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Painters are masters of depiction and have learned to
evoke a clear perception of materials and material
attributes in a natural, three-dimensional setting, with
complex lighting conditions. Furthermore, painters are
not constrained by reality, meaning that they could paint
materials without exactly following the laws of nature,
while still evoking the perception of materials. Paintings
have to our knowledge not been studied on a big scale
from a material perception perspective. In this article,
we studied the perception of painted materials and their
attributes by using human annotations to find instances
of 15 materials, such as wood, stone, fabric, etc.
Participants made perceptual judgments about 30
unique segments of these materials for 10 material
attributes, such as glossiness, roughness, hardness, etc.
We found that participants were able to perform this
task well while being highly consistent. Participants,
however, did not consistently agree with each other, and
the measure of consistency depended on the material
attribute being perceived. Additionally, we found that
material perception appears to function independently
of the medium of depiction—the results of our principal
component analysis agreed well with findings in former
studies for photographs and computer renderings.

Introduction
Materials represent the “stuff’ that things are made

of (Adelson, 2001). We interact daily with these
“things,” either physically (e.g., manual interaction)
or visually (e.g., assessing ripeness, quality, or value).
While the importance of material perception for
humans seems evident, we lack a full understanding
of the underlying mechanisms. In a previous study,

Fleming, Wiebel, and Gegenfurtner (2013) investigated
the relationships between attribute ratings and material
classes (e.g., wood, glass, foliage, etc.) for photographs.
In this article, we extended on this study by using a
big date data approach to measure the perception of
material properties in paintings. Our investigation is
motivated by the assumption that to depict materials
convincingly, painters presumably hold insights into
visual cues that lead to the perception of various
attributes.

Painters are masters of depiction and are capable of
evoking a clear perception of a three-dimensional (3D)
world, with complex lighting and recognizable materials.
Interestingly, although the appearances of real materials
are limited by the rules of physics, materials as depicted
in paintings have no such constraints. Incongruencies
between paintings and reality often go unnoticed by the
viewer (Cavanagh, 2005). Instead of strictly following
physics, painters have extracted the essential visual
cues needed to trigger the perception of materials. Di
Cicco, Wijntjes, and Pont (2019) studied visual cues
for gloss, which were implicitly discussed in a painting
manual by the seventeenth-century painter Willem
Beurs (Beurs, 1692). They found that predictors that
explained a large portion of the variance in gloss
perception had implicitly been described within this
seventeenth-century manual. This shows that painters
held insights into perception and that studying art
could lead to new insights for perception scientists.

While art reveals insights into perception, conversely
perception can be used to understand art. For example,
several important art historical publications (Arnheim,
1941; Gombrich, 1960; Baxandall, 1995) use knowledge
about perception to analyze art. Anecdotally, this
approach can also be seen in artistic attributions such
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as in the case of Still Life with Grapes and a Bird, which
is attributed to Antonio Leonelli by the Metropolitan
Museum curator. In his attribution, the curator
comments on “The tendency to geometrize the forms
with shading that rigorously enhances their rotundity
[…] the emphasis on surface effects—the grained wood
[…] the clearly delineated shadows.” It is interesting to
see that many of the curator’s terms are conceptually
very similar to those used in perception science. The
overlap between the perceptual sciences and art means
that a fuller understanding of perceptual concepts
could be beneficial for both fields. Yet, how to study
and quantify the depiction of materials in paintings?
There are several standard psychophysical methods that
potentially apply to the study of depicted materials,
such as matching tasks, similarity ratings, or attribute
ratings. The first method requires a material probe,
which is an interactive image that can be adjusted to
match the material attributes of the target stimulus. The
probe can be parameterized by an analytical physical
model (e.g., Ward), weight parameters of data-driven
Bidirectional Reflectance Distribution Functions
(BRDFs) (Matusik, Pfister, Brand, & McMillan.,
2003) or additive mixing of basis images representing
canonical modes (Griffin, 1999; Zhang, de Ridder,
Fleming, & Pont, 2016). As such, material matching
tasks require predefined models for each material or sets
of basis (BRDF) samples or (canonical mode) images
to represent a wide range of materials. These methods
are suitable for testing a wide range of materials, but
not for all materials. For example, varying 3D textures
(based on bidirectional texture functions [BTFs])
systematically and fluently is technically extremely hard.
Moreover, there is no method yet to vary 3D textures in
a tractable interface such that all materials are covered.
Therefore material matching is not suited to study the
wide variety of material attributes found in paintings as
we aim to do here.

A second method, similarity ratings, relies on
systematic variations of the stimulus set. Pellacini,
Ferwerda, and Greenberg (2000) asked participants
to rate the apparent difference in gloss between pairs
of images, without defining gloss. They then used
multidimensional scaling to infer the dimensionality
of gloss. Often, the similarity is not specified to
the observer and can comprise any combination of
subjective criteria. Radonjić, Cottaris, & Brainard
(2015) asked participants to judge which of two test
patches rendered under varying illuminations was more
similar to a third patch under a fixed illumination, to
investigate the relative contribution of illumination
on color-constancy. The fact that comparisons are
made between pairs or triplets implies that a very large
number of trials (i.e., quadratically increasing with
sample size for pairs) is needed. For the large number
of materials that we aim to study, this method is thus
not feasible.

Last, a popular method relies on attribute scaling.
In this method, a participant either rates single images
explicitly (e.g., how glossy is this material?) or makes
implicit forced-choice pairwise comparisons (e.g.,
which of these two images is glossier?). However,
making comparisons inflates the trial number, so we
decided to choose attribute ratings for single images to
study materials depicted within paintings. This raises a
straightforward question: which attribute names should
be chosen that most completely covers the perception
of the wide variety of materials present in paintings?

Whereas a large variety of attributes has been
investigated previously in perception literature, the
majority of these attributes are studied in isolation, such
as glossiness (Chadwick & Kentridge, 2015; Wiebel,
Toscani, & Gegenfurtner, 2015; Ferwerda, Pellacini, &
Greenberg, 2001; Wijntjes & Pont, 2010; Kim, Marlow,
& Anderson, 2012; Marlow & Anderson, 2013),
translucency (Fleming & Bulthoff, 2005; Motoyoshi,
2010; Xiao et al., 2014) or transparency (Nakayama,
Shimojo, & Ramachandran, 1990; Motoyoshi, 2010;
Fleming, Jäkel, & Maloney, 2011). These studies
often investigate how the perception of attributes are
affected by various distal cues such as shape (Fleming,
Torralba, & Adelson, 2004; Marlow & Anderson 2015)
and light (Fleming, Dror & Adelson, 2003; Adams,
Graf, & Ernst, 2004) or proximal (image structure)
cues (Motoyoshi, Nishida, Sharan, & Adelson. 2007;
Sharan, Motoyoshi, Nishida, & Adelson, 2008; Marlow
& Anderson, 2013).

Perceptual attributes are also studied in computer
science, albeit with different motivations. Because
attributes—such as gloss, translucency, and
roughness—seem to be intuitive, perceptual parameters
(i.e., attributes) are often preferred over physical
parameters for rendering interfaces. To develop intuitive
interfaces Serrano, Gutierrez, Myszkowski, Seidel, &
Masia (2018) collected attribute ratings for 14 material
attributes, also including high-level class descriptors
such as plastic-like, fabric-like, and metallic-like.
They mapped these perceptual attributes to an
underlying principal component analysis (PCA)–based
representation of BRDFs (i.e., physical parameters)
and showed that their functionals were good predictors
of the perceived material attributes.

Aside from perception and graphics, industrial design
also makes use of quantitative attribute descriptions
of materials. Designers use attributes to investigate
and design user experiences (Karana, Hekkert &
Kandachar, 2009). Interestingly, these three disciplines
use partially overlapping but also distinct vocabularies
to describe attributes. In computer science (e.g.,
Matusik et al., 2003; Serrano et al., 2018) a large
portion of attributes refer to material classes, such as
metallic-like, plastic-like, ceramic-like, while perception
and design studies often focus more on sensorial
qualities like fragility, hardness, and elasticity. The
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material classes in our study were based on human
annotations. The attributes we selected for our study
are mostly based on the perception and design studies.
We arrived at a set of 15 materials and 10 attributes,
the details of which will be explained in the methods
section.

In this article, we studied perceived material classes
and how they vary in perceived material attributes for
a large set of paintings. We first present our methods
relatively extensively, as this partly consisted of
collecting the painting images. Furthermore, we detail
how we collected a large set of annotated segmentations
of paintings via online experiments. Then we present
the results, first addressing the subjects’ consistency,
as validation of our method, followed by a detailed
analysis of the collected material judgments.

Methods
Our stimulus collection serves a broader goal than

the study reported here. The collection and annotation
of artworks is part of ongoing research that will be
comprehensively published at a later stage. In the
current study, we perform a perceptual experiment in
which we use a subset of the artworks and annotations
we collected. We nevertheless report all the details on
the collection of data for sake completeness.

In the following paragraphs, we detail our artwork
annotation pipeline. This is followed by the perception
experiment, in which participants judged material
attributes for various material classes.

Ethics

The study conformed to the declaration of Helsinki
and was approved by the ethical review committee
of the Technical University of Delft. All data were
collected anonymously.

Stimulus collection

In the context of a project where we are creating a
database of depicted materials and their properties, we
collected material segments from paintings. Because
this process was not part of the current studies’ scope,
we report it in the supplementary material. Below we
report a summary.

We created a list of materials, based on the
previous research mentioned in the introduction, plus
observations of the paintings and our desire to cover as
many materials in those paintings as possible. The list
contains 15 materials:

• Animal • Gem • Paper*
• Ceramic • Glass* • Skin
• Fabric* • Ground • Sky
• Flora† • Liquid† • Stone*
• Food •Metal* •Wood

The material list has six items in common with the
Flickr Material Database (FMD; Sharan, Rosenholtz
and Adelson, 2009; Sharan, Liu, Rosenholtz, &
Adelson, 2013). These common items have been
indicated above with an asterisk (*). Additionally,
two materials from the FMD, foliage and water, were
incorporated within our list as part of our broader
labels flora and liquids—indicated with a dagger (†).
These eight materials were also used by Fleming et al.
(2013) with the original names as defined in the FMD.
The remaining seven materials were included for a
variety of reasons. Animal and food are two instances
of materials that we included as an overarching concept,
encompassing many different materials such as fruits,
vegetables, and bread for food, and materials such as
fur, claws, feathers, and scales for animal. We included
gem to contain items such as pearls and precious stones.
Ground and Sky were included because they often
cover large portions of the painting’s surface. Note
that (1) we defined ground as things such as dirt and
gravel, without grasses or shrubbery, because those
should be identified as flora and (2) we counted clouds
as belonging to the sky. Last, we included (human)
skin, instead of an overarching human concept such as
is done with animal and food. We made this decision
because skin is a very interesting material in its own
right (sometimes even referred to as the “holy grail”
of rendering) both from a classic perceptual point
of view (Stephen, Coetzee, & Perrett 2011; Matts
Fink, Grammer, & Burquest, 2007), as well as from
a computer science perspective (Igarashi, Nishino, &
Nayar, 2017; Jensen, Marschner, Levoy, & Hanrahan,
2001) and an art-historical point of view (Lehmann,
2008).

Annotation pipeline
In 2013, Bell, Upchurch, Snavely, & Bala published

OpenSurfaces, a database with annotated and
segmented materials. This database is a public resource
and is available at http://opensurfaces.cs.cornell.edu/.
Bell et al., (2013) created this database to fill the need
within computer graphics to accurately model materials
within context. Besides the database, they made their
annotation pipeline, that is, their process of collecting
data, open-source. We have adapted their annotation
pipeline to fit our purposes for the collection of material
segmentations and annotations.

http://opensurfaces.cs.cornell.edu/
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Collecting stimuli
The collection of stimuli was executed in multiple

steps. Here we provide a summary of each step. Each
step is discussed in-depth within the supplementary
materials. Step 1, collecting paintings: we collected
digital images and the associated meta-data for
paintings from seven online museum galleries. Step
2, collecting materials: we used AMT to measure
inferences of what materials were depicted within the
painting. Participants had to indicate which paintings
contained a requested material. For each painting, we
collected at least five responses for each material and
required an agreement of 80% to consider a painting
to contain the material. Step 3, segment collection:
participants segmented materials from paintings. In
each task, the participant would see a painting and
be requested to segment one instance of a specific
material that was indicated to be present within the
painting in step 2. Step 4, quality check: the quality
of the created segments was checked by a minimum
of 5 participants. Step 5, material check: It is possible
that a participant wrongfully segmented wood, when
tasked with segmenting metal; therefore in this step we
asked participants to indicate what they perceived the
material of the segment to be. Step 6, manual selection:
in the end, we manually selected the 90 best segments
per material.

Perceptual experiment

Using the selected segments discussed above, we had
a total of 198 AMT participants rate 10 perceptual
attributes for each of these segments. The perceptual
attributes are listed below. All participants were located
within the United States, according to AMT, and each
participant had previously completed at least 1000
tasks on the AMT platform, of which at least 95% had
been accepted by the creators of those tasks.

Attributes and image statistics
We created a list of 10 perceptual material attributes.

Our attribute list has five items in common with
Fleming et al. (2013), that is, those indicated with an
asterisk. When applicable we have copied the original
attribute definitions and we have created our attribute
definitions to be similar to the other attributes used in
Fleming et al. (2013). Additionally, we split colorful
into multicolored and vivid. We expected colorful might
be difficult for naïve participants, because it could be
interpreted as “many, low-intensity colors” or “a single,
very intense color” for multicolored and vividness,
respectively. Additionally, we added translucent to the
existing transparent attribute, because we found that
some participants were aware of the optically defined

difference between these two, whereas some were
not. Altogether this resulted in the following list and
definitions:

• Bendable: How bendable is the material? Low
values indicate that the material is highly rigid and
could not easily be bend; high values indicate that a
small force would be required to bend the material.
• Cold*: To what extent would you expect the surface
to feel cold to the touch? Low values indicate that
the material would typically feel warm or body
temperature; high values indicate that the material
would feel cold to the touch.
• Fragile*: How fragile or easy to break is the
material? Low values indicate that the material is
highly resistant and could not easily be broken;
high values indicate that a small amount of force
would be required to break, tear, or crumble the
material.
• Glossy*: How glossy or shiny does the material
appear to you? Low values indicate a matte, dull
appearance; high values indicate a shiny, reflective
appearance.
• Hairy: If you were to reach out and touch the
material, how hairy would it feel? Low values
indicate that the surface would feel hairless; high
values indicate that it would feel hairy.
• Hard*: If you were to reach out and touch the
material, how hard or soft would it feel? How much
force would be required to change the shape of
the material? Low values indicate that the surface
would feel soft; high values indicate that it would
feel hard.
• Multicolored: How multi-colored does the material
appear to you? Low values indicate a monochrome
(single-colored) appearance; high values indicate
many colors.
• Rough*: If you were to reach out and touch the
material, how rough would it feel? Low values
indicate that the surface would feel smooth; high
values indicate that it would feel rough.
• Transparent/translucent: To what extent does the
material appear to transmit light? Low values
indicate an opaque appearance; high values indicate
the material allows a lot of light to pass through it.
• Vivid: How vivid does the material appear to you?
Low values indicate a dull, grayish appearance;
high values indicate a strong vivid color.

Next, we also defined and calculated four simple,
image histogram statistics for each of the material
segments.

• The contrast: Defined as the Michelson contrast:
contrast = Lmax−Lmin

Lmax+Lmin
, where Lmax and Lmin are

taken as the ninety-fifth and fifth percentile of the
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luminance distribution of the material segment
(Michelson, 1891).
• Skewness: The skewness of the luminance
distribution of the material segment.
• Colorful: The colorfulness, measured as the ratio
of voxels filled in 3D RGB color space to the total
number of voxels, where the RGB color space was
rescaled to 0 to 15, as opposed to the conventional
0 to 255, for each of the material segments.
• Mean luminance: the mean luminance of the image
segment.

Stimuli
From the 90 segments per material—as discussed

above—we randomly selected 30 segments for each of
the 15 materials, making a total of 450 stimuli. We chose
to include this randomization to reduce the chance of
experimenter bias, considering we originally selected
the 90 segments per material. We subdivided these 450
segments into five sets of 90, where each set contained
six segments per material. In other words, each set had
six segments of wood, six segments of metal, and more.
These sets were used in experimental blocks. We chose
to partition the data into these five sets, to reduce the
number of trials per participant. Without partitioning
the data into these 5 sets, every participant would have
needed to complete (450 stimuli × 3 repetitions = )
1350 trials, which we consider too many for web-based
experiments. With these five sets, participants only need
to complete 270 trials. The specific choice of five sets,
over, for example, nine sets, is arbitrary. Splitting the
experiments into these sets implies that we calculated
interrater reliability within each set.

We presented the segments in a section of the original
painting. We created a square context box around the
segment, which is, in essence, a bounding box around
the segment with margin. The context box size was
calculated as the maximum of the width or height of the
segment, multiplied by 1.25. We took the maximum to
ensure the context box is a perfect square. In some cases,
this meant that the context box boundaries exceeded the
dimensions of the original painting. To keep the aspect
ratio consistent, we included this overflow as part of
the segment and colored the overflow with the average
of the color of the painting part within the bounding
box. A few examples can be seen in Figure 1.

Procedure
Each of the five sets of images was rated on each

of the 10 attributes, making a total of 50 set/attribute
combinations. Each of 50 combinations would be rated
by 10 different participants. Each participant would
only see one set of images and rate this set on one
attribute per task. Participants could choose how many
of these combinations they would rate. This means that

Figure 1. Examples of four stimuli. For the top two, the context
size exceeds the dimensions of the original painting, and the
overflow has been colored with the average RGB color value of
the painting contained within the bounding box. For the
bottom two, the context size does not exceed the original
painting dimensions and is thus only a section of the painting
without any overflow. The red outlines indicate the segments.
From top-left to bottom-right: detail of David with the Head of
Goliath (c. 1645) by Guido Cagnacci; The Explorer A.E.
Nordenskiöld (1886) by Georg von Rosen; detail of Polyptych
with Saint James Major, Madonna and Child, and Saints (1490)
by Bartolomeo Vivarinil; and detail of Mlle Charlotte Berthier
(1883) by Auguste Renoir.

a single participant could, in theory, do each of the 50
experimental blocks once and that the total number of
participants should be between 10 (i.e., each participant
did all 50 set/attribute combinations) and 500 (i.e.,
each participant did only one task). In practice, 198
participants performed the task on average 2.5 times
each, with 110 participants only performing one task.
The full distribution is presented in Figure 2.

Each task contained three repetitions of the 90
images, making a total of 270 trials. We used a Fisher-
Yates Shuffle to create three shuffled permutations of
the set and concatenated these three permutations in
each task. This allows us to measure the intraobserver
correlation (with three repetitions) next to the
interobserver correlations (with 10 repetitions)

Task
Participants on the AMT platform were capable

of choosing and selecting what tasks they wanted to
work on. Once participants had selected our tasks,
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Figure 2. Distribution of completed rating tasks per participants.

they would first be shown a text-based tutorial. After a
10-second interval, participants were able to start the
task. First, the tasks displayed the main question in
bold: “How [attribute] is this material?,” followed by
our definition of that attribute. To give participants an
impression of the range of stimuli we showed them a
random selection of one-third of the stimuli, on which
they were told to base their ratings. They could click the
start button to start the first trial.

In each trial, the participants were shown the same
question and definition as mentioned above, as well
as one segment at a time, such as shown in Figure 3.
On the start of a trial, or when a participant clicked
the show outline button, the outline would be indicated
with a flashing red line around the edges of the segment
for 1 second. On the right of the image was a vertical
slider, ranging from 0 at the bottom with the label “not
[attribute]” to 100 at the top with the label “[attribute].”
On the right of the slider was a small box indicating
the current value selected. Participants could move the
slider using the mouse. On a left-click the participants
could progress to the next trial. A button allowed the
participant to go to the previous trial.

Exclusion criteria
As discussed above in the AMT section, we are

capable of adding AMT qualifications, in an effort to
improve data quality. First, we added three default
qualifications, namely (1) that each participant needs
to have completed at least 1000 tasks, (2) that each
participant needed to have at least 95% of those tasks
approved, and (3) that the participants were located
within the United States of America.

Furthermore, we noticed in pilot experiments that
some observers seemed to respond both quickly and
randomly. Because their actual response cannot be

an exclusion criterion (we cannot know what they
perceive), we deemed it wise to use response time as
selection criterion: if observers on average responded
below one second, their data were excluded for further
analysis.

Analysis
For the analysis of the data, we used several

statistical methods and techniques. We will look
into the intraobserver and interobserver correlations.
Furthermore, we use principal component analysis
(PCA) on the perceptual data. This technique applies an
orthogonal transformation to data to produce a new set
of uncorrelated variables, such as components. These
components are ordered on the explained variance
within the original data, where the first component
explains the largest portion of the variance within the
original data. Last, we also make use of a Procrustes
analysis, which tries to find the best fit for a set unto
a target set by minimizing the linear distance between
points in the original set and the target set.

Results
Data quality; intracorrelations and
intercorrelations

First, we analyzed the internal consistency by
calculating the intra- and interobserver correlations.
Each task contained three repetitions of each stimulus
and was judged by 10 different participants for each
material attribute. The average intraobserver correlation
is 0.76 (STD = 0.08), which is higher than the average
of 0.48 (STD = 0.16) for the interobserver correlation.

We plotted the correlations in Figure 4, where
each point corresponds to one of the 50 set/attribute
combinations, with the intraobserver correlation as
a function of the interobserver correlation. Note that
each of these 50 combinations was rated by a different
group of 10 participants. We fitted an ellipse around
the five points that belong to the same attribute. The
distribution along the intraobserver axis shows that
participants are, in general, consistent and that there is
very little difference between the material attributes. The
distribution of the interobserver correlations shows a
larger spread, implying participants do not always agree
among each other. The inverse, the small spread on the
averaged intraobserver correlations indicate the high
agreement rate within participants. Additionally, the
material attributes cluster together, but the clusters are
spread out over the interobserver correlation dimension
implying that the magnitude of (dis)agreement between
participants is material attribute dependent.



Journal of Vision (2020) 20(7):7, 1–17 Van Zuijlen, Pont, & Wijntjes 7

Figure 3. Example of the perceptual judgment task. At the top, the question and definition are repeated, which participants would
have seen in the instructions. The task shows one segment at a time, as part of the original painting. In the live version, the red outline
appears flashing at around 10 hz at the onset of each trial (or when the participant pressed the corresponding button) to indicate the
segment boundaries and disappears after a second. The slider can be moved by moving the mouse up and down, whereas a left
mouse-click progresses the experiment to the next trial. The painting is a section of The Annunciation (c.1660) by Godfried Schalcken.

Figure 4. Each of the 50 set/attribute combinations expressed in
a two-dimensional intraobserver/interobserver correlational
space. The data are color-coded to indicate the material
attribute that was judged. Ellipses (1 SD) are fitted for each
material attribute based on the five experimental blocks
relating to that attribute. The red lines represent the one-sided
5% alpha significance level, with 88° and 8° of freedom for
intraobserver and interobserver correlations, respectively.

Material judgments

We collected a total of 135,000 human judgments
about how much a specific stimulus depicted a specific
attribute. We have plotted the distributions of these
ratings per attribute in Figure 5. At a glance, it becomes
clear that the distributions are generally broad and flat,
except for some attributes at zero. The stimuli cover the
whole range for each attribute, and when an attribute is
present it is more or less equally likely to be present in
any quantity.

We visualized the averaged distributions of material
attributes for each material in Figure 6. Here, we found
some remarkable similarities with those reported by
Fleming et al. (2013), and therefore we reproduced
these in Figure 7. To make an accurate comparison,
it should be noted again that our study did not use
the same set of attributes as did Fleming et al. (2013).
Our signature included hairy and bendable, while
excluding naturalness and prettiness. Furthermore, we
split Colorfulness into vividness and multicoloredness
and included translucency into transparency. What we
observe is that the distributions seem to follow the same
pattern for the materials that are in common between
our study and Fleming et al. (2013). To quantify this
relationship, we performed a non-parametric Wilcoxon



Journal of Vision (2020) 20(7):7, 1–17 Van Zuijlen, Pont, & Wijntjes 8

Figure 5. Distribution of all the judgments per attribute for all materials. The colors are in reference to the colors used by Fleming
et al. (2013).

Figure 6. The averaged ratings for each attribute per material.

signed-rank test in which we paired the mean values
for the materials and attributes that the current study
has in common with the study of Fleming et al. (2013).
Note that we equate Fleming’s transparency with our
“ transparent/translucent” and Fleming’s colorfulness
with our vivid and multicolored. The test showed that
there was no significant difference between the attribute
ratings for photographs and paintings (Z[56] = 790,
p = 0.94).

Material attribute correlations

Correlations likely exist between the material
attributes: a change in one attribute could lead to a
predictable change in other attributes. We quantify
these relations by calculating the correlations using
Bonferroni adjusted alpha levels of .001, .0001, and
0.00001 (0.05/45, 0.005/45, and 0.005/45, respectively).
These correlations have been visualized in Figure 8. The
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Figure 7. A recreation of the average rating for the attributes and materials from Fleming et al (2013), for the materials and attributes
that are shared between our study and Fleming’s study. Note that in our study, we split up colorfulness into vivid and
multicoloredness. Figure adapted with permission; original copyright belongs to ARVO.

Figure 8. Correlation matrix heatmap, we have masked the
values along the diagonal, which would always simply be 1 and
the symmetrically identical values. * indicates p < 0.001,
** indicates p < 0.0001, and *** indicates p < 0.00001.

highest correlations are found between roughness and
hardness (r = 0.54, p < 0.0001), and between vividness
and multicoloredness (r = 0.5, p < 0.0001). The lowest
correlation is found between hardness and bendableness
(r = −0.6, p < 0.0001). The majority—33 of 45—of
the attributes pairs only displayed a small (i.e., r < 0.3)
correlation. This implies that although there is overlap,
most attributes cover a distinct area of a high-level
material-feature space.

PCA

To analyze the relationship between material
attributes and to determine whether material attributes

can predict material class identity, we applied a PCA
to uncover the underlying multidimensional attribute
feature space. This technique applies an orthogonal
transformation to remap the original data set in such a
way that the new dimensions (components) are linearly
uncorrelated, and ordered by the quantity of variance,
where the first dimension explains the most variability
within the original dataset. We have visualized the first
two components in Figure 9, which explain 52% of
the variability within the data. Adding a third, fourth,
or fifth component captures 68%, 76%, and 83% of
the variability, respectively. These numbers are roughly
comparable to the two numbers Fleming et al. (2013)
reports: 62% for the first two PCs and 93% for the first
five PCs. However, it should be noted that our measured
dimensions are not identical (see Attributes and image
statistics in the method section). We have plotted a full
scree plot in Figure 10 and added the factor loadings
for the first four components in Table 1.

We also ran a PCA for each material, that is, with
only the 30 datapoints belonging to that specific
material, as opposed to all 450 datapoints for all
materials. We visualized these for paper, skin, flora, and
fabric in Figure 11. The remaining material plots are
included in the supplementary materials.

We have included all the factor loadings for all the
PCAs (1 × global and 15 × material specific) within the
supplementary materials. Next, we applied a Procrustes
analysis to map each material-specific PCA onto the
associated data-points within the global PCA space,
that is, the 30 segments for one material-specific PCA
were mapped onto the 30 corresponding segments
within the global PCA. Here, the residual error
quantifies how much a material-specific PCA deviates
from the global PCA. Or, inversely, how similar the
variance within one material is in comparison to the
global variance found between all materials. We applied
the Procrustes analysis on the first two components,
as opposed to all ten. The reason for this is simple: a
PCA works by applying an optimized transformation
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Figure 9. A visualization of the first two PCA dimensions. The color of the points relates to material class identity. The factor loadings
of the original dimensions are plotted as red vectors. Lastly, we fitted ellipsoids (sd = 1) for each material class. Note that the PCA is
not fed any class data; the clustering of material classes observed is thus purely based on the perceptual data.

Figure 10. Scree plot for the PCA visualized in Figure 9.

on a data set, whereas the Procrustes analysis tries to
find an optimized transformation to map one dataset
onto another. Consider that the material-specific PCA
dataset is a subset of the global PCA dataset. This

PC1 PC2 PC3 PC4

Multicolored −0.126 0.221 0.07 0.511
Transparent/
translucent

−0.08 0.693 −0.2 0.019

Glossy 0.09 0.25 0.471 0.157
Hairy −0.267 −0.325 −0.063 0.583
Rough 0.221 −0.253 −0.078 0.023
Hard 0.621 −0.227 0.305 0.152
Bendable −0.562 −0.153 0.171 −0.341
Fragile −0.116 0.1 0.757 −0.167
Cold 0.326 0.368 −0.093 −0.088
Vivid −0.167 0.138 0.141 0.445

Table 1. Factor loadings for the first four principal components.

means the raw data for the PCAs are the same but
have undergone different transformations within a
10-dimensional space.



Journal of Vision (2020) 20(7):7, 1–17 Van Zuijlen, Pont, & Wijntjes 11

Figure 11. Four visualizations of the first two primary components for the material-specific PCA for flora, fabric, paper, and skin. Each
PCA was run with only the 30 stimuli per material. The red vectors indicate the factor loadings of each attribute. We plotted the
actual stimuli within the PCA space. The blue lines connect the stimuli to their actual position within the space when the stimuli
would otherwise overlap. The ellipse is fitted around the points (1 SD).

Thus, applying a 10-dimensional Procrustes analysis
would perfectly map the material-specific subset onto
the global PCA leaving a residual of exactly 0. Instead,
we take the two primary components that explain the
major part of the variability. Note that the loadings
of the first two PCA dimensions can change from the
global to the material-specific models and that materials
with a larger variability can have a larger influence
on the global variability relative to materials with less
variability. The residuals of the Procrustes analysis are
listed in Table 2. We also used randomly generated
data points drawn from a uniform distribution and
mapped these to each of the material subsets within
the global PCA using the Procrustes analysis. We

repeated these 10,000 times, for each material, to find
an averaged residual error of 0.9508 which functions as
a comparison. The results are visualized and ordered
in Table 2 and show that the residuals range from 0.14
to 0.74 and are all smaller than for the random set.
This shows that intramaterial variations are described
relatively well by the variation in the global PCA space,
but for some materials better than others.

Image statistics

As detailed in the Methods section, we calculated
simple histogram-based image statistics for each image
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Material Residual

Fabric 0.14
Metal 0.19
Stone 0.22
Ground 0.23
Glass 0.25
Food 0.28
Paper 0.36
Wood 0.36
Liquid 0.37
Ceramic 0.37
Flora 0.5
Animal 0.46
Sky 0.53
Gem 0.72
Skin 0.74
Random 0.95

Table 2. Table of residuals of the Procrustes
analysis. Lower residuals indicate more
generic materials.

stimuli. We correlated the material attributes with these
image statistics, both averaged over materials and per
material. We adjusted the alpha levels using Bonferroni
correction to .0013, .00013 and .000013 (.05, .005, and
.0005 divided by 40 respectively). Over all materials
generalized, we found some correlations. Colorful
correlated with multicolored (r = 0.44, p < 0.00013) and
with vivid (r = 0.42, p < 0.00013), suggesting our color
metric indeed captures multicoloredness to a certain
degree. Furthermore, mean luminance correlated with
transparent/translucent (r = 0.36, p < 0.00013) and with
hardness (r = −0.31, p < 0.00013). These correlations
and the remaining, smaller correlations have been
visualized in Figure 12. The significant correlations
per material have been listed in Table 3. Here the
colorful-multicolored and colorful-vivid relationships
are often found to be significant. In addition, the
skewness of the luminance distribution and mean
luminance are found to be related to specific attributes
in a material-dependent manner.

Discussion
In this study, we collected human perceptual

judgments for 10 material attributes for paintings of 15
material classes. The consistency within participants
indicates that participants understand and are
capable of performing the task, which shows that
our experimental setup allows for measuring the
perception of material attributes in paintings via

AMT and supports the validity of the data, whereas
the inconsistency between participants shows that
individual differences exist in how participants interpret
the depictions. Additionally, we found that the material
signatures and the material feature PCA spaces show
many similarities to those of Fleming et al. (2013) based
on material photographs, as well as of Zhang, de ridder,
Barla, & Pont (2019) based on mixtures of canonical
reflectance modes, which implies that the perception
of material properties functions independently of
the medium of depiction and the structure found
represents generic key components underlying material
perception. Lastly, we looked at the residuals that
result from mapping material-specific PCA data onto
the global material PCA and found that the variation
within materials is partially explained by the variation
between materials, but that this varies depending on the
material. Below we will discuss these findings in more
detail.

In the task, participants were shown a square
bounding box and asked to use only the segment,
outlined in red (see Figure 3) when they make their
judgments. Participants may make their judgments
based on the object category inferred from this red
outline. However, it should be noted that for the
vast majority of segments, the materials are partially
occluded by other materials or objects and tend not to
be informative of the object identity, see, for example,
those in Figures 1 and 3.

Besides being a measure of the internal validity,
the high consistency displayed by participants shows
that the perception of material attributes is distinct
and that participants have a clear perception of these
attributes. Despite this clear perception, disagreement
between participants does exist. The magnitude
of this disagreement—which ranged from 0.01 to
0.87—appears to depend on the perceptual attribute.
Roughness induced the highest level of idiosyncrasy,
whereas hairiness is the most consistent between—and
also within—participants. The overall pattern of
(in)consistencies between participants for the perceptual
attributes in our results appears to be very similar to
those reported by Fleming et al. (2013); however, it is
interesting to see that roughness is one of the most
consistent in their results, whereas in our study it is
the least consistent between participants. It is unclear
why these results differ. Possibly, roughness is too
multidimensional to be measured in one scalar measure;
even for a single type of surface structure it was found
that its roughness perception was multidimensional
(Padilla, Drbohlav, Green, Spence, & Chantler, 2008).

In the experiment conducted by Fleming et al. (2013)
they found that materials tend to display statistical
regularities, such as glass tending to look glossy,
transparent, smooth, hard and so on, while water also
tends to look glossy and transparent, but not at all
hard. He postulated that these distinctive features can
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Figure 12. Correlation between the perceived perceptual attributes and image statistics (i.e., image statistics). * indicates p < 0.0013,
** indicates p < 0.00013, and *** indicates p < 0.000013.

Material Perceptual attribute Image statistic r sig

Ceramic Multicolored Colorful 0.75 ***
Glass Vivid Mean luminance 0.6 *
Gem Multicolored Colorful 0.75 ***

Bendable Skewness of the luminance distribution −0.81 ***
Bendable Mean luminance 0.83 ***
Fragile Skewness of the luminance distribution −0.73 ***
Fragile Mean luminance 0.72 ***

Sky Vivid Colorful 0.69 **
Fabric Transparent/translucent Skewness of the luminance distribution −0.58 *
Wood Multicolored Colorful 0.73 ***

Vivid Colorful 0.63 *
Multicolored Mean luminance 0.68 *

Metal Multicolored Colorful 0.57 *
Ground Multicolored Colorful 0.68 **

Vivid Colorful 0.58 *

Table 3. Significant correlations between perceived material attributes and image statistics. * indicates p < 0.0013, ** indicates p <

0.00013, and *** indicates p < 0.000013.

be interpreted as a signature of a material class. In this
study, we found that the material signatures for painted
materials are also distinct and that some materials
appear to be more similar to each other than others. For
example, wood and stone have a very similar material

signature, and glass and liquid are almost identical
except that glass is—obviously—harder and more
fragile. Also, many of the between-attribute correlations
seem intuitive, such as the negative correlation between
hardness and bendableness, as well as the negative
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correlation between hairy and cold. Furthermore, we
find some remarkable similarities with the material
signatures reported by Fleming et al. (2013), which
shows that the perception of photographed and painted
materials results in similar associations, which suggests
a generic underlying mechanism.

When looking at the first two components of the
PCA we find that materials tend to cluster together,
but that clusters for different materials can overlap.
This implies that the perceptual judgments are material
specific in terms of perceptual attributes, but that
extracting a specific material identity based solely on the
perceptual attributes measured in this study would likely
be prone to errors. Possibly by adding a more extensive
list of perceptual attributes, a predictor model could
predict the material class identity. Furthermore, when
looking at the PCA visualization, it is again interesting
to note the similarity between the data presented here
and the PCA dimensions reported by Fleming et al.
(2013). This implies that material perception functions
independently of the medium of depiction.

One could argue that this can be explained by
semantic knowledge: material classification is extremely
fast, and after classification we gain access to semantic
information, which in turn could have a top-down
influence on the perception of perceptual attributes
(Xiao, Sharan, Rosenholtz, & Adelson, 2011; Wiebel
et al., 2013; Sharan, Rosenholtz, & Adelson, 2014).
Then, the estimation and perception of material
properties could be argued to be driven by a top-down
influence from material recognition. This top-down
influence would then also be independent of the
medium. To test this idea, Fleming et al. (2013)
conducted a second experiment, where participants
rated the material attributes of semantic stimuli (i.e.,
only material class names). They found that material
property ratings for the semantic-only represented
material classes were very close to the cluster centers
for photographic representations. It would be naïve
to claim that semantic top-down influences can fully
explain material perception since we are capable of
making judgments based on material properties within
a material class (which fruit looks fresher? which
sweater looks softer?). It does, however, imply that our
perception might be influenced by semantic top-down
influences when viewing materials. Furthermore,
Zhang et al. (2019) had participants perform a material
probing task on a canonical set of computer rendered
base images, where material perception could only rely
on material reflectance since there was no semantic
information. They found a PCA space that is similar
to our PCA space and the one reported by Fleming
et al. (2013). Thus, whereas semantic information
might explain a portion of material perception, it does
not explain the perception of intraclass variations.
Thus, although semantic information might explain
a portion of material perception, it does not explain

the perception of intra-class variations. Furthermore,
because the global PCA structure cannot entirely be
explained by semantic information, it is implied that a
portion of the global PCA structure (i.e., the portion
not explained by semantic information) is independent
of the medium of depiction.

The PCA space visualizes the majority of the
perceptual variability of the materials and in doing
so, shows how materials are—and importantly, how
they are not—related. We were interested in seeing
how similar the variability within one material is
in comparison to the variability found between all
materials. To do so, we took the variability within one
material and analyzed how well this mapped unto
the variability between all materials. To quantify, we
performed the Procrustes analysis. Here, the lower
the residual error is for a material, the closer the
variability within the material resembles the variability
between materials. The first, intuitive result is that
different materials vary differently across the perceptual
attributes we measured. This effect could be highly
dependent on the stimulus set. However, if we consider
the previous results, namely that different stimulus
sets have remarkably similar PCA spaces, even with
different methods of depictions (e.g., paintings in
our study, photographs in Fleming et al. [2013] and
reflectance modes mixtures in Zhang et al. [2019])
and that the material signatures are very similar
for photographic and painted images (see Figures 9
and 10). Furthermore, the finding that different
materials varied differently across perceptual attributes
further suggests that the similarities we find are not just
a semantic effect. If it was merely a semantic effect,
it would be more likely that the Procrustes residuals
would show little variability between materials. Looking
at specific materials, the residuals showed that fabric,
metal, and stone are relatively generic materials: the
variability within these closely resembled the variability
between all materials. Gem and skin were found to be
much more distinctive materials, because the variability
did not resemble the global variability. In summary,
the residuals of the Procrustes showed that different
materials varied differently across perceptual attributes.
Some intramaterial variations are quite generic; that
is, they closely resembled the global material PCA
space. However, other materials are more unique and
resembled the global variability.

It has previously been proposed that variations in
the perception of specific material attributes could
be explained by image statistics (Motoyoshi et al.,
2007; Baumgartner & Gegenfurtner 2016), but this
has also been debated (e.g., Kim & Anderson, 2009).
Considering the large amounts of data collected in
our study, we decided to calculate several simple,
histogram-based image statistics, to see whether those
could explain variations of the perceptual attributes.
It appeared that the small set of image statistics we
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used did not correlate strongly with the perceptual
attributes across all materials. This could perhaps be
expected, after finding that the Procrustes residuals
varied across materials. We did find some weak and
moderate correlations, however, and the correlation we
found between transparency/translucency and the mean
luminance of the stimuli seems an interesting finding. It
has previously been argued that the average luminance
is a poor predictor for transparency in natural images
and that this is due to the luminance of an object
being strongly influenced by scene illumination and the
objects spatial and directional properties, shape, and
context (Koenderink & van Doorn, 2001; Fleming &
Bülthoff, 2005; Fleming et al., 2011; Fleming, Jensen
& Bülthoff, 2004). When looking at the correlations
per material, it is interesting to note that the majority
of the correlations, as well as the strongest, were all
found for gem. Perhaps, it is possible that this material
simply shows stronger optical effects than other
materials.

As previously noted, the image database we used is
different from existing image sets, such as the FMD,
because each image comes from a certain artist and
a certain period. Although the sample size for the
perception experiment is relatively small with respect
to all paintings at our disposal, it does give us some
idea of interesting future directions for the study of
art and perception. For example, we conducted a
small pilot, not reported here, where we found that
gems are perceived as glossier for recent paintings
relative to older paintings. A typical art historical
hypothesis would include the invention of oil paint that
supposedly increased the convincingness of materials.
Yet, most of our paintings are after this invention and
the material rendering revolution that van Eyck caused
in the fifteenth century. But there can be many other
reasons and possibly even patterns that have not yet
been identified in art history. With our continued work
on creating the painting database of material depictions
we hope to further investigate these questions.

Gallery URLs
• https://www.nationalgallery.org.uk
• https://www.rijksmuseum.nl/en
• https://www.museodelprado.es/en
• https://www.nga.gov/
• https://www.nationalmuseum.se/en/
• https://www.getty.edu/museum/
• https://www.metmuseum.org/

Keywords: material perception, material attributes, art
history, Amazon Mechanical Turk
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