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Abstract: We apply tree-based classification algorithms, namely the classification trees, with the use
of the rpart algorithm, random forests and XGBoost methods to detect mood disorder in a group of
2508 lower secondary school students. The dataset presents many challenges, the most important
of which is many missing data as well as the being heavily unbalanced (there are few severe mood
disorder cases). We find that all algorithms are specific, but only the rpart algorithm is sensitive; i.e.,
it is able to detect cases of real cases mood disorder. The conclusion of this paper is that this is caused
by the fact that the rpart algorithm uses the surrogate variables to handle missing data. The most
important social-studies-related result is that the adolescents’ relationships with their parents are the
single most important factor in developing mood disorders—far more important than other factors,
such as the socio-economic status or school success.

Keywords: classification; classification trees; rpart algorithm; random forests; XGBoost; mood
disorders; emotions detection; Burns test

1. Introduction

Adolescence is one of the most difficult periods in a person’s life. It is also one of the
most consequential ones—what happens during this period may and often will shape the
life of a person.

An adolescent transitions between childhood an adulthood, and this is one of the
formative developmental tasks that everyone goes through. The young person, not being
unambiguously identified by their immediate environment as an adult or a child, may
experience uncertainty, loss of orientation, internal and external conflicts, and tensions.
These lead to changes in mood and behavior (compare [1] and references therein). These
developmental tasks are made even more difficult by the fact that the adolescents need to
cope with violent neurohormonal changes [2].

For these reasons, many adolescents experience mood disorders, which include sad-
ness, dejection, hopelessness, sense of worthlessness, and losing interest in various activities
and social relationships [1,2]. These feelings are not exclusive to adolescents as everyone
can experience them at various points in their life, but they seem to be particularly preva-
lent in this group [2]. It is necessary to stress that mood disorders as described in this paper,
as well as those which are being cited, should not be equated with depression, which is
a pathological form and can only be diagnosed by a qualified psychiatrist. What we are
concerned about is a state of depressed mood, which is quite distinct from depressive
syndromes and clinical depression [2].

Depressed moods are experienced by 15–40% of adolescents, but in most of them the
mood disorders resolve and disappear. However, in a small fraction they develop into the
depressive syndrome (5–6%), and for some it develops into clinical depression (1–3% of
adolescents with mood disorders) [2].
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According to Carr et al. [3] the development of mood disorders is mainly determined
by the following factors

1. Genetic susceptibility, the presence of mood disorders in the family.
2. Early loss experience related with health problems or psychological loss (parting, or-

phaning, stay at orphanage, deleterious social conditions, loss of trust in relationships
following mistreatment).

3. Difficulties in contacts with parents, leading to the loss of the sense of security. This
factor also comprises other forms of family dysfunctionality, which lead to losing the
sense of security and mood disorders, for example: depression in parents, domestic
violence, alcohol or drug abuse, and family disintegration.

4. Individual personality traits, which include low intelligence, hampering expected
school achievement, feeling of helplessness, and as excessive self-criticism following
from the conviction that the most important sources of support are unavailable to
the child.

The literature cited above, as well as analyses and classifications proposed in other
sources, point to family relation as one of the most important factors in mood disorders [4–6].

One of the most often used tools for establishing and classifying mood disorders is
the Burns Depression Checklist [7]. This is a self-assessment-based checklist in which the
respondent assess their own mood based on the analysis of their thoughts and feelings,
relationships with other people, the actions they undertook, physical symptoms, and
suicidal impulses (Burns, 2008). The answers are used to establish the presence of depressed
mood as well as categorizing it according to the following scale (we are using a slightly
simplified list proposed in [1]).

1. No depressed mood.
2. Normal state but there is no joy.
3. Mildly depressed mood.
4. Average level of depressed mood.
5. Strongly depressed mood.
6. Very strongly depressed mood.

1.1. Motivation for the Present Study

In 2012, a major study called “The Life of the Citizens of Lubusz Voivodeship.
The Present and Future Outlook” was carried out by the University of Zielona Gora,
Poland. It was geared towards getting to know many aspects of the life of western Poland,
one of which was the condition of the secondary school students, i.e., adolescents, from the
Lubusz voivodeship. This part of this study gave a large questionnaire to 2508 students,
aged 13–16 years old, and one of its parts was the Burns checklist. In the returned ques-
tionnaires, there were 221 cases for which the mood disorder could not be established
because the data necessary to do so were missing. There were at least some answers to
other questions, but not to the specific ones, given by the Burns checklist [8].

This was not the only problem with this study. As the reader may learn from the
supplementary resources accompanying the present paper, which contain all the questions
used in this questionnaire, many of the questions are repetitive and highly correlated, some
of them might be considered misleading (in the opinion of the authors of this paper), some
of them lack the necessary options for respondents (i.e., the specific answer a student may
want to give is absent and cannot be selected), and the questionnaire is very long, making
it difficult for teenagers to concentrate for long enough and fill out the whole document.
These flaws have led to many missing answers, which entails the impossibility to use
standard statistical methods to establish the correlates of mood disorder. Indeed, there are
few publications following this study, which might be surprising given how large it was.

Classification trees and related techniques (i.e., random forests and the XGBoost
algorithm) are considered to be robust to the problems identified above. They can deal with
missing data either naturally (classification trees via the rpart algorithm) or by cleverly
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inputting them (random forests and XGBoost). They can also naturally deal with large
number of covariates, which is true of the questionnaire being described. Additionally,
the classification trees are highly interpretable and can help identify the most important
variables for prediction, effectively ranking them from the most to the least important
one [9–11].

Thus, the aims of the present paper are the following. The first goal is to try and apply
the three algorithms to see if they can cope with the missing values in the data and to what
extent their absence influences their predictive power. The measures used to establish this
are the mean misclassification error and the confusion matrix. We also aimed to build a
predictive model helping us to classify the non-respondents (i.e., those for which the Burns
test could not be used) as either having the more severe cases of mood disorder or not.
These models cannot have any application outside this study since it is hard to expect that
someone would use all the other question but the Burns checklist. Rather, it is a proof of
concept that these types of techniques can be used for highly problematic, questionnaire-
based datasets. Another aim was to try and identify the correlates of mood disorder, which
turns out to be almost impossible to do using the standard statistical methods.

1.2. Classification Trees

Classification trees are one of the oldest and most often used ML techniques. Be-
cause of their simplicity, both conceptual and algorithmic, they are among the most popular
approaches—they were found to be among the top 10 algorithms in data mining [12]. They
are used in a wide variety of applications, ranging from stochastic digit recognition to
disease severity classification [9,10,13].

Let us define
X

de f
= {X1, X2, . . . , Xp}, (1)

as the predictor space. The classification tree partitions this space into J distinct, non
overlapping regions

R1, R2, . . . , RJ . (2)

The regions Ri are high-dimensional rectangles (boxes).
Let us assume that the sample population consists of n observations from C classes.

A trained classification tree model partitions the observations into J terminal groups,
to each of which one of the C classes will be assigned on the basis of the majority class
obtained during the training process on the training set (we assume no ties).

The goal of the training procedure is finding the boxes R1, . . . , RJ with the use of a
top-down, greedy procedure called recursive binary splitting. The procedure begins with
an R that is composed of all observations, and then this region is successively split into two.
The splits are based in minimizing an impurity index, which measures classification error.

Before we go over the most important impurity indices, let us define an auxiliary
concept. In classification problems, sometimes the consequences of misclassifying obser-
vations to some classes are more important than to other classes. This problem is tackled
by defining the so-called loss matrix, which is a C × C matrix with L(i, j) being the loss
incurred by classifying a class i observation as class j [9,10,13].

1.2.1. Splitting Criteria

Let us assume we are splitting a node A into a left and a right node—AL and
AR, respectively.

The decision on how to split the A node is usually based on look-ahead rules or
defining an impurity function. Since the former is computationally expensive, it is not very
often used, and the implementation used in the present paper employs the latter approach.

Let us define an impurity function as follows

I(A) =
C

∑
i=1

f (piA), (3)
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where piA is the proportion of the training samples in node A that belong to class i. We
impose the condition that I(A) = 0 if A is pure, so function f has to be concave with

f (0) = f (1) = 0.

The most popular node impurity indices meeting these criteria are [9,10,13]:
1. Classification error rate

f (p) = 1−max(p),

This measure is rarely used because it lacks sensitivity [10].
2. The Gini index

f (p) = p(1− p),

3. Entropy (information index)
f (p) = −p log(p),

in fact, the Gini index and Entropy are very similar to one another.
The split of A into AL and AR is chosen so that it maximizes the following quantity

∆I = p(A)I(A)− p(AL)I(AL)− p(AR)I(AR). (4)

∆I is called impurity reduction [13].

1.2.2. Incorporating Losses through the Loss Matrix

One of the methods in which the risk of misclassification is reduced that is not covered
by the impurity measures described above is incorporating the loss matrix.

Let us assume that samples are randomly distributed among the C classes with
probabilities (p1, p2, . . . , pc).

1. Generalized Gini index: The Gini index follows from the misclassification probabil-
ity [13]

G =
C

∑
i=1

C

∑
j=1,j 6=i

pi pj = ∑
i

pi(1− p2
i ). (5)

G measures total variance across the C classes. If L(i, j) is the (i, j) misclassification
loss, the expected cost of misclassification is ∑i ∑j L(i, j)pi pj, which leads to the generalized
Gini index [13]

G(p) = ∑
i

∑
j

L(i, j)pi pj. (6)

2. Altered priors method The software used in this paper uses the altered priors
method, so let us concentrate on this approach. Let us define

R(A) =
C

∑
i=1

p(i|A)L(i, τA), (7)

where A is a node of the classification tree, p(i|A) is the conditional probability that the
true class of observation x is i on the condition that observation x belongs to class A, τ(A)
is the class assigned to A, and R(A) is the risk of A, i.e., the proportion of misclassified
cases [13].

It can be shown that

R(A) =
C

∑
i=1

πiL(i, τ(A))
niA
ni

n
nA

, (8)

where L(i, τ(A)) is the loss matrix for incorrectly classifying an i as τ(A), ni is the number
of observations in the sample that are class i, nA is the number observations in node A,
and niA is the number of observations of class i in node A.
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Let us define πi as the prior probability of class i. Let us assume that there exist π̃i
and L̃ such that

L(i, j) =
{

Li i 6= j
0 i = j,

(9)

so that now
π̃i =

πiLi

∑j πjLj
. (10)

For C = 2, the above is always possible and other priors are exact, and for arbitrary loss
matrix dimension of C > 2 the above formula is used with [13]

Li = ∑
j

L(i, j).

When a tree is being built, one of the above measures is used to evaluate the quality
of a particular split. A split is performed if it leads to increased node purity [9,10].

1.2.3. Tree Pruning

The methodology described above will almost certainly lead to growing very large
trees and consequently overfitting the data. To avoid this, the concept of tree pruning has
been introduced [9]. This strategy is based on growing a very large tree and then pruning
it back based on selecting a subtree that leads to the lowest classification error established
by the cross-validation procedure. One of the best known algorithms to achieve this goal
of the most effective subtree (pruned tree) is cost complexity pruning, also known as the
weakest link pruning [9,10].

In cost complexity pruning, a series of trees T0 . . . Tm is created, with T0 being the
initial, full size tree and Tm being the tr. A tree is created at step i by removing a subtree
from the previous tree (i− 1) and replacing this whole subtree by a leaf node containing
the value arrived at during the tree building process. The tree to be removed is chosen in
the following way [14,15]:

1. The error rate of tree T over dataset S is defined as err(T, S),
2. The subtree for which

err(prune(T, t), S)− err(T, S)
|leaves(T)| − |leaves(prune(T, t))| ,

is minimal is removed. Function prune(T, t) is the tree defined by pruning the t
subtrees from the T tree.

1.3. Random Forests

Random forests is an algorithm based on the bagging algorithm [16]. In the bagging
approach, the bootstrapping idea is utilized to reduce the variance of a machine learning
method [10]. It is not limited to the tree-based methods and has been used in many other
contexts [9,10].

In this approach, B separate training sets are bootstrapped from the training set and
the predictive functions

{ f̂ ∗1 (x), f̂ ∗2 (x), . . . , f̂ ∗B(x)}

are built.
The final predictive function is an average of these:

f̂avg(x) =
1
B

B

∑
b=1

f̂ ∗b(x), (11)

where the asterisk marks a function on a bootstrapped set [9,16].
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If we assume that in a limited classification problem with two classes each of the
f ∗b can yield a result in {−1, 1}, sign( f̂avg(x)) will act as a majority vote on a bagged
classification problem [9,16].

The error in this approach can be estimated as out of bag error; i.e., the error is mea-
sured for the observations that did not enter the currently bootstrapped sample [9,10,16].

Random forests are an improvement over bagged trees by introducing trees decorrelation.
Decorrelation is introduced by choosing a random sample of m predictors from the full
set of p predictors at each split. This split can thus only use the selected m predictors,
and at each split a new random sample of m predictors is taken. It has been reported that
random forests lead to a substantial improvement in prediction over both standard trees
and bagging [10].

1.4. Tree Boosting

Boosting is a method proposed by Kearns and Valiant [17,18] that introduces the idea
of many weak classifiers helping to produce a strong classifier.

A weak classifier is a classifier whose error only marginally outperforms random
guessing. In boosting, such weak classifiers are repeatedly (sequentially) applied to pro-
gressively modified data.

Let us assume that we have a two-class problem with output in the set Y ∈ {−1, 1}.
Using the predictor space (1), a classifier G(X) produces a prediction with the following
error rate

Err. =
1
N

N

∑
1

I(yi 6= G(xi)), (12)

where I is an indicator function [9,18].
The boosting algorithm produces a sequence of M weak classifiers Gm(x) where

m = 1, 2, . . . M.
While this approach can bee applied to many ML algorithms, we are interested in

applying it to classification trees.
Let us assume the prediction space is divided into C disjoint regions (terminal nodes)

Rj where j = 1 . . . , C (compare (2)). A constant γ is assigned to each such region with the
following predictive rule [9,18]

x ∈ Ri =⇒ f (x) = γi. (13)

We now express a tree as

T(x; Θ) =
C

∑
i=1

γi I(x ∈ Ri), (14)

with parameters Θ ∈ {Ri, γi}C
1 . These parameters are found by minimizing the empirical risk

Θ̂ = arg min
Θ

C

∑
i=1

∑
xi∈Ri

L(yi, γi). (15)

In the previous section, the Gini index was introduced to replace the misclassification
loss. The boosted version of trees built with the use of the Gini index is a sum introduced
in a forward manner [9]

fM(x) =
M

∑
m=1

T(x; Θm). (16)

Each step of this procedure must optimize the following problem

Θ̂m = arg min
Θm

N

∑
i=1

L(yi, fm−1(xi) + T(xi; Θm)), (17)
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for the region set and constants

Θm = {Rim, γim}Cm
1 ,

of the next tree given the current model’s fm−1(x) [9].
Thus, we have arrived at a numerical optimization problem. This problem can be

solved by many numerical algorithms—in this paper, we have applied the extreme gradient
boosting algorithm, which is an implementation of the algorithm proposed in [19,20].

1.5. Handling Missing Values

As will become apparent from the Materials and Methods section, missing values
handling is one of the most important aspects of any analysis of the data presented in
this paper.

In most approaches, missing values are removed from the dataset; however, in our
case, for the reasons described in the Materials and Methods section, this would mean
tossing almost all our data. Additionally, as we describe in the Discussion section, we
believe that the absence of data is meaningful.

We will use two methods according to their availability in the different algorithms
introduced above.

1.5.1. Imputation

Data imputation is a concept that dates back to classical statistics. It is the process of
dealing with missing data by substituting those data with a plausible value. This process
usually entails some sort of inference about both the value and the plausibility of the
data [21].

The most popular methods of imputations include replacing the missing data with
the mean or the median or modeling the data on the basis of the existing data [21,22].

In the spirit of ML research we have chosen a method based on modeling the missing
data. For the reasons described in the Introduction as well as in Materials and Methods,
we could not use any statistical methods. Rather, we have used the typical ML approach of
imputing missing values with the use of the proximity matrix calculated by the random
forest algorithm [23].

The algorithm begins by replacing the missing values by medians. Then, the random
forest algorithm is run on this data and the proximity matrix is calculated. In the next
step, this proximity matrix is used to update the imputed missing values. The procedure
is repeated (iterated) a set number of times. This approach has aspects of both single
imputation [24] and building a model, for example, a regression model [24,25], known from
other areas of statistics and machine learning. This approach starts by single imputation for
each missing value using the median, followed by building successive forests, modifying
the missing data, tracking their performance of the model, and arriving at optimal values
for the missing data.

It is worth noting that there are some reservations about the accuracy of this ap-
proach [16]. Our exact implementation can be found in the supplementary materials.

1.5.2. Surrogate Variables

This method is characteristic of the rpart algorithm. In this algorithm, any observation
that has values for the dependent variable and at least one value for the independent
variable will be taken into account in both training and prediction.

In this approach the impurity reduction is still the objective; i.e., expression (4) is still
being maximized. However, the interpretations of the last two elements of this expression
are modified. First of all, the impurity indices I(AR) and I(AL) are limited only to those
observations for which a particular split candidate variable is available. Additionally,
probabilities p(AL) and p(AR) are modified to be defined only for the observations which
are not missing the values for the particular variable, as well as adjusting them so that they
sum to the value of p(A) for the parent node [13].
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The next step is dealing with the variables that are actually missing variables. Once
the primary splits have been found as explained above, a list of surrogate predictors and
split points is formed. The surrogate predictors and corresponding split points are ordered
according to their ability to emulate the primary split in the training data. Surrogates
are then ranked according to the misclassification risk and used when going down the
tree [9,13].

The surrogate predictor method uses the correlations between the predictors, the as-
sumption being that the higher the correlation between the missing predictor and the
other predictors, the smaller loss of information will be incurred as a result of the missing
values [13].

2. Materials and Methods

A questionnaire concerning various aspects of the live of a gymnasium (in Poland this
is lower secondary school) student was given to 2508 students. The questions preparation
process was not systematic—rather it involved researchers in various subfields of education
research preparing questions that were of interest to them.

2.1. Data Preparation

There were 53 questions in total, but most of them included subquestions. All of
them can be found in the social_AI.Rmd Rmd document available in the supplementary
materials. Question 21 consisted of subquestions constituting the Burns checklist test.
They were used to classify the students professional to one of the six groups given in the
Introduction. This question, naturally, was not used in training the predictive models–it
was only used by the researchers carrying out the study to establish the response variable.

The numbers of respondents in the respective mood disorder classes identified in the
study were the following.

1. no depressed mood—435 cases,
2. normal state but there is no joy—319 cases,
3. mildly depressed mood—804 cases,
4. average level of depressed mood—577 cases,
5. strongly depressed mood—123 cases,
6. very strongly depressed mood—28 cases.

It is clear that the dataset is heavily unbalanced, with very few cases in the more
severe mood disorder categories. There were 221 respondents who could not be classified
due to missing some answers to the subquestions of this question. Since there were very
few students in classes 5 and 6 we grouped all respondents into just two classes, i.e., those
in which a severe mood disorder was present (classes 5 and 6) and those in which it was
absent (classes 1 through 4). This classification was the target variable of the present
study, i.e., we set out to build a model that classifies the students into those two classes,
without using question 21.

All the questions that had a natural ordering (e.g., the answers could be classified on
a scale) were treated as numerical variables. The questions that did not have this kind of
ordering were coded with the one-hot encoding method [9]. Open-ended questions that
could not be cast in a numerical form were dropped.

There were a substantial number of answers missing. We believe that there were
various reasons for this absence, some of which have been addressed in the Discussion
section below. The statistics about these absences are given in the social_AI.html file
available in the supplementary materials file. Two questions, 11 and 12, contained too
many missing values and therefore were dropped from the analysis.

After encoding different subquestions separately, one-hot encoding as well as re-
moving open-ended, Burns checklist-related, and too incomplete questions, we arrived at
128 variables.

All the details about questions and encoding the variables can be found in the supple-
mentary materials file.
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2.2. Software and Methods

In the present paper we have used the libraries available for the R programming
language. For classification trees we used the Rpart package [26], for random forests we
used the randomForest package [27], and for the XGBoost method we used the xgboost
package [28].

The programming framework for the analysis was provided by the mlr package [29].

2.3. Training and Test Data

The whole dataset was split into three parts: the first two were the training and test
datasets, and the third was the data for which the mood variable could not be established.
This dataset was only used for demonstration purposes of how the algorithm might work
for new data.

The training dataset consisted of 1604 cases, which corresponds to roughly 70% of the
whole number of the cases for which the mood could be established through the Burns
checklist. The test dataset consisted of 683 cases, which corresponds to roughly 30% of the
cases for which mood was available. We believe this split allows the algorithm described
below enough data to ensure similarity of the two groups, at the same time providing
enough data for training. Care has been taken to retain as much as possible of the relative
distribution of the mood response variable throughout the training and test datasets.
In other words, the subjects were selected at random, but the mood variable composition in
each dataset corresponds to the distribution in the whole dataset. The function achieving
this is available in the supplementary materials file for this paper.

2.4. Parameter Tuning and Models Training

For each of the models, we first tuned the hyperparameters through the 5-fold cross
validation procedure, and then trained the models using the training data. Because the
hyperparameter space was quite large, we used random search. In the following we are
using the nomenclature provided by the mlr package. The hyperparameters tuned for the
respective models were the following.

For the rpart algorithm, we have tuned the following hyperparameters (compare [11]):

1. minsplit—the minimum number of cases needed to split a node,
2. maxdepth—the maximum depth of the tree,
3. cp—complexity parameter calculated for each level of depth of the

tree; if this parameter of a depth is less than the threshold, the nodes at this level will
not be split further,

4. minbucket—minimum number of cases in a leaf,
5. maxsurrogate—number of the surrogates to retain in the model (if a case is missing

a value, it is passed to successive surrogates)—this is a key hyperparameter for the
purposes of the present paper.

For the random forest algorithms, we tuned the following hyperparameters (com-
pare [11]):

1. ntree—the number of individual trees in the forest,
2. mtry—the number of features to randomly sample at each node,
3. nodesize—the minimum number of cases allowed in a leaf,
4. maxnodes—the maximum number of leaves allowed.

For the XGBoost algorithms, we tuned the following hyperparameters (compare [11]):

1. eta—the learning rate,
2. gamma—the minimum amount of splitting by which a node must improve

the predictions,
3. max_depth—the maximum levels deep that each tree can be grown,
4. min_child_weight—the minimum degree of impurity needed in a node before a split

is attempted,
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5. subsample—the proportion of cases to be randomly sampled from each tree,
6. colsample_bytree—the proportion of predictor variables sampled for each tree,
7. nrounds—the number of sequentially built trees in the model,
8. eval_metric—the type of residual loss function to be used.

The details of the tuning procedure can be found in the Rmarkdown files for each model
accompanying this paper.

2.5. Performance

The performance of the models was measured by the mmce (mean misclassification
error) during training on the training set and also on the test set for the final models.
The quality of the final models was assessed by the confusion matrix for the test set and
also assessing how well the various mood disorder classes were identified by the model,
even though the mood variable in our modes were cast to a dichotomous variable. We
were interested in how well the models identified the most severe mood disorders.

3. Results

The models have been tuned on the training data and then tested on the test data.
The tuning procedure and model training had the following results for the respective models.

3.1. Models Tuning

In this section, we present the results of model tuning obtained for the training data.

3.1.1. Decision Trees via the Rpart Algorithm

The values of the tuned hyperparameters obtained via the cross validation procedure
are presented in Table 1.

Table 1. Results of the cross validation hyperparameter tuning procedure.

minsplit minbucket cp maxdepth maxsurrogate

18 16 0.0605 5 94

The mmce for this model was 0.03990. As depicted in the figure below, the resulting
tree is very simple—it only uses two variables, both of which reflect the relationships
between the child and the parent, i.e., question 13, subquestions 2 and 6. This question was
the following: “Rate each of the statements below according to how well they fit the reality
of your relation with your parents. Use the scale 1–5, where 1 means fully true and 5 means
not true at all.” The two subquestions were: “Sometimes I feel my parents do not notice
me” (2) and “My parents devote little time to me” (see the online resources). It should be
stressed that the variables presented in Figure 1 also represent the surrogates, which for
obvious reasons are not shown in the tree, so in fact it is not as simple—this is explored in
more detail below. We believe this is a very powerful and highly interpretable result with a
big potential for educational and therapeutic applications.
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Figure 1. The classification tree resulting from running the rpart algorithm with the hyperparameters
set according to Table 1 obtained via the cross validation procedure. It is worth noting that the
rpart algorithm identifies the relations with parents as the most important variables for diagnosing
mood disorder.

The full ranking of variable importance as reported by the rpart algorithm is presented
in Figure 2. Variable importance is the sum of the adjusted agreement of the split measures
for each split for which it was the primary variable, plus the adjusted agreement for all
splits in which it was a surrogate. This value is scaled to sum to 100 in the figure below [13].

It is worth noting that out of the first 20 most important variables, nine are subques-
tions of question 13 and four are subquestions of question 18, which was “During the last
month, did (1-no, never/2-once /3-more than once) your parents did the following:” (a
number of negative actions were listed as subquestions—for details see the supplementary
materials). Both these questions concern the child’s relations with their parents. It is worth
stressing again that in total, 13 out of 20 most important variables reflect the relationships
with parents. As we noted before, this seems to be a significant result both from the cogni-
tive point of view and also from the practical point of view, i.e., as far as interventions to
correct mood disorders are concerned.
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Figure 2. Variable importance according to the rpart algorithm. The plot presents the first
20 variables ordered according to their importance (see the main text). Thirteen of these variables are
related to the child’s relations with parents.

3.1.2. Random Forest Model

The values of the hyperparameters tuned by the cross validation procedure are
the following (see Table 2):

Table 2. Results of the cross validation hyperparameter tuning procedure for the random
forest model.

ntree mtry nodesize maxnodes

500 10 1 16

The mmce for this model was 0.06609.

3.1.3. Xgboost Model

The values of the hyperparameters tuned by the cross-validation procedure are
the following (see Table 3):
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Table 3. Results of the cross validation hyperparameter tuning procedure for the random forest model.

eta gamma max_depth min_child_weight subsample colsample_bytree nrounds

0.211 1.44 4 2.98 0.662 0.614 20

The mmce for this model was 0.0586.

3.2. Models Performance

In this section, we analyze the performance of the models tuned and trained in the
previous section on the test data, which did not enter any analyses so far. In other words,
these data are totally unknown to the models.

3.2.1. Confusion Matrices

In this section, we compare the confusion matrices on the test data for the three models
(see Table 4). The matrices are shown side by side for easier comparison.

Table 4. Comparison of confusion matrices across the three models. In all matrices, F stands for
FALSE, i.e., no mood disorder, T stands for TRUE, i.e., severe mood disorder (classes 5 and 6) as
diagnosed by the Burns test, and err stands for error. Column titles refer to the actual count, while
row titles to predicted count.

rpart

F T err
F 632 7 7
T 14 30 14
err 14 7 21

random forest

F T err
F 639 0 0
T 44 0 44
err 44 0 44

XGBoost

F T err
F 635 4 4
T 40 4 39
err 40 4 42

3.2.2. Error Rates

The misclassification errors for the models are as follows: for the rpart model it is
0.03074, for the random forest it is 0.0644, and for the XGBoost model it is 0.06295.

3.3. Drill Down into the RPart Model and XGBoost Model

Since the rpart model is without any question the best model, it is worthwhile to drill
down and see how well it identifies the most severe cases of mood disorder and the less
severe cases (class 6 corresponds to the most severe disorders and class 5 to the less severe
but still classified as severe disorders—see the Introduction). For comparison, we also drill
down into the XGBoost model. We drop the the random forest model, since it does not
identify any cases of mood disorder

The rpart algorithm correctly identifies 6 out of 8 the most severe mood disorders,
which, if this held for a larger group, would constitute 75% of the most severe cases. It also
identifies 24 of 36 less severe mood disorders, which constitutes 66.67% of the less severe
cases in the test set.
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The XGBoost correctly identifies 1 out of 8 the most severe mood disorders, 12.5% of
the most severe cases. It also identifies 4 of 36 less severe mood disorders, which constitute
11.11% of the less severe cases in the test set.

Expected Numbers in the Non-Classified Group

Out of the 221 cases in which the mood disorder could not be diagnosed, the rpart
model predicts 21 cases of severe mood disorder (classes 6 or 5), the XGBoost model
predicts 3 cases, and the random forest does not predict any cases.

We have no way of checking the correctness of these results—they are only given here
as a possible application of the methodology presented in this paper.

4. Discussion

In the present paper we have used classification trees and related techniques to
explore a mood disorder dataset and to build predictive models to identify students at
risk for severe mood disorders. We have used classification-tree-related machine learning
techniques, namely classification trees, random forests, and XGBoost. Since the dataset was
heavy in missing values, in the theoretical exposition of the techniques, we concentrated on
the approach to missing data in each of the three algorithms, rather than on the numerical
optimization procedures.

From the results section, we can see that the most effective algorithm, as far as the
misclassification error is concerned, was the rpart classification tree algorithm. The mmce
for this model for training data was 0.0399 and for test data it was 0.03074. This can be
contrasted with 0.06609 and 0.0644, respectively, for random forests and 0.0586 and 0.06295,
respectively, for XGBoost. The predictive power of the rpart algorithm was also superior
to the other two algorithms. This algorithm identified 30 out 44 cases of severe mood
disorders in the test group, which is just around 68%. The classification tree also correctly
identifies 75% of the most severe cases and 66.66% of the less severe (but still counted
as severe) cases. The XGBoost identified only 4 out of 44 cases and the random forest
identified none.

The observation about the random forest algorithm not identifying any cases of the
severe mood disorder cases but still having an acceptable mmce is very interesting. It
stresses how the reason the analyzed dataset is difficult to use with machine learning
algorithms is that it is highly unbalanced. Indeed, there are very few cases of severe
mood disorder contrasted with no or milder mood disorder. The imbalance is so high
that a strategy based on classifying all cases as not having severe mood disorder is very
effective and yields a low mmce—this is actually the strategy assumed by the random
forest algorithm. This strategy maximizes the specificity of the model, which is 100% at
the expense of sensitivity, which becomes equal to 0. In the present case, specificity is
not important; we are only interested in sensitivity—we could accept an algorithm that
misclassifies cases with no or mild mood disorder as having severe mood disorder if the
model is sensitive and identifies most or all of true severe mood disorder cases. We can see
that both the random forest and the XGBoost algorithms fail, with random forests failing
particularly badly, even though this is not visible in the mmce.

The result that the classification tree outperforms random forests and XGBoost is
an unusual one. The two latter algorithms were introduced as an improvement over the
classification trees [9,10,16–18].

We believe that the reason for this result is the inadequate way of dealing with missing
data for the two more modern algorithms. The rpart algorithm deals with absence of data,
naturally, by using surrogate variables, the random forest and XGBoost algorithms using
imputations, at least in the present paper (compare Section 1.5.1). We believe that the rpart
algorithm did a better job avoiding absence of data by using surrogates than the other two
algorithms, which assumed that data were missing completely at random (compare [9])
and imputed the data. As we remarked in the Introduction, we do not believe that data
were missing completely at random. We (at least those of us more experienced in the social
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sciences) notice that some of the questions are leading, some are missing crucial options or
are just too complex or using too involved a style for some adolescents to be able to process.
In our opinion, assuming that answers are missing at random is assuming too much and in
fact introducing information that is not there, thus modifying the training procedure.

The other aim of this paper was to explore the dataset and find out what the correlates
of severe mood disorder are in this dataset. As we explained in the Introduction, this
dataset does not render itself to standard statistical methods.

The only method out of those employed in the present paper that can provide inter-
pretation is the classification tree [9,10]. It is a fortunate coincidence that this method turns
out to be the most effective one as far as mmce and model sensitivity are concerned.

As demonstrated in the results section, the most important factor influencing severe
mood disorder is the relationships with parents. The worse the relations with the parents
are, the more often the case traversing the trained tree is sent to the “severe” bucket. It is
interesting to notice that the analysis of variable importance yields the result that out of the
20 most important variables, 13 describes the relationships with parents (these correspond
to questions 13 and 18—see the supplementary materials). Furthermore, the basic graphical
representation of the classification tree built by the rpart algorithm only contains questions
relating to parents (this graphical representation cannot, of course, depict the surrogates).
This finding is strongly validated by the performance of the final model, which mostly uses
the variables related to the parent relationship for prediction.

This result is partly corroborated by [3]; however, we only see one of the factors
listed there, namely relations with parents, making it the strongest one—we hardly see any
evidence for the other factors in our analysis. The importance of relations with parents
is also corroborated by, e.g., [30,31]; however, our study is different as it tries to rank
relationship with parents against other possible correlates, some of which are also related
to the family but are not specifically aimed at the relationships with parents. Thus, the most
important message of this paper as far as social and medical issues are concerned is that the
relationship with parents is the most important factor in mood disorders in adolescents.

There are some important limitations of the present study. First of all, we want
to stress that we do not postulate a general utility of the models created in this paper.
To establish mood disorder, it is much simpler to just administer the Burns checklist.
The predictive machine learning considerations from this paper should be viewed as being
more methodological than prescriptive. The methodological conclusion following from
our paper is the observation that the rpart algorithm deals with missing data much better
than the other algorithm and the predictive power and sensitivity bear this observation
out. A much more important conclusion is the interpretative one, in which we find that
the covariates reflecting the adolescents’ relationships with their parents are the most
important for developing mood disorders.

Another limitation of the study is the fact that we did not try to tune each model as
much as possible. We are aware that there are ways to make the models more sensitive,
but since one of the main goals was to compare the three models, we did this to give all of
them an equal footing.

One of the possible ways to improve the performance of the random forest and
xgboost models is using the approach of undersampling the majority class/oversampling
the minority class [32]. Additionally, all analyzed models might benefit from using a
different perfomance measure, such recall, F-measure, or AUC. This will be attempted
in future—in this paper, our main concerns were the exploratory/explanatory aspects of
the analysis, which allowed us to interpret the data, as well as comparing the sensitivity
of the various models to missing data without tuning. It should, however, be clear that
there is a lot of room for predictive power improvement as far as the random forest and
xgboost sampling strategies are concerned, as well as the performance measures used in all
three models.
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5. Conclusions

Studies applying machine learning to social sciences and data derived from this
domain are quite rare, with References [32–34] being three examples. We believe that the
conclusions about missing data related to the machine learning methodology as well as the
finding about parent relationships will be of interest to a broad readership oriented both
towards technology and social sciences.
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.3390/e23091210/s1.
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