (110), providing a further
mechanism for foodborne-associated illness from shellfish.

POLYMICROBIAL IMPACTS ON ACQUISITION

Probably the best-characterized role of the microbiome in transmission is that of
prevention of infection in the new host. Much effort has gone into understanding
these protective microbial communities and modifying them via the ingestion and
application of probiotics (111). Characterization of the microbial community in people
with or without respiratory infection (36, 112–115) and characterization of beneficial
and detrimental vaginal microbial communities for bacterial and viral pathogens
(116–121) have been insightful for predicting infection risk. Predicted beneficial inter-
actions are both indirect, through bacterial modulation of immune function and epi-
thelial barrier integrity, and direct, through prevention of pathogen binding to epithe-
lial tissues, depletion of metabolites, and production of antagonistic metabolites. The
main method by which polymicrobial interactions can alter acquisition of other patho-
gens is by changing the local inflammatory state, thereby increasing or decreasing the
likelihood of successful infection. In addition, the resident microbial community plays
an important role in maintaining the permeability of epithelial barriers, alteration of
which can impact the invasive potential of pathogens. Nutrient availability, toxic metab-
olites, and signaling molecules produced by the microbial community at the site of infec-
tion alter the pathogen’s ability to grow and to express virulence-associated molecules or
the host tissue’s ability to alter receptor expression. Together, these factors produced by
the infection site’s microbial community alter the pathogen’s ability to successfully infect
its next host.

Immune modulation can act either locally or systemically and can be protective or can
enhance infection susceptibility. Induction of interferon (IFN) lambda by gut commensal
bacteria can lead to persistent murine norovirus infection (122). IFN lambda can also act in
the nasal mucosa, where its induction by IAV can promote Staphylococcus aureus and
Streptococcus pneumoniae colonization and infection (123); however, Staphylococcus epi-
dermidis can act on nasal cells to produce IFN lambda and prevent IAV infection (124).
Local production of IFN beta in the gut stimulated by Bacteroidetes outer membrane vesi-
cle glycolipids can block experimental infection with vesicular stomatitis virus and may act
more broadly to provide antiviral resistance in the gut (125). Immunomodulatory signals
by the gut microbial community can also alter susceptibility to nonenteric infections.
Production of the short-chain fatty acid butyrate by enteric commensals can lead to a sys-
temic suppression of IFN production and interferon responsive gene expression and
increase susceptibility to influenza virus, reovirus, HIV-1, human metapneumovirus, and ve-
sicular stomatitis virus (126). Alteration of the gut microbial community during an IAV
infection can alter the production of another short-chain fatty acid, acetate, reducing bac-
tericidal activity of alveolar macrophages and enhances susceptibility to bacterial pneumo-
nia (127).

Another beneficial function of the microbiota in preventing infection is the promo-
tion of epithelial barrier integrity (128), with microbial signals promoting healthy tissue
function by increasing expression of cell-cell adhesion molecules and modulating
inflammatory signals. While typically characterized in the mucosa of the gut (129), the
microbiota of the skin is important in maintaining barrier integrity and preventing
Staphylococcus aureus infection (130). In the vagina, Lactobacillus crispatus colonization
can promote epithelial cell growth and barrier integrity (131), but Gardnerella vaginalis,
Atopobium vaginae, and Prevotella bivia, which are considered “bad” vaginal micro-
biota, act to disrupt tight junctions and can promote the acquisition of the protozoan
pathogen Trichomonas vaginalis (132).

Barrier function in the respiratory tract is enhanced by mucociliary clearance. The
human disease cystic fibrosis results in altered viscosity of mucus and reduced muco-
ciliary clearance, enhancing susceptibility to bacterial colonization and infection of the
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lower respiratory tract. Alterations of mucociliary clearance can also be bacterially
mediated. Colonization of porcine lung tissues with Bordetella bronchiseptica led to
reduced ciliary action and enhanced susceptibility to colonization and infection with
Streptococcus suis (133).

Production of toxic metabolites is another mechanism by which the commensal
microbiota prevent colonization and infection by pathogens. A secreted product of the
human commensal Lactobacillus reuteri, known as reuterin, leads to production of reac-
tive oxygen species by Clostridioides difficile to reduce C. difficile outgrowth (134).
Microbiota-derived fatty acids, in addition to their roles in immunomodulation
described above, can alter pathogen colonization and infection. The intestinal para-
site Cryptosporidium parvum is inhibited by medium- or long-chain saturated fatty
acids derived from microbiota, and yet long-chain unsaturated fatty acids enhanced
the invasive potential (135) of the parasite. In addition to microbial modulation of C.
difficile growth, Bloutia and Clostridium sporogenes metabolites can reduce toxin
expression by C. difficile (136, 137). In addition, glycan and sphingolipid metabolism
by the gut microbiota can alter susceptibility to human norovirus infection (138).

The microbiota or coinfecting pathogens can alter host cell receptor expression to
both enhance and inhibit pathogen infection. Colonizing Streptococcus pneumoniae
can inhibit IAV infection when bacterial sialidase removes terminal sialic acid residues
used for viral attachment and infection (35). Neisseria gonorrhoeae infection stimulates
cytokine production, increasing both immune cell trafficking to the cervix and expres-
sion of viral receptors enhancing HIV infection (139).

Quorum-sensing signals from coinfecting pathogens or cytokine signals from
infected hosts—even those infected with a different pathogen—can alter bacterial
behavior and lead to enhanced pathogenesis. Nontypeable Haemophilus influenzae
upregulates pili in virally coinfected cells, increasing colonization and invasive poten-
tial (140). Pathogen behavior can also be changed through promotion or inhibition of
biofilm formation and by formation of multispecies biofilms in the middle ear (141) or
gut (142), which can promote both pathogenesis and antimicrobial treatment failure.
Multispecies biofilms can even be trans-kingdom, with Staphylococcus and Candida
(143) and Enterococcus and Candida (144) forming multispecies biofilms. In addition to
biofilm-mediated antimicrobial therapy failure, antimicrobial resistance can be trans-
ferred from one pathogen to another, particularly in the multispecies biofilm, but also
in other cocolonization scenarios, such as Streptococcus agalactiae obtaining antimicro-
bial resistance from coinfecting sexually transmitted pathogens (145).

CONCLUSIONS

Polymicrobial interactions can enhance or reduce pathogen transmission. Greater
understanding of the roles of normal and pathogenic members of the microbiome,
mycobiome, and virome on transmission of pathogens can lead to insights into con-
trol of both endemic and epidemic transmission. Linking certain natural or altered
microbial communities to “supershedding” events could explain spillover events in
zoonotic transmission and the asymmetric shedding seen in epidemics when 20% of
cases cause 80% of new cases (74). In addition, identifying how the pathogens
evolved to exploit each other and the microbiome can lead to greater understanding
of host-pathogen interactions. As we better characterize the various human, plant,
and animal microbial communities, we can decipher the common mechanisms by
which pathogens exploit these communities to both establish infection and to be
shed and survive in the environment to establish a new infection. Further, knowing
the interactions between pathogens and the microbiome of native and nonnative
hosts could lend insights into zoonotic transmission.
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