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Abstract

Aim: HIV infection is associated with distortion of T-cell homeostasis and the IL-7/IL7R axis. Progressive infection results in
loss of CD127+1322 and gains in CD1272132+ CD4+ and CD8+ T-cells. We investigated the correlates of loss of CD127
from the T-cell surface to understand mechanisms underlying this homeostatic dysregulation.

Methods: Peripheral and cord blood mononuclear cells (PBMCs; CBMC) from healthy volunteers and PBMC from patients
with HIV infection were studied. CD127+1322, CD127+132+ and CD1272132+ T-cells were phenotyped by activation,
differentiation, proliferation and survival markers. Cellular HIV-DNA content and signal-joint T-cell receptor excision circles
(sjTRECs) were measured.

Results: CD127+1322 T-cells were enriched for naı̈ve cells while CD1272132+ T-cells were enriched for activated/terminally
differentiated T-cells in CD4+ and CD8+ subsets in health and HIV infection. HIV was associated with increased proportions
of activated/terminally differentiated CD1272132+ T-cells. In contrast to CD127+1322 T-cells, CD1272132+ T-cells were Ki-
67+Bcl-2 and contained increased levels of HIV-DNA. Naı̈ve CD127+1322 T-cells contained a higher proportion of
sjTRECs.

Conclusion: The loss of CD127 from the T-cell surface in HIV infection is driven by activation of CD127+1322 recent thymic
emigrants into CD1272132+ activated/terminally differentiated cells. This process likely results in an irreversible loss of
CD127 and permanent distortion of T-cell homeostasis.
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Introduction

The cytokine Interleukin (IL)-7 is non-redundant for T-cell

differentiation [1,2] and plays ongoing roles in T-cell survival

through homeostatic [3,4] and antigen driven proliferation [5].

Circulating IL-7 levels are elevated in lymphopenic conditions

[6,7,8], suggesting a homeostatic feedback loop and initial studies

of therapeutic rIL-7 in oncology and HIV infected patients show

promotion of naı̈ve and memory CD4+ and CD8+ T-cell

reconstitution [9,10,11,12]. Understanding how HIV infection

interacts with the IL-7 receptor subunits CD127 (IL-7Ra) and

CD132 (common gamma chain; cc) is therefore relevant to the

potential use of rIL-7 as an adjuvant therapy to combination

antiretroviral therapy (ART).

HIV infection is associated with a net loss of CD127 from the

surface of CD4+ and CD8+ T-cells [13,14,15,16]. This may be

secondary to transcriptional down-regulation [10,17,18], viral

infection [19,20], antigen stimulation, or IL-7-driven down-

regulation promoting endocytosis [21,22] and/or shedding [23].

The down-regulation of CD127 on T-cells is associated with

decreased IL-7-driven proliferation, decreased Bcl-2 expression

and cell survival, decreased CD25 expression, and loss of cytotoxic

activity [16,24,25,26,27]. This suggests that IL-7-driven thymopo-

esis, cellular survival, expansion and generation of central memory

T-cells (T(C)M) cells may be inhibited in HIV infection due to lack

of an available receptor. Given the development of recombinant

IL-7 as an adjuvant therapy, it is important to understand factors

that may limit the effectiveness of this cytokine.

PLoS ONE | www.plosone.org 1 February 2012 | Volume 7 | Issue 2 | e31148

low

a



Our group recently described novel subsets of T-cells on the

basis of IL-7R expression ie CD127+1322, CD127+132+ and

CD1272132+. HIV infection was associated with a loss of

CD127+1322 T-cells and a reciprocal gain in CD1272132+ T-

cells in both the CD4+ and CD8+ subsets. These changes were

present in primary HIV infection, became more pronounced in

chronic HIV infection and were not reversed after 10 months of

ART [15].

We sought to understand the phenotypes of CD127+1322 and

CD1272132+ T-cells and how these differed from the more

typical CD127+132+ T-cells. We hypothesised that studying these

cells in terms of maturation state, activation, proliferation and

survival as well as detecting DNA markers of recent thymic

emigration and HIV infection would illuminate why changes in

the proportion of these subsets correlate with IL-7 levels and

absolute CD4+ T-cell count in HIV infection.

Materials and Methods

Subjects
Patients with primary and chronic HIV infection were enrolled

in clinical studies at St Vincent’s Hospital Sydney. These studies

were approved by the institution’s Human Research and Ethics

Committee (Approval numbers SVH HO2/053 and SVH 96/

039) and written informed consent for the use of collected samples

was obtained. Peripheral blood mononuclear cells (PBMC) from

therapy naı̈ve patients with primary (n = 10) and chronic (n = 10)

HIV infection and from healthy volunteers (n = 10) were studied.

Cord blood mononuclear cells (CBMC; n = 5) were isolated from

healthy infants after uncomplicated births. Patients with primary

HIV infection had confirmed recent HIV infection by document-

ed seroconversion illness and incomplete western blot (ie

#3bands), or negative HIV serology within the preceding 6

months [28]. Patients with chronic HIV infection had been

infected with HIV for longer than six months. There were no

significant differences in virological or immunological response

between patients on different treatment regimes [29]. Contempo-

raneous clinical data for these patients are shown in Table 1. The

primary HIV infection subjects were significantly younger and had

a higher baseline CD4+T-cell count compared with the chronic

HIV infection subjects as in our previous work [15]. There were

no differences is baseline viral load (Table 1).

Flow-Cytometry
T-cell subsets were identified using multiparameter flow-

cytometry in PBMC using the following mAb: CD3-PERCP-

Cy5.5, CD4-Alexafluor700 (Pharmingen, San Diego, CA, USA),

CD127-Pacific Blue (eBioscience, San Diego CA, USA), CD132-

Biotin (Pharmingen, San Diego, CA, USA) with Streptavidin-

Quantum Dot-655 (Invitrogen, USA), CD45RO-ECD (Immuno-

tech, Quebec, Canada), mouse anti-human CCR7 (Becton-

Dickinson, San Jose CA, USA) with goat anti-mouse-PE (Jackson

Immunoresearch, West Grove PA, USA), CD27-PE, CD28-APC,

CD25-PECy7, CD31-FITC, CD95-FITC (all Becton-Dickinson,

San Jose CA, USA). Extracellular staining was performed as per

manufacturers’ instructions. Intracellular staining was performed

on thawed cryopreserved PBMC as previously described [30].

Flow-cytometry was performed on a dual laser LSR II flow-

cytometer (Becton-Dickenson) using FACSDiva v2.2 software. A

minimum of 50 000 cells were analysed. Compensation was

checked before each experiment and CD127 and CD132 isotype

control mAb were also examined. Additional control stains using

secondary mAb in the absence of the primary mAb confirmed that

there was no non-specific binding.

Cell-Sorting
Cell-sorting experiments were conducted using a FACS Aria

flow-cytometer (Becton-Dickenson). 15–306106 PBMC from

healthy volunteers or patients with primary HIV infection were

thawed and stained as described above. Unstained cells and those

stained with a single fluorochromes were used to set compensation

and positive and negative gates prior to each cell-sort. Compen-

sation was confirmed using cells stained with all CD3-PECRP-Cy

5.5, CD4-Alexaflour700, CD127 Pacific Blue and CD132-PE.

PBMC for sorting were stained with mAb to CD3, CD4 CD127

and CD132 as described above. The sorted populations collected

were CD3+4+127+1322, CD3+4+127+132+ and

CD3+4+1272132+. CD3+4+45RO262L+ naı̈ve and

CD3+4+45RO+62L2 memory T-cells and unsorted PBMC were

also collected as assay controls. The purity of sorted populations

was generally .95%.

Signal-joint T-cell receptor a excision circle (sjTREC)
detection by real-time PCR

DNA was purified from T-cell populations using the Qia kit

(Qiagen, Hilden, Germany) according to manufacturer’s instruc-

tions. Signal-joint (Sj) TRECs were measured by real-time

quantitative PCR as previously described [31]. Briefly, each

PCR reaction was conducted in a 20 mL mixture containing

12.5 mL of 26 Taqman Mastermix, 1.25 mL each of forward

primer, reverse primer and probe (containing a quencher and

reporter dye sybr green) and 3.75 mL of water. The sequences

of the primers and probe used previously [31] are: forward

primer 59-CCATGCTGACACCTCTGGTT-39, reverse primer

59-TCGTGAGAACGGTGAATGAAG-39 and the probe 59-

CACGGTGATGCATAGGCACCTGC-39. To nomalise for

the amount of DNA the Ca constant region of the TCR was

also amplified using the following: forward primer 59-

CCTGATCCTCCTGTCCCACAG-39, reverse primer 59-

GGATTTAGAGTCTCTCAGCTGGTACA-39, and the probe

59-ATCCAGAACCCTGACCCTGACCCTGCCG-39. The PCR

conditions were: 50uC for 2 min; 95uC for 10 min; 50 cycles of

amplification (95uC for 15 s; 60uC for 1 min). All samples were

run in duplicate on a Rotogene PCR machine (Corbett, Australia)

Table 1. Baseline characteristics of patient groups.

Age (years) CD4+ T-cell count (cells/mL) Viral load (copies/ml 6103)

PHI 31 (27–33) 675 (418–945) 71400 (20900–690400)

CHI 41 (38–45) 281 (117–390) 163750 (32000–296000)

P value ,0.05 ,0.05 0.82

Median and (interquartile range) are shown. PHI = Primary HIV infection; CHI = Chronic HIV infection.
doi:10.1371/journal.pone.0031148.t001

Activation of CD127+132- T-cells in HIV
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and all runs included a non-template control. For each sample run

in duplicate the Ct-value, defined as the minimal number of cycles

necessary to exceed threshold values was measured and averaged

and then a ratio of sjTREC: Ca was recorded.

HIV-DNA assay
Real-time quantitative PCR was used to measure the total gag

HIV-1 DNA as previously described [32]. Briefly, a 25 ml reaction

containing 12.5 mL of iQ supermix mastermix (Bio-Rad, USA)

and a final concentration of 800 nM of forward and reverse

primers and 200 nM of probe and 5 ml of target was used. The

sequences were as follows: forward primer 59-AGTGGGGGG-

ACATCAAGCAGCC-39, reverse primer 59-TACTAGTAG-

TTCCTGCTATGTCACTTCC-39 and probe 59-FAM-AT-

[C]A[A]T[G]AGGAA[G]CT[G]C-TAMRA-39. HIV-1 DNA

was normalised using the ABI TaqMan b-actin detection reagents

kit (Applied Biosystems, USA) in 25 ml with a final concentration

of 120 nM of forward and reverse primers and 180 nM of a FAM

labelled probe and 5 ml of template. The PCR conditions were:

3 minutes at 95uC for 1 cycle, followed by 40 cycles of 95uC for

15 s and 60uC for 1 minute. All samples were run in duplicate and

all runs included no template controls and were quantified using

standard curves of pNL4-3 plasmid for HIV-1 DNA and a non-

infected PBMC buffy coat standard curve for b-actin DNA on a

Bio-Rad iQ5 thermocycler (Bio-Rad, USA).

Statistics
Differences between groups were determined using the

unpaired non-parametric Mann-Whitney rank (for two groups),

or Kruskal-Wallis rank test (for three groups). All were performed

using StatView Data Analysis and Presentation V5.0 software

(Abacus concepts, Berkley, USA). A p value,0.05 was considered

statistically significant and were not corrected for multiple

comparisons.

Results

Enrichment of naı̈ve T-cells in the CD4+127+1322 and
T(E)M and TTD T-cells in the CD4+1272132+ T-cell
compartment

We confirmed, in a separate cohort, our previous finding that

HIV infection was associated with a net loss of CD127+1322 T-

cells and a reciprocal gain in CD1272132+ T-cells using a 9-

colour panel (data not shown). CD127+1322 and CD1272132+
T-cells were plotted on CD45RO vs CCR7 histograms to

determine the naı̈ve (CD45RO2CCR7+), effector memory

(T(E)M; CD45RO+CCR72), central memory (T(C)M;

CD45RO+CCR7+) or terminally differentiated (TTD;

CD45RO2CCR72) phenotype.

In healthy volunteers CD4+127+1322 T-cells contained the

greatest proportion of naı̈ve cells (median:71%) compared with

CD127+132+ (61%) or CD1272132+ T-cells (45%; p,0.01).

This remained true in primary (CD127+1322: 60% naı̈ve,

CD127+132+: 54%, CD1272132+:30%; p,0.001) and in

chronic HIV infection (CD127+1322: 53% naı̈ve,

CD127+132+: 46%, CD1272132+:20%; p,0.05; Figure 1a)ii

and b)ii).

In healthy volunteers CD4+1272132+ T-cells contained the

greatest proportion of T(E)M cells (median:30%) compared with

CD127+1322 (18%) or CD127+132+ (25%; p,0.05). In primary

(CD127+1322: 18% T(E)M, CD127+132+: 25%,

CD1272132+:27%; p = 0.13) and chronic HIV infection T(E)M

cells were more evenly spread (CD127+1322: 18% T(E)M,

CD127+132+: 25%, CD1272132+:35%; p = 0.06; Figure 1a)iii

and b)iii).

The CD4+1272132+ T-cells also contained the greatest

proportion of T(C)M T-cells (median:22%) compared with

CD127+1322 (10%) and CD127+132+(18%), although this did

not reach significance (p = 0.07). A similar distribution was noted

in primary (CD127+1322: 15% T(C)M, CD127+132+:17%,

CD1272132+:28%; p = 0.05) and chronic HIV infection

(CD127+1322: 22% T(C)M, CD127+132+: 20%,

CD1272132+:34%; p = 0.32; Figure 1a)iv and b)iv).

CD1272132+ T-cells contained the greatest proportion of

TTD (median:2%) as compared with CD127+1322 or

CD127+132+ T-cells (both median:1%; p,0.05). This difference

became more pronounced in primary (CD127+1322: 4% TTD,

CD127+132+: 3%, CD1272132+:14%; p,0.05) and chronic

HIV infection (CD127+1322: 7% TTD, CD127+132+: 3%,

CD1272132+:9%; p,0.05; Figure 1a)iv and b)iv).

Enrichment of naı̈ve T-cells in the CD8+127+1322

compartment and TTD T-cells in the CD8+1272132+ T-
cell compartment

In the CD8+ compartment, CD127+1322 T-cells contained

the greatest proportion of naı̈ve cells (median:62%) compared

with CD127+132+ (50%) or CD1272132+ T-cells (10%;

p,0.0001) in healthy volunteers. This trend was maintained

in primary (CD127+1322: 40% naive, CD127+132+: 43%,

CD1272132+:6%; p,0.0001) and chronic HIV infection

(CD127+1322: 27% naive, CD127+132+: 27%, CD1272

132+:3%; p,0.001; Figure 1a)vi and b)vi).

In the CD8+ T-cell compartment T(E)M T-cells were spread

between CD127+1322(median:11%), CD127+132+ (16%) and

CD1272132+ (13%;p = 0.13)T-cells. The T(E)M T-cells re-

mained spread across these subsets in primary (CD127+1322:

20% T(E)M, CD127+132+: 23%, CD1272132+:13%; p = 0.46)

and chronic HIV infection (CD127+1322: 15%

T(E)M,CD127+132+: 23%, CD1272132+:8%; p = 0.17). In

healthy volunteers there was a suggestion that CD1272132+
contained the greatest proportion of T(C)M cells (median:33%)

compared with CD127+1322 (14%) or CD127+132+ (13%) T-

cells, but this did not approach significance (p = 0.77). This

distribution was similar in primary HIV infection (CD127+1322:

13% T(C)M, CD127+132+: 12%, CD1272132+:25%; p = 0.85),

and in chronic HIV infection where it did reach significance

(CD127+1322: 15% T(C)M, CD127+132+: 19%, CD1272

132+:25%; p,0.05; Figure 1a)vii and b)vii).

CD8+1272132+ T-cells contained the greatest proportion of

TTD (median:44%) as compared with CD127+1322 (7%) and

CD127+132+ T-cells (9%; p,0.001). This remained true in

primary HIV infection (CD127+1322: 19% TTD, CD127+132+:

18%, CD1272132+:39%; p,0.05), and was more marked in

chronic HIV infection (CD127+1322: 27% TTD, CD127+132+:

23%, CD1272132+:59%; p,0.01; Figure 1a)viii and b)viii).

Impact of HIV infection on the phenotype of CD4+ T-cell
subsets

The majority of CD4+127+1322 T-cells in healthy volunteers

have a naı̈ve phenotype. HIV infection was associated with a

reduction in the proportion of naı̈ve cells and an increase in the

proportion of TTD in this subset (Figure 2a). The CD4+127+132+
compartment was relatively unaffected by HIV infection, but there

was an increase in TTD seen in chronic HIV infection (Figure 2b).

HIV infection impacts significantly on the CD4+1272132+
compartment with a loss of cells with a naı̈ve phenotype and a

Activation of CD127+132- T-cells in HIV
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gain in the proportion of TTD cells (Figure 2c). T-regulatory cells

(T-reg; CD25+ CD127low) are another subset of CD1272132+
CD4+ T-cells [33,34]. This subset remains constant in healthy

volunteers (median: 3% of CD4+1272132+ T-cells), primary (2%)

and chronic (3%; p = 0.76) HIV infection. Therefore, the

expansion of CD4+1272132+ T-cells is not due to an expansion

of T-reg cells.

Impact of HIV infection on the phenotype of CD8+T-cell
subsets

The majority of CD8+127+1322 T-cells in healthy volunteers

have a naı̈ve phenotype. HIV infection results in a reduction in the

proportion of naı̈ve cells and a gain in the proportion of TTD

within this subset. Primary HIV infection is also associated with a

transient increased in T(E)M cells in this compartment (Figure 2d).

The distribution within the CD8+127+132+ T-cell compartment

is relatively unaffected by HIV infection, but there is a slight

increase in TTD seen in chronic HIV infection (Figure 2e). In the

CD8+1272132+ T-cell compartment there is a trend towards loss

of cells with a naı̈ve phenotype and a gain in the proportion of

TTD cells although this does not reach statistical significance

(Figure 2f).

Increased expression of extra-cellular markers of
activation and terminal differentiation on CD1272132+
T-cells

CD1272132+ T-cells had a significantly greater proportion of

CCR72CD95+ activated T-cells as compared with

CD127+1322 and CD127+132+ counterparts. This was true in

health, primary and chronic HIV infection, in both CD4+
(Figure 3a) and CD8+ (Figure 3b) T-cell compartments. Similarly,

CD1272132+ T-cells also had a significantly greater proportion of

CD272282 terminally differentiated T-cells as compared with

CD127+1322 and CD127+132+ counterparts. This was true in

health, primary and chronic HIV infection, in both CD4+
(Figure 3c) and CD8+ (Figure 3d) T-cell compartments.

Figure 1. Phenotype of CD127+1322, CD127+132+ and CD1272132+ T-cells based on extracellular expression of CCR7 and
CD45RO in a) health and b) chronic HIV infection (representative raw data). Data collected from thawed cryopreserved peripheral blood
mononuclear cells (PBMCS) are shown. Cells were initially gated on CD3 vs side-scatter histograms to isolate lymphocytes before being plotted on
CD3 vs CD4 histogram to separate CD4+ (ii–iv) and CD8+ (v–viii) lymphocytes (via negative CD4 gating). Data representative of 20 subjects are
shown.
doi:10.1371/journal.pone.0031148.g001

Activation of CD127+132- T-cells in HIV
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Increased markers of cellular proliferation and decreased
markers of survival in CD1272132+ T-cells

CD1272132+ T-cells had a significantly greater proportion cells

that had recently proliferated (ie Ki-67+), as compared with

CD127+1322 and CD127+132+ counterparts. This was true in the

CD4+ (Figure 3f) but not CD8+ T-cell (Figure 3g) compartments. In the

CD4+ T-cell compartment CD1272132+T-cells has the greatest

proportion of Ki-67+ cells in health and chronic HIV infection,

however this did not reach significance in primary HIV infection, where

there was a greater amount of proliferation in all subsets. Interestingly in

the CD8+ T-cell compartment there was global proliferation of T-cells

from all subsets during primary HIV infection consistent with a robust

acute response to infection. In contrast there was minimal proliferation

in chronic HIV infection, perhaps suggesting anergised cells.

Figure 2. Phenotype of CD127+1322, CD127+132+ and CD1272132+based on extra-cellular expression of CCR7 and CD45RO in
health and HIV infection at baseline (Group Data). HIV-associated changes in T-cell populations based on CCR7, CD45RO and IL-7R component
expression are shown in a–c) CD4+ and d–f) CD8+ T-cell compartments. PHI = primary HIV infection; CHI = chronic HIV infection. *p,0.05; **p,0.01
and ***p,0.001 as compared with healthy volunteers and determined by the non-parametric Mann-Whitney rank test.
doi:10.1371/journal.pone.0031148.g002

Activation of CD127+132- T-cells in HIV
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Additionally, CD1272132+ T-cells had a significantly

lower proportion of cells expressing the anti-apoptotic protein

Bcl-2, as compared with CD127+1322 and CD127+132+
counterparts. This was true in health, primary and chronic HIV

infection, in both CD4+ (Figure 3g) and CD8+ (Figure 3h) T-cell

compartments.

Increased levels of HIV-1 DNA in CD4+1272132+ T-cells
As the CD4+1272132+ T-cells that were expanded in HIV

infection were largely T(E)M or TTD cells, we examined whether

these activated cells were more likely to be infected with HIV. In

four patients with primary HIV infection we measured the amount

of HIV-DNA in CD127+1322, CD127+132+ and CD1272132+

Figure 3. Activation phenotype of CD127+1322, CD127+132+ and CD1272132+based on extra-and intracellular markers in health
and HIV infection at baseline. HIV-associated changes in T-cell populations based on a–b) CCR7 and CD95 c–d) CD27 and CD28 e–f) Ki-67 g–h)Bcl-
2 and IL-7R component expression are shown in a,c,e,g) for CD4+ and b,d,f,h) for CD8+ T-cell compartments. PHI = primary HIV infection;
CHI = chronic HIV infection. *p,0.05; **p,0.01 and ***p,0.001 within each subject category by the non-parametric Kruskal-Wallis test.
doi:10.1371/journal.pone.0031148.g003

Activation of CD127+132- T-cells in HIV
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CD4+ T-cells. We found that CD4+127+1322 T-cells had a

relatively low amount of HIV-DNA (median:488 copies/500 ng

DNA) which was increased greater than 4-fold in CD4+127+132+
T-cells (2228 copies/500 ng DNA) and in CD4+1272132+ T-

cells (2444 copies/500 ng DNA; p = 0.23).

Higher concentration of sjTRECs in CD4+127+1322 T-
cells compared with other subsets

To determine whether CD127+1322 T-cells were in fact recent

thymic emigrants we sorted CD4+ T-cells from healthy volunteers

and patients with primary HIV infection into CD127+1322,

CD127+132+ and CD1272132+ subsets and then measured

sjTRECS as a ratio compared to the C-a housekeeping gene.

Overall there was a significantly higher concentration of sjTRECs

in the CD127+1322 subset compared with CD127+132+ or

CD1272132+ CD4+ T-cells (p,0.01; Figure 4b). When the

healthy volunteers were analysed alone, this approached signifi-

cance (p = 0.09) and was statistically significant in the primary

HIV infection cohort (p,0.05).

In further proof-of-principle experiments we show that the level

of sjTRECs in unsorted population of T-cells was intermediate as

compared with our sjTREC rich CD127+1322 and sjTREC

depleted CD1272132+ T-cells (Figure 4b). Additionally we

showed that T-cells with a naı̈ve phenoytpe (CD45RO262L+)

had far higher concentration of sjTRECs than those with memory

phenotype (CD45RO+62L2) and that CD4+ cord blood T-cells

have a higher proportion of sjTRECs than adult PBMC

counterparts, both as expected (Figure 4b).

Relative lack of CD1272132+ T-cells in cord blood
mononuclear cells

Finally we hypothesised that the proportion of both

CD127+1322 and CD1272132+ T-cells would be significantly

altered in cord blood mononuclear cells as compared with adult

PBMC due to the relative lack of antigen exposure and T-cell

activation in utero. There was a higher proportion of CD127+1322

CD4+ (median = 27%) and CD8+ (24%) T-cells in cord blood as

compared with PBMC (21% CD4+ p = 0.17; 18% CD8+
p = 0.34), however this did not reach significance. There were

also significantly less CD1272132+ CD4+ (6%) and CD8+ (5%)

T-cells in cord blood compared with adult PBMC (10% CD4

p,0.01; 24% CD8+ ; p,0.01).

Discussion

HIV infection is associated with down-regulation of CD127

from the surface of CD4+ and CD8+ T-cells [13,14,15,16]. It is

unknown whether this is the result of viral infection, antigen

stimulation or ongoing ligand stimulation by elevated levels of IL-

7. However this down-regulation of CD127 is associated with

marked alterations in T-cell homeostasis, particularly decreased

Bcl-2 induction and cell survival and loss of CTL activity

[16,24,25,26,27]. Therefore determining what drives CD127

down-regulation may have important implications for understand-

ing T-cell homeostasis, as well as on the application of therapeutic

IL-7.

Our group recently showed that HIV infection was associated in

a progressive loss in the proportion of CD127+1322 T-cells and a

reciprocal gain in the CD1272132+ T-cells which correlated to

increased circulating IL-7 levels and decreased absolute CD4+ T-

cell counts and did not reverse following ART [15].

Here we report that CD127+1322 T-cells are enriched for

CCR7+45RO2 naı̈ve cells in CD4+ and CD8+ T-cell compart-

ments in both health and HIV infection. Conversely,

CD1272132+ T-cells were most enriched for CCR72

CD45RO2CD272CD282 terminally differentiated memory T-

cells in CD4+ and CD8+ compartments in healthy and HIV

infected hosts.

In the CD4+ T-cell subset CD1272132+ T-cells were

associated with a greater proportion of Ki-67+ proliferating cells

in healthy volunteers and chronic HIV infected patients, however

in primary HIV infection there was global proliferation of cells

across all subsets. In the CD8+ T-cell compartment there was little

proliferation in healthy volunteers, marked global proliferation in

primary HIV infection (likely representing a primary immune

response), and a relative lack of proliferation of the CD1272132+
T-cells in chronic HIV infection which may represent a state of

‘‘exhausted’’ T-cells as seen in other chronic viral infections

[35,36,37]. The anti-apoptotic protein Bcl-2 was lower in the

CD1272132+ subset in health and HIV infection in both CD4+
and CD8+ T-cell subsets, indicating these cells are short-lived.

Additionally our data suggests a relative segregation of HIV-DNA

in CD1272132+ and CD127+132+ CD4+ T-cells compared with

CD127+1322 T-cells during primary HIV infection, although this

requires confirmation in larger numbers.

Our data suggests that CD127+1322 are a subset of naive cells

and we questioned whether the CD127+1322 T-cells represented

recent thymic emigrants. Indeed sjTREC analysis showed that

CD127+1322 had the highest proportion of sjTRECs compared

with CD127+132+ and CD1272132+ CD4+T-cells this was true

in health and primary HIV infection.

In summary this work suggests that T-cells exit the thymus as

CD127+1322 T-cells that are largely Ki-672 and Bcl-2high and

lacking expression of activation markers. As these cells undergo

antigen driven activation they are more likely to have a

CD127+132+ phenotype, and the most activated/terminally

differentiated cells are CD1272132+ that are largely Ki-67+Bcl-

2low and enriched for CD95+ and CD272282 terminally

differentiated cells. We tested this hypothesis by measuring T-

cell populations in cord blood mononuclear cells (which would

have been exposed to minimal antigens) and comparing them to

adult PBMC. Cord blood showed a trend towards expansion of

naı̈ve CD127+1322 CD4+ and CD8+ T-cells and also a

significant decrease in the proportion of activated CD1272132+
CD4+ and CD8+ T-cells.

HIV infection impacts on this model in two ways: firstly there is

a net loss of naı̈ve cells and a net gain of TTD, concurrently there

is a loss of CD127+1322 T-cells and a gain in CD1272132+ T-

cells. HIV infection therefore expands the proportion of

CD1272132+ activated/terminally differentiated T-cells which

occur to a smaller degree in the healthy host. Additionally our data

suggests HIV infection is preferentially segregated within this

subset possibly due to their highly activated state during a primary

immune response. This model is summarised in Figure 5.

Given the phenotype of CD1272132+ T-cells are highly

activated/terminally differentiated, it is more likely that repeat

antigen activation from HIV infection is the main driving force

behind the net loss of CD127 from the T-cell surface of these cells.

While IL-7 ligand binding alone has also been shown to down-

regulate CD127 from the cell surface, this does not cause classical

activation of the T-cell and instead cells undergo homeostatic

driven proliferation which includes T-cells dividing and retaining a

naı̈ve phenotype [38,39]. However it is also true that IL-7 can

synergise with antigen stimulation to cause expansion of T(E)M

cells [5], and in this instance IL-7 may synergise with HIV antigen

to drive expansion of newly activated CD127- T-cells. Certainly

this may explain why plasma IL-7 levels correlate positively with
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Figure 4. CD4+127+1322 T-
cells are enriched in Cord Blood
mononuclear cells and contain
a high proportion of sjTRECS
compared with CD127+132+
and CD1272132+ T-cells. a–b)
CD4+127+1322 T-cells are enriched
for sjTRECS in healthy adult volun-
teers and patients with primary HIV
infection. Cryopreserved PBMCs
from healthy volunteers (N = 4) or
patients with primary HIV infection
(PHI; N = 4) were sorted into
CD4+127+1322, CD4+127+132+ or
CD4+1272132+ populations. DNA
was then extracted and the TREC: C-
a ratio was determined by real-time
PCR as shown in the box-plots
below. b) Additional proof of prin-
ciple experiments confirm the high-
er concentration of TRECs in naı̈ve
CD4+ T-cells as compared with
memory T-cells as shown in bar
charts below. *p,0.05; **p,0.01 as
measured by the Kruskal Wallis non-
parametric test. Cord Blood mono-
nuclear cells had a high concentra-
tion of TRECS that were not en-
riched in the CD127+1322 subset
again as shown in bar charts. c)
Cord blood mononuclear cells have
a trend towards a greater propor-
tion of CD127+1322 CD4+ T-cells
and a smaller proportion of
CD1272132+ CD4+ T-cells as com-
pared with adult PBMCs. Data rep-
resentative of 10 subjects.
doi:10.1371/journal.pone.0031148.
g004
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the proportion of CD4+1272132+ and negatively with

CD4+127+1322 T-cells [15].

In conclusion this work has delineated that the net loss of

CD127 expression in HIV is driven at least in part by the

activation of sjTREC rich CD127+ naı̈ve cells into more activated

phenotypes which may be preferentially infected by HIV. Our

initial work showed the populations depleted by HIV infection do

not recover following 10 months of ART suggesting the transition

from CD127+ naı̈ve cells to CD1272 terminally differentiated/

activated and infected T-cells is irreversible, at least in the short to

mid-term. These data may be relevant to studies of therapeutic IL-

7, which may be less useful in advanced disease where the pool of

CD127+ T-cells is more greatly diminished.
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