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Liver injury is a clinical disorder caused by toxins, drugs, and alcohol stimulation without
effective therapeutic approaches thus far. Scutellarin (SCU), isolated from the edible herb
Erigeron breviscapus (Vant.) Hand. -Mazz. showed potential hepatoprotective effects, but
the mechanisms remain unknown. In this study, transcriptomics combined with
nontargeted metabolomics and 16S rRNA amplicon sequencing were performed to
elucidate the functional mechanisms of SCU in carbon tetrachloride (CCl4)–induced
liver injury in mice. The results showed that SCU exerted potential hepatoprotective
effects against CCl4-induced liver injury by repressing CYP2E1 and IκBα/NF-κB
signaling pathways, modulating the gut microbiota (especially enriching Lactobacillus),
and regulating the endogenous metabolites involved in lipid metabolism and bile acid
homeostasis. SCU originates from a functional food that appears to be a promising agent
to guard against liver injury.
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INTRODUCTION

Liver injury is caused by a constellation of risk factors such as drug abuse and excessive alcohol
consumption and can initiate cascades of pathophysiological processes, which subsequently
contribute to the development of hepatosteatosis, hepatitis, and hepatic fibrosis, among others
(Kremer et al., 2006; Chen et al., 2018; Qu et al., 2020). Liver diseases that develop from liver injury
impose major burdens of costs and have attracted considerable attention worldwide. However,
treatment strategies for liver injury remain extremely limited.

Dietary flavonoids, including anthocyan, hyperoside, silymarin, and luteolin, are known for their
beneficial effects on health and active roles in the prevention and treatment of a variety of diseases,
such as cardiovascular disease, liver injury, fibrosis, and cancer (Gonçalves et al., 2009; Imran et al.,
2019; Rahman et al., 2021; Zhang et al., 2021). Erigeron breviscapus (Vant.) Hand. -Mazz. is a Chinese
ethnomedicine mainly distributed in Yunnan. The whole herb of E. breviscapus is edible and has been
used as functional herb tea in Yunnan. The Bai minority often stew eggs with E. breviscapus (Liu
et al., 2008). In addition, the whole herb of E. breviscapus has been applied in the treatment of
cerebral embolism, arachnoiditis, hemiplegia, and coronary artery disease for centuries in folk
medicine (Liu et al., 2017; Zhu et al., 2018). The main active extract of E. breviscapus is scutellarin
(SCU), a flavonoid compound with hepatoprotective potential. However, the mechanisms by which
SCU ameliorates liver injury have remained unknown until relatively recently.

Of note, the bioavailability of SCU is exceptionally low. In healthy volunteers and rats, the
oral bioavailability of SCU was found to be merely 2.2 and 0.67%, respectively (Wang and Ma,
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2018). The effects of SCU are in notable contrast to its poor
bioavailability. The gut microbiota that harbors within the
host gut comprises over 100 trillion bacteria. With the advent
of 16 S rRNA sequencing-based taxonomic profiling and the
development of germ-free models, investigators have been
appreciating the substantial effects of the gut microbiota on
clinical disorders. Duan et al. (2019) reported that cytolytic
Enterococcus faecalis was linked with the mortality of patients
with alcoholic hepatitis and that bacteriophages targeting
cytolytic E. faecalis abolished ethanol-induced liver disease
in humanized mice. Furthermore, supplementation with
probiotics such as Lactobacillus and Bifidobacterium
effectively improved hepatic disorders in mouse models (Gu
et al., 2020; Zhang et al., 2020). Drugging gut microbes may be
a promising method to mitigate liver diseases. Currently,
numerous phytonutrients with low bioavailability have been
proven to exert their pharmacological effects by remodeling
gut microbiota, such as raising the relative abundance of
probiotics (Dey 2019; Zeng et al., 2020). Thus, modulation
of gut microbiota may be one of the mechanisms of the hepatic
effects of SCU.

In this study, we utilized transcriptomic analysis using RNA
sequencing (RNA-seq) to identify the signaling pathways in the
liver that are modified by SCU, and the results showed that
expression of the nf-κb and cyp2e1 genes were significantly
dampened. We generated a carbon tetrachloride
(CCl4)–induced liver injury mouse model to determine
whether the hepatic effects of SCU were mediated by
inhibiting CYP2E1 and NF-κB pathways. We performed
taxonomic profiling based on 16 S rRNA sequencing to
identify the specific genus associated with the hepatoprotective
effects of SCU and observed that Lactobacillus was significantly
enriched upon SCU treatment. Finally, we performed
nontargeted metabolomics analysis using UHPLC-Q-Exactive
MS/MS to explore the potential mechanisms of SCU in
improving CCl4-induced liver injury and observed that
endogenous metabolites involved in linoleic acid metabolism,
biosynthesis of unsaturated fatty acids, bile secretion, and retinol
metabolism were significantly altered in feces and liver tissues
upon SCU treatment. These data indicate that SCU derived from
a functional food appears to be a promising agent to protect
against liver injury.

MATERIALS AND METHODS

Chemicals
Scutellarin (purity >98%, cat# HB20121201) was purchased from
Yunnan Plant Pharmaceutical Co., Ltd (Kunming, Yunnan,
China). Bifendate (cat# H33021305) was purchased from
Yunnan Jianzhijia Co., Ltd (Yunnan, China). CCl4 (cat#
80123318) and olive oil (cat# 69018028) were purchased from
Sinoreagent (Shanghai, China).

Animal and Experimental Design
SPF-grade BALB/c mice (male, 18–22 g, 8 weeks old) were
obtained from Tianqin Biotechnology Co., Ltd (Hunan,

China). Before the experiment, mice were acclimatized to the
environment (20 ± 3 °C, 12 h light/dark cycle) with free access to
food and water for 1 week. The experiments were carried out in
accordance with the Animal Welfare Guidelines and approved by
the Animal Care and Use Committee of Dali University (No.
2017–1201).

Experiment 1: BALB/c mice were orally administrated
either 0.5% CMC-Na or SCU (0.12 mmol/kg; suspended in
0.5% CMC-Na) for 5 weeks (n � 10 per group). Mice were
harvested following the last gavage. Liver tissues were collected
for RNA-seq.

Experiment 2: BALB/c mice were intraperitoneally injected
with either CCl4 (1 ml/kg; 1:9 dilution with olive oil) or an equal
volume of olive oil three times per week, plus daily gavage of 0.5%
CMC-Na or SCU (0.03, 0.06, and 0.12 mmol/kg) or bifendate
(0.4 mmol/kg) for 5 weeks (n � 10 per group). Mice were
euthanized following the last injection of CCl4. Blood samples,
liver tissues, and feces of each mouse were collected.

Transcriptome Analysis Based on RNA-Seq
Transcriptome analysis between the control and SCU groups was
conducted by Shenggong Bioengineering Co., Ltd (Shanghai,
China). Briefly, RNA was isolated from snap-frozen liver
tissues using TRIzol (Ambion, United States ) and assessed for
quantity using an Agilent 2100 Bioanalyzer (Agilent
Technologies, United States). After purification and
fragmentation, RNA was reverse transcribed into cDNA using
a SMART PCR cDNA Synthesis Kit (Clontech, Takara Bio).
Clustered 300–400 bp libraries were validated using an Agilent
2,100 Bioanalyzer (Agilent Technologies, United States ),
quantified using a Qubit fluorometer (Thermo Fisher
Scientific, United States ), and then sequenced on the Illumina
HiSeq 3,000 platform. Transcript abundance was estimated using
StringTie and known gene models. Differential expression
analyses were performed using the DESeq2. KEGG pathway
analysis was performed by clusterProfiler. The raw data were
deposited into the NCBI Sequence Read Archive (SRA) database
(accession number PRJNA736950, https://www.ncbi.nlm.nih.
gov/bioproject/PRJNA736950).

Biochemical Assay
Blood samples and a portion of the liver tissues were collected for
biochemical assays. Blood samples were centrifuged (3,000 rpm,
4 °C, 10 min) to obtain serum, and alanine aminotransferase
(ALT), aspartate aminotransferase (AST), albumin (ALB), and
total bilirubin (TBIL) in the serum were determined by the
corresponding kits. Liver tissues were homogenized with PBS
and then centrifuged (10,000 rpm, 4 °C, 25 min) to obtain
supernatant. The activity of superoxide dismutase (SOD) and
the content of malondialdehyde (MDA) were determined by
commercial kits. All kits for biochemical assays were
purchased from Nanjing Jiancheng Bioengineering Institute
(Nanjing, China).

Histopathology Assay
A portion of the liver tissues was preserved for histopathology
assay. Briefly, 4 μm thick liver paraffin-embedded sections were
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paraformaldehyde-fixed and stained with hematoxylin-eosin (H
and E). Images were obtained at 200X, and hepatic lesions were
based on assessment of hepatocyte necrosis and hepatic
inflammatory cell infiltration.

TUNEL Assay
Hepatocyte apoptosis was determined by the DeadEndTM

Fluorometric TUNEL System (Promega, Wisconsin,
United States). Briefly, 4 μm thick liver paraffin-embedded
sections were digested by 20 μg/ml proteinase K and then
incubated with TdT reaction mix. Finally, the sections were
stained with propidium iodide. Images were obtained at 200X
under a fluorescence microscope (Olympus, Tokyo, Japan), and
quantification of fluorescence intensity was performed using
ImageJ.

Immunohistochemical Assay
Liver paraffin-embedded sections (4 μm thick) were first
incubated with primary antibody and then incubated with
HRP-conjugated secondary antibody. Finally, the sections were
stained with a DAB substrate. The positive expression was
measured by ImageJ.

RT-qPCR
A portion of the liver tissues was snap frozen in liquid
nitrogen for RT-qPCR. Liver tissues were disrupted in
TRIzol (Invitrogen, United States), and RNAs were
prepared according to the TRIzol manufacturer’s protocol.
RT-qPCR was performed using TB Green® Premix Ex TaqTM

II (Takara Bio, Inc., Shiga, Japan), and the primers were as
follows:

IL-6 sense: 5′-CTGCAAGAGACTTCCATCCAG-3′, and
antisense: 5′-AGTGGTATAGACAGGTCTGTTGG-3′; IL-1β
sense: 5′-TGTGAAATGCCACCTTTTGA-3′, and antisense:
5′-GGTCAAAGGTTTGGAAGCAG-3′; TNF-α sense: 5′-CAG
GCGGTGCCTATGTCTC-3′, and antisense: 5′-CGATCACCC
CGAAGTTCAGTAG-3′; CYP2E1 sense: 5′-TTTCCCTAAGTA
TCCTCCGTGAC-3′, and antisense: 5′-CTTAATCGAAGCGTT
TGTTGA-3′; and GAPDH sense: 5′-GGTTGTCTCCTGCGA
CTTCA-3′, and antisense: 5′-TGGTCCAGGGTTTCTTAC
TCC-3′. GAPDH was served as an internal control. Fold
change was calculated using the 2−ΔΔCt method.

Western Blot
A portion of the liver tissues was snap frozen in liquid nitrogen
for the Western blot assay. Total proteins of liver tissues were
extracted with RIPA lysis buffer and quantified by a BCA kit
(Solarbio, Beijing, China). Forty micrograms of protein was
electrophoresed on 10% SDS gels and transferred to
polyvinylidene fluoride membranes. The membranes were
incubated with primary antibodies overnight at 4 °C and then
incubated with HRP-conjugated secondary antibodies for 1 h at
room temperature. The blots were imaged using a G:BOX gel
imaging system (Syngene, Cambridge, United Kingdom). The
densitometric analysis was performed using ImageJ. Data were
normalized to GAPDH.

Bioinformatics Assay
Total bacterial DNA from fecal samples was isolated using a
QIAamp DNA Stool Kit (Qiagen, Valencia, United States). The
yield and quality of DNAs were measured by a Nanodrop ND
1,000 Spectrophotometer (Thermo Fisher Scientific, United
States) and 0.8% agarose gel electrophoresis, respectively. The
V3-V4 region of the bacterial 16 S rRNA gene was amplified by
PCR (forward primer: 5′-ACTCCTACGGGAGGCAGCA-3′ and
reverse primer: 5′-GGACTACHVGGGTWTCTAAT-3′). PCR
products were purified with Vazyme VAHTS™ DNA Clean
Beads (Vazyme, Shanghai, China) and quantified using a
PicoGreen dsDNA Assay Kit (Invitrogen, United States ). The
sequencing service was provided by Personal Biotechnology Co.,
Ltd (Shanghai, China). The alpha diversity, including the Chao1
and Shannon indices, was calculated using OTUs in QIIME
(Denver, United States ). Beta diversity was visualized by
principal coordinate analysis (PCoA). The genus difference
was measured using the Z score. The correlation between
genus and liver injury indicators was analyzed using
Spearman’s correlation analysis. The prediction of microbiome
function was analyzed by PICRUSt, based on the KEGG
database. The raw data were deposited into the NCBI
Sequence Read Archive (SRA) database (accession number
PRJNA736871, https://www.ncbi.nlm.nih.gov/bioproject/?term
� PRJNA736871).

Nontargeted Metabolomics Based on
UHPLC-Q-Exactive MS/MS
Nontargeted metabolomics was conducted by Personal
Biotechnology Co., Ltd (Shanghai, China). Chromatography
was performed on an Ultimate 3000 UPLC system (Thermo
Fisher Scientific, United States ). An ACQUITY UPLC BEH C18

(100 × 2.1 mm, 1.7 μm, Waters, United States ) was adopted for
separation with the column temperature maintained at 40 °C and
the flow rate was 0.3 ml/min. The mobile phase consisted of (A)
0.1% formic acid and (B) acetonitrile in a gradient elusion as:
0–0.5 min, 5% B; 0.5–1.0 min, 5% B; 1.0–9.0 min, 5–100% B;
9.0–12.0 min, 100% B; and 12.0–15.0 min, 5% B. The injection
volume of each sample was 5 μl. Mass detection was carried out
on a Q-Exactive high resolution mass spectrometer (Thermo
Fisher Scientific, United States) coupled with an electrospray
ionization (ESI) source. The ESI source conditions were as
follows: ion source gas 1 (Gas1), 60; ion source gas 2 (Gas2),
60; curtain gas (CUR), 30; source temperature, 320 °C; ion spray
voltage floating (ISVF), ± 3500 V (positive and negative modes);
MS scan m/z range, 80–1200 Da; product ion scan resolution,
17,500; MS scan accumulation time, 0.20 s/spectra; and product
ion scan accumulation time, 0.05 s/spectra. Secondary mass
spectrometry was used for information-dependent acquisition
(IDA) in a high-sensitivity model, and the conditions were as
follows: declustering potential (DP), ±60 V (positive and negative
modes); collision energy, 35 ± 15 eV; excluding isotopes within
4 Da; and candidate ions to monitor per cycle, 6.

The raw data were analyzed with Compound Discoverer 3.0
(Thermo Fisher Scientific, United States), including peak
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extraction, alignment, correction, and standardization. The
structure of metabolites was identified by accurate mass
matching (<25 ppm) and secondary spectrum matching.
SIMCA-P 14.1 software (Umetrics, Umea, Sweden) was used
for pattern recognition. The data were preprocessed by Pareto
scaling and analyzed by multidimensional statistical methods
containing unsupervised principal component analysis (PCA),
supervised partial least squares discriminant analysis (PLS-DA),
and orthogonal partial least squares discriminant analysis (OPLS-
DA). One-dimensional statistical analysis included Student’s
t-test and multiple of variation analysis. In this study, the
altered metabolites with variable importance for projection
(VIP) > 1.00 and p < 0.05 among the control, model, and
SCU groups were selected as potential biomarkers for liver injury.

Statistical Analysis
All data were presented as the mean ± SD. Statistical significance
was determined by one-way analysis of variance (ANOVA)
followed by Dunnett’s multiple comparison test. All data were
considered statistically significant at p < 0.05.

RESULTS

SCU Displayed Hepatoprotective Potential
Transcriptomic analysis demonstrated a significantly altered
profile in the hepatic transcriptome of the SCU group relative
to the control group (Figures 1A,B). The nf-κb gene, a master
regulator of the cellular inflammatory response, was significantly

FIGURE1 | SCU displayed hepatoprotective potential. (A) Principal coordinate analysis (PCoA). (B) Volcano plot of transcripts. (C) Top 20 transcripts in liver
tissues. (D) KEGG pathway. (n � 5).
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FIGURE 2 | SCU protected against CCl4-induced liver injury in mice. Serum (A) AST, (B) ALT, (C) TBIL, and (D) ALB levels. (E) H and E staining (dotted line parts
represent the necrosis area; arrows represent the inflammatory cell infiltration). (F) TUNEL staining. Scale bar 50 μm, magnification 200×. (n � 5). ##p < 0.01 vs. control
group; *p < 0.05, **p < 0.01 vs. CCl4 group.
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FIGURE 3 | SCU inhibited CYP2E1 and NF-κB in mice with CCl4 hepatotoxicity. (A) Immunohistochemistry (yellow area, scale bar 50 μm, magnification 200×), (B)
Western blot, and (C) RT-qPCR of CYP2E1. Hepatic content of (D) MDA and (E) SOD. (F) Western blot of IκBα and NF-κB. (G) Hepatic transcripts of IL-6, IL-1β, and
TNF-α (n � 5). ##p < 0.01 vs. control group; *p < 0.05, **p < 0.01 vs. CCl4 group.
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FIGURE 4 | SCU modulated gut microbiota (A) Chao1, Shannon, and Pielou index. (B) PCoA of gut microbiota. (C) Bacterial taxonomic at phylum level. (D)
Bacteroidetes-to-Firmicutes ratio. (E) Z score analysis. (F) Selected three genera. (G) Spearman correlation analysis between gut microbiota and liver injury indicators,
(*, **) indicates a significant correlation (p < 0.05, p < 0.01). (H) Prediction of microbiome function based on the KEGG database. (n � 5). #p < 0.05, ##p < 0.01 vs. control
group; *p < 0.05, **p < 0.01 vs. CCl4 group.
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dampened. Furthermore, we also observed that the cyp2e1 gene, a
toxicological protein that regulates alcohol, acetaminophen, and
CCl4 metabolism, was inhibited in the SCU-treated group
(Figure 1C). The KEGG pathway analysis showed that 30
signaling pathways were significantly changed upon SCU
treatment and revealed a regulatory network involved in the
anti-inflammatory response and drug metabolism (Figure 1D).
Collectively, these data indicate that SCU has significant
influences on the hepatic inflammatory response and displays
hepatoprotective potential.

SCU Protected Against CCl4-Induced Liver
Injury in Mice
We sought to evaluate the hepatoprotective effects of SCU in a
mammalian model of CCl4 toxicity. As shown in Figures 2A–C,
serum AST, ALT, and TBIL levels were significantly elevated in
the CCl4 group but were markedly blunted in the SCU-treated
groups. Serum ALB levels were not significantly different among
the six groups (Figure 2D). In agreement with these results, CCl4-
treated mice had a large amount of centrilobular necrosis,
inflammatory cell infiltration, and hepatocyte apoptosis,
whereas liver injury in the SCU-treated groups was
significantly attenuated (Figures 2E,F).

SCU Inhibited CYP2E1 and NF-κB in Mice
with CCl4 Hepatotoxicity
We next sought to corroborate that the hepatic effects of SCU are
associated with CYP2E1 and NF-κB in a mouse model of CCl4
hepatotoxicity. CCl4 is mainly metabolized by hepatic CYP2E1 to
generate free radicals, which can trigger oxidative stress and
indirectly induce inflammatory responses (Zhang et al., 2020).
CCl4 challenge significantly increased hepatic CYP2E1
expression (Figures 3A–C) and led to an increase in hepatic
MDA (Figure 3D) and a decrease in hepatic SOD (Figure 3E).
Oxidative stress mediated by CYP2E1 was significantly improved
by SCU treatment (Figures 3A–E). CCl4 can also directly
stimulate inflammatory responses. NF-κB is a key
transcription factor that regulates the expression of
inflammatory genes, playing a critical role in the inflammatory
response (Ma et al., 2015). Based on the results in Figure 1C, NF-
κB is also a potential target of SCU. To verify the above result, we
detected the expression of IκBα and NF-κB in the liver. CCl4
poisoning dramatically downregulated the cytoplasmic
expression of IκBα and NF-κB and upregulated nuclear NF-
κB. The IκBα/NF-κB signaling pathway was significantly
inhibited by SCU in a dose-dependent manner (Figure 3F).
IL-6, IL-1β, and TNF-α are key inflammatory cytokines
regulated by the IκBα/NF-κB signaling pathway. To confirm
that the inhibition of the IκBα/NF-κB signaling pathway was a
result of decreased production of these three inflammatory
cytokines, we detected IL-6, IL-1β, and TNF-α transcripts in
the liver. Compared with the control group, hepatic mRNA levels
of IL-6, IL-1β, and TNF-α were remarkably increased in the CCl4
model group. These increases were significantly reduced by SCU
treatment (Figure 3G).

SCU Modulated Gut Microbiota
The gut microbiota has been recognized as a critical assistant in
the pharmacological effects of phytonutrients with low
bioavailability. As the above data indicated that the high-dose
SCU group (0.12 mmol/kg) exhibited better hepatoprotective
effects in the CCl4 liver injury model, gut microbiota in fecal
samples from the control, CCl4, and high-dose SCU groups were
analyzed in this part. We employed Chao1, Shannon, and Pielou
indices to assess the richness, diversity, and evenness of gut
microbiota. CCl4 stimulation significantly increased the three
indices, which was restored by SCU treatment (Figure 4A). We
observed a distinct clustering of microbiota composition for the
control, the CCl4 model, and the SCU groups using PCoA
(Figure 4B). In addition, we analyzed the degree of bacterial
taxonomic similarity at the phylum level to assess the overall gut
microbiota composition shift in the control, the CCl4 model, and
the SCU groups (Figure 4C). The Bacteroidetes-to-Firmicutes
ratio was significantly increased in the CCl4 model group
(Figure 4D) and was decreased in the SCU group
(Figure 4D). The Z score was further used to identify the
specific genera that were altered by CCl4 and SCU treatment
(Figure 4E). The collective genera among the three groups were
selected in accordance with the Z score >2 and relative abundance
>3%. The relative abundances of Lactobacillus, Bifidobacterium,
and Akkermansia were significantly blunted in the CCl4 model
group relative to the control group. SCU treatment significantly
elevated the relative abundance of these genera (Figure 4F).
Moreover, Spearman’s correlation analysis revealed that only
Lactobacillus was positively or negatively correlated with liver
injury features, including SOD, AST, IL-6, IL-1β, TNF-α, NF-κB,
and CYP2E1, among the three genera (Figure 4G). Through
PICRUSt analysis based on the KEGG database, it was found that
metabolic pathways, including lipid metabolism, metabolism of
cofactors and vitamins, and replication and repair, were restored
upon SCU treatment (Figure 4H).

Metabolite Profiling Analysis After SCU
Treatment
Untargeted feces and liver tissue metabolomics analysis were
employed to further evaluate the ameliorative effects of SCU on
CCl4-induced liver injury. The total ion current (TIC) of feces and
liver tissue samples from the control, the CCl4 model, and the
SCU groups in both positive and negative modes are shown in
Supplementary Figure 1. PCA and supervised OPLS-DA
revealed a clear separation among the control, the CCl4 model,
and the SCU-treated groups (Supplementary Figure 2). In
addition, all OPLS-DA models presented excellent stability
among the control, the CCl4 model, and the SCU-treated feces
and liver tissue samples (Supplementary Figure 2). No
overfitting was observed based on the results of permutation
tests (Supplementary Figure 3).

Variables from the OPLS-DA model with a VIP >1 and p <
0.05 were classified as differentially regulated metabolites that
could discriminate among the control, the CCl4 model, and the
SCU groups. In fecal samples, we identified seven altered
metabolites involved in linoleic acid metabolism, biosynthesis
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of unsaturated fatty acids, and bile secretion (Tables 1, 2). In liver
tissue samples, we identified 11 altered metabolites involved in
retinol metabolism (Tables 3, 4).

DISCUSSION

Alcohol-, drug-, and toxin-induced liver injury can develop into
liver fibrosis, cirrhosis, and even cancer, which has been deemed
one of the most health-threatening diseases in the world (Hou
et al., 2019; Zhu et al., 2019; Shirani et al., 2020). At present, more
attention is being given to the development of anti-liver injury
agents from functional foods, such as edible herbs, due to their
high efficacy, multiple targets, and low side effects (Hao et al.,
2020). In this study, we revealed the potential functional targets of
SCU, an active flavonoid derived from the traditional Chinese
herb E. breviscapus, through RNA-seq and gut microbiome 16 S
rRNA-seq. We also confirmed that SCU exerts its robust
protective effects against CCl4-induced liver injury.
Furthermore, a nontarget metabolomics approach based on
UHPLC-Q-Exactive MS/MS shows that SCU presents
hepatoprotective effects on liver injury by reversing the
potential biomarkers to normal levels. Collectively, SCU is a
promising agent for liver injury therapy.

CCl4-induced mouse liver injury is a widely used animal
model to mimic liver damage in humans. CCl4-transformed
trichloromethyl radicals (CCl3•) can react with molecular
oxygen to form a highly toxic trichloromethyl peroxyl radical
(CCl3OO•), and these free radicals can irreversibly bind hepatic
macromolecules, including DNAs, proteins, and lipids, triggering

oxidative stress and promoting a cascade of damage to the liver
(Amzar et al., 2017). Hepatic CYP2E1 is responsible for the
biotransformation of CCl4, and CCl4-derived free radicals can
increase the activity of CYP2E1, aggravating CCl4-induced liver
injury (Yu et al., 2014). Furthermore, various substrates, such as
ethanol and acetaminophen, are metabolized into hepatotoxins
via CYP2E1 (Wang et al., 2016; Torres et al., 2019). Cho et al.
(2018) underlined the pivotal role of CYP2E1 in alcohol-induced
liver injury. As per the results of transcriptomic analysis, CYP2E1
is a potential functional target for SCU. To corroborate this
finding, we examined the mRNA and protein expression levels
of CYP2E1 by immunohistochemistry, Western blot, and RT-
qPCR. Our data show that SCU significantly downregulated
CYP2E1 expression in mice exposed to CCl4. The degree of
oxidative stress in the liver was decreased when CYP2E1 was
inhibited. We determined hepatic SOD activity and MDA
content. SOD is the main antioxidant enzyme that eliminates
these free radicals and limits hepatic damage. MDA, the final
product of lipid peroxidation, is a biomarker of oxidative stress
(Sobeh et al., 2020; Zhang et al., 2020). The results show that SCU
significantly enhances SOD activity and attenuates MDA
production relative to the CCl4 group.

CCl4-induced oxidative stress and CCl4 itself can lead to
inflammatory responses. Inflammation is a normal immune
response that repairs and returns injured tissue to a healthy
state in the presence of tissue injury. Nevertheless, an excessive
inflammatory response leads to overproduction of inflammatory
mediators, which may, in turn, aggravate damage to the local site
or even cause life-threatening disorders (Kim et al., 2020).
According to the results of transcriptomic analysis, NF-κB is
another potential functional target of SCU. NF-κB is a master
regulator of the cellular inflammatory response. Without
stimulation, NF-κB heterodimers bind to IκBα and maintain
an inactive form. However, when stimulation occurs, the
degradation of IκBα followed by the activation of NF-κB can
contribute to the overproduction of proinflammatory cytokines,
worsening hepatic damage (Zhu et al., 2015; Shin et al., 2019). To
confirm this finding, we examined the IκBα and NF-κB protein
expression levels in the liver and found that SCU substantially
reversed CCl4-induced IκBα degradation and NF-κB activation.

TABLE 1 | Altered metabolites in feces among the control, CCl4, and the SCU group.

Metabolites CCl4 vs. control group SCU vs. CCl4 group

MW p
value

VIP
score

Change
fold

Trend p
value

VIP
score

Change
fold

Trend

Quinaprilat 410.18 0.016 1.03 2.60 ↓a 0.004 1.13 3.19 ↑b
3-Phenylpropanoic
acid

150.06 0.025 1.13 3.04 ↓a 0.03 1.00 2.24 ↑a

Gibberellin A12 332.19 0.045 1.21 3.69 ↓a 0.007 1.13 1.18 ↑b
Bis-ferulamidobutane 440.19 0.021 1.22 3.76 ↓a 0.0017 1.25 2.14 ↑b
Plicamine 462.17 0.015 1.25 3.89 ↓a 0.003 1.29 2.12 ↑b
Linoleic acid 280.24 0.0029 1.11 2.71 ↓b 0.006 1.08 6.22 ↑b
Deoxycholic acid 392.29 0.038 1.05 2.72 ↑a 0.0027 1.12 2.35 ↓b

(n � 3).
ap < 0.05.
bp < 0.01.

TABLE 2 | Pathways obtained among the control, CCl4, and the SCU group in
feces samples.

Pathway name p Value p Value adjusted

Metabolic pathways 0.972 0.972
Linoleic acid metabolism 0.000304 0.0131
Biosynthesis of unsaturated fatty acids 0.00219 0.0314
Bile secretion 0.000724 0.0156
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To demonstrate that the hepatic inflammatory response is
decreased when the IκBα/NF-κB signaling pathway is
inhibited, we detected the transcripts of IL-6, IL-1β, and TNF-
α by RT-qPCR. IL-6, IL-1β, and TNF-α are the main
proinflammatory mediators that can amplify inflammatory
reactions, playing a crucial role in the inflammatory response,
and they are regulated by the IκBα/NF-κB signaling pathway
(Kwon et al., 2016). The results show that SCU intake
significantly inhibits the production of proinflammatory
cytokines induced by CCl4.

AST, ALT, and TBIL are hallmarks of liver injury. When the
membranes of hepatocytes are ruptured by CCl4, these markers
are released into the extracellular space and enter the systemic
circulation, thereby increasing their serum contents (Ozer et al.,
2008). Our data show that SCU significantly reduces the serum
levels of AST, ALT, and TBIL, improving CCl4-induced liver
injury. Moreover, the efficacy of a high dose of SCU is similar to
that of the positive drug. The liver is the unique site of ALB
synthesis, and serum ALB levels serve as a specific marker of
hepatic synthetic function. However, decreased ALB levels often
occur in end-stage liver diseases, such as hepatic failure, rather
than short-term experimental liver injury because of its very long
half-life (Ozer et al., 2008). Histopathological assays and TUNEL
assays yielded consistent conclusions: SCU effectively ameliorates
hepatic lesions and apoptosis. In summary, these data prove that
the hepatoprotective effects of SCU are associated with inhibiting
the CYP2E1 and IκBα/NF-κB signaling pathways.

Given that SCU is a natural flavonoid with very poor
absorption, we infer that the beneficial effects of SCU are
mainly due to modulation of the gut microbiota. Our data
demonstrate a significant moderating effect of SCU on the gut
microbiota. At the phylum level, a comparison of gut microbial
structure between the CCl4 model and the SCU group revealed a
trend towards a decrease in the Bacteroidetes-to-Firmicutes ratio,
which is consistent with conclusion of Zhang et al. (2018). At the
genus level, we observed that SCU treatment enriched the relative
abundances of Lactobacillus, Bifidobacterium, and Akkermansia,
which are reported to promote liver repair and improve liver
injury and liver-associated diseases (Yeung et al., 2015; Deng
et al., 2020; Jantararussamee et al., 2021). Moreover, Lactobacillus
was the key genus responding to SCU treatment, according to
Spearman’s correlation analysis. Mountains of evidence have
proven that Lactobacillus supplementation or Lactobacillus-
derived metabolites can effectively ameliorate chemical toxin-
induced liver injury (Chiva et al., 2002; Saeedi et al., 2020). These
data indicate that Lactobacillus may play a critical role in the
hepatic effects of SCU. Our previous study strongly proves this
conclusion. We utilized a cocktail of antibiotics to deplete and
destroy the gut microbiota (especially Lactobacillus) in mice and
found that the hepatic effects of SCU were reversed (Miao et al.,
2020). Lactobacillus can also repress the translocation of bacteria,
which has emerged as a pivotal factor in aggravating liver
diseases, such as alcoholic hepatitis (Slattery et al., 2019).
However, bacterial or bacterial product translocation depends
on the degree of gut leakiness. In contrast to alcohol- and
acetaminophen-induced liver injury, the CCl4-induced liver
injury model had no significant impact on gut integrity
(Mazagova et al., 2015). Thus, various liver injury models have
to be utilized to verify these results. Mouse coculture is another
way to highlight the importance of gut microbiota. We raised
CCl4-treated mice and CCl4 + SCU-treated mice in the same cage,
and the results demonstrated that the cocultured CCl4 group had
a lower degree of liver injury (Supplementary Figures 4, 5).
These data prove that the hepatoprotective effects of SCU are
partly due to the modulation of gut microbiota.

TABLE 3 | Altered metabolites in liver tissues among the control, CCl4, and the SCU group.

Metabolites CCl4 vs. control group SCU vs. CCl4 group

MW p
value

VIP
score

Change
fold

Trend p
Value

VIP
score

Change
fold

Trend

13-cis-Retinoicacid 300.44 0.020 1.29 1.69 ↓a 0.036 1.20 2.11 ↑a
Callystatin A 456.32 0.017 1.52 1.56 ↑a 0.044 1.59 3.26 ↓a
Oleamide 281.27 0.048 1.16 2.72 ↑a 0.031 1.33 1.55 ↓a
All-trans-retinoic acid 300.43 0.043 1.19 2.33 ↓a 0.011 1.36 2.71 ↑a
Retinyl ester 286.45 0.0021 1.05 3.45 ↓b 0.0013 1.45 3.29 ↑b
Choline 103.10 0.009 1.30 1.48 ↓b 0.034 2.13 2.87 ↑a
Palmitoyl
ethanolamide

299.28 0.007 1.97 1.41 ↓b 0.021 1.29 2.37 ↑a

D-gluconic acid 196.05 0.039 2.10 2.91 ↓a 0.0019 1.93 1.65 ↑b
L-pyroglutamic acid 129.04 0.030 1.82 2.26 ↓a 0.048 1.46 3.14 ↑a
Xanthine 152.03 0.025 1.04 1.36 ↓a 0.012 1.09 3.27 ↑a

(n � 3).
ap < 0.05.
bp < 0.01.

TABLE 4 | Pathways obtained among the control, CCl4, and the SCU group in liver
tissues samples.

Pathway name p Value p Value adjusted

Metabolic pathways 0.870 0.870
Glycerophospholipid metabolism 0.0833 0.231
Neuroactive ligand-receptor interaction 0.186 0.241
Carbon metabolism 0.366 0.381
Retinol metabolism 0.00164 0.0342
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The occurrence of liver injury is also involved in metabolic
disorders. UHPLC-Q-Exactive MS/MS was utilized to analyze the
fecal and liver tissue metabolic profiles of mice treated with CCl4
and SCU. Seven altered metabolites in feces and 11 in liver tissues
were obtained, which are involved in linoleic acid metabolism,
biosynthesis of unsaturated fatty acids, bile secretion, and retinol
metabolism. Linoleic acid associated with linoleic acid
metabolism and biosynthesis of unsaturated fatty acids was
repressed in the CCl4-treated group. Moreover, it is well
documented that CCl4-induced liver injury is often
accompanied by steatosis, indicating that CCl4 can reduce the
ability of gut microbiota to metabolize lipids, leading to lipid
accumulation (Tsuchida et al., 2018). CCl4-induced lipid
accumulation is significantly improved by SCU, as evidenced
by the higher level of linoleic acid in a few studies. Bile secretion
and retinol metabolism are tightly associated with bile acid driven
by intestinal and hepatic FXR (Norum et al., 1986) and have
emerged as important factors in multiple physiological and
pathological states of the liver. Bile acids, such as deoxycholic

acid (DCA), can inhibit intestinal FXR, thereby suppressing the
transcription of FGF19/FGF15, which can reach the liver through
the portal vein. FGF19/FGF15 inhibits CYP7A1 expression in the
liver and then decreases bile acid synthesis (Wahlström et al.,
2016). Moreover, all-trans retinoic acid involved in retinol
metabolism can significantly activate hepatic FXR, contributing
to the inhibition of CYP7A1, thereby decreasing the synthesis of
bile acid (Zhang et al., 2020). In this study, we found an increased
deoxycholic acid (DCA) level in the feces and decreased all-trans
retinoic acid levels in the liver in the CCl4-treated group, which
was improved by SCU treatment. These data indicate that SCU
may maintain bile acid and lipid metabolism homeostasis to
improve liver injury.

Drugging the microbiome has been deemed an attractive
therapy and whether the change in the microbiome is
correlative or causative to disease has become an interesting
concern. In our previous and present studies, we demonstrated
that the SCU-altered microbiome has a causal role in protecting
against liver injury induced by CCl4 through antibiotic treatment

FIGURE 5 | Graphical abstract of protective property of scutellarin against liver injury induced by carbon tetrachloride in mice.
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and mouse coculture. Additionally, we identified robust
microbiome drug targets, Lactobacillus. It has been proposed
that probiotic Lactobacillus can ameliorate outcomes in a few
clinically relevant models of liver injury, such as non-alcoholic
fatty liver disease and alcoholic liver disease (Saeedi et al., 2020).
Previous studies have shown that Lactobacillus is quite effective at
innate inflammatory signaling pathways, including the NF-κB
signaling pathway (Collier-Hyams et al., 2005). Presently,
transcriptomics profiles have uncovered a prominent
downregulation of NF-κB in SCU-treated mouse liver samples.
We further demonstrated that Lactobacillus was negatively
associated with NF-κB through Spearman’s correlation
analysis. These results indicate that SCU may elicit its NF-κB
inhibition effects partly through enriching Lactobacillus in a
CCl4-induced liver injury model. A growing body of evidence
suggests that the composition of gut microbiota affects systemic
metabolism through alterations in the host metabolome
(Nicholson et al., 2012). Manipulating the gut microbiome
could reverse the dysregulation of host metabolism associated
with a pathological state (Chang et al., 2015). Here, we found that
a metabolic pathway involving bile acid homeostasis is strongly
associated with CCl4-induced liver injury and actively responsive
to therapeutic interventions for SCU. Indeed, Long et al. (2017)
highlighted the importance of Lactobacillus to host health by
maintaining bile acid homeostasis regulated by hepatic FXR and
CYP7A1. In our study, transcriptomic profiling also revealed that
SCU has a potential regulatory effect on hepatic FXR and
CYP7A1. These results indicate that SCU may maintain bile
acid homeostasis to protect against CCl4-induced liver injury
partly through enriching Lactobacillus. This finding needs further
investigation.

Considering that SCU is a flavonoid compound with poor
absorption, we believe that the hepatic effects of SCU are mostly
due to modulating of gut microbiota, which is pivotal in multiple
phenotypes associated with liver injury. Nevertheless, it is also
reported that SCU may elicit its pharmacological effects via
isoscutellarin, the secondary metabolite transformed by gut
microbiota (Wang and Ma, 2018). Gut microbiota collectively
encodes 150-fold more genes than the human genome, and this
genetic diversity encompasses a rich enzyme repository with
drug-metabolizing potential (Zimmermann et al., 2019). Most
natural compounds with low bioavailability are delivered orally
and undergo chemical modifications inevitably and the resulting
metabolites may have functional properties that are better than
those of their parent drugs (Obach et al., 2013). However, few
studies focus on this and need further research.

In conclusion, our study demonstrated that SCU exerted
robust hepatoprotective effects against CCl4-induced liver
injury by repressing the CYP2E1 and IκBα/NF-κB signaling

pathways, modulating the gut microbiota, enriching
Lactobacillus, and regulating endogenous metabolites involved
in lipid metabolism and bile acid homeostasis. Our study suggests
that SCU is a potential candidate for the development of
functional food for the treatment of liver injury (Figure 5).
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