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Abstract

Background

During critical illness in humans, the effects of caloric restriction on the inflammatory

response are not well understood. The aim of this study is to examine the associations of

caloric restriction, inflammatory response profiles and outcomes in critically ill patients.

Methods

This is a sub-study of the PermiT trial (Permissive Underfeeding or Standard Enteral Feed-

ing in Critically Ill Adults Trial- ISRCTN68144998). Serum samples were collected on study

days 1, 3, 5, 7 and 14 and analyzed for a panel of 29 cytokines. We used principal compo-

nent analysis to convert possibly correlated variables (cytokine levels) into a limited number

of linearly uncorrelated variables (principal components). We constructed repeated mea-

sures mixed linear models to assess whether permissive underfeeding compared to stan-

dard feeding was associated with difference cytokine levels over time.

Results

A total of 72 critically ill patients were enrolled in this study (permissive underfeeding n = 36

and standard feeding n = 36). Principal component analysis identified 6 components that

were responsible for 78% of the total variance. When adjusted to principal components, per-

missive underfeeding was not associated with 90-day mortality (adjusted odds ratio 1.75,

95% confidence interval 0.44, 6.95, p = 0.43) or with incident renal replacement therapy.
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The cytokines did not differ with time between permissive underfeeding and standard feed-

ing groups.

Conclusions

The association of permissive underfeeding compared to standard feeding with mortality

was not influenced by the inflammatory profile. Permissive underfeeding compared to stan-

dard feeding was not associated with differences in the serum levels of cytokines in critically

ill patients.

Introduction

The possible effects of caloric and protein intake on inflammatory response have been increas-

ingly recognized. Caloric restriction has been shown to attenuate the inflammatory response

associated with diabetes, obesity, cancer, cardiovascular disease and ageing.[1–3] During criti-

cal illness, which is typically characterized by an intense pro-inflammatory response, the effects

of caloric intake on inflammation are less certain. Animals subjected to caloric restriction

mounted less elevation of pro-inflammatory cytokines.[4, 5] During critical illness in humans,

the effects of caloric restriction on the inflammatory response are not well understood.

The objective of this sub-study of the PermiT (Permissive Underfeeding versus Target

Enteral Feeding in Adult Critically Ill Patients Trial)[6] is to examine the associations of caloric

restriction, inflammatory response profiles and outcomes in critically ill patients. We hypothe-

sized that permissive underfeeding attenuates the pro-inflammatory response and that the

association of caloric intake with clinical outcomes may differ according to patient inflamma-

tory profile. Some of these findings have been previously presented and published as an

abstract.[7]

Materials and methods

Study population

This is a sub-study of the PermiT trial, in which critically ill patients were randomized to per-

missive underfeeding (40–60% of calculated caloric requirements) or standard feeding (70–

100%) for up to 14 days while maintaining similar protein intake in both groups.[8] Eligibility

criteria and interventions are detailed in the publication of the main trial.[6, 8] The trial found

no difference in the primary endpoint of 90-day mortality between the permissive and stan-

dard feeding groups [relative risk 0.94, 95% confidence interval (CI) 0.76, 1.16, p = 0.58]. In

this a priori sub-study, consecutive patients enrolled in PermiT trial at King Abdulaziz Medical

City, Riyadh, Saudi Arabia between September 2012 and September 2014 and expected to stay

for�14 days as judged by the treating intensivist were approached for informed consent for

participation in this study. The study was approved by the Institutional Board Review of the

Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia and all clinical investiga-

tions were conducted according to the principles expressed in the Declaration of Helsinki.

Nutrition

The dietician calculated caloric requirement based on predefined formulae using the Penn

State equation for mechanically ventilated patients with BMI<30 kg/m2 and the Ireton-Jones

equation for mechanically ventilated patients with BMI�30 kg/m2 and for spontaneously
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breathing patients[6] and then selected the tube feeding formula depending on the patient

condition, usually after discussion with the treating ICU team. Protein target was calculated at

1.2 to 1.5 g g/kg according to the clinical practice guidelines.[9] To achieve similar protein

delivery to both feeding groups, additional protein (Resource Beneprotein, Nestle Healthcare)

was provided if needed.

Clinical data

We documented demographics and nutritional intervention data and clinical outcomes

including mortality (at ICU and hospital discharge, 90 days, 28 days, 180 days), incident renal

replacement therapy, mechanical ventilation duration, ICU and hospital lengths of stay (LOS),

and ICU-associated infections during the ICU stay.

Blood sampling and measurements of cytokines

Blood samples were collected on days 1, 3, 5, 7 and 14 of enrollment in the PermiT trial. Day 1

was the day of randomization, which was within 48 hours of ICU admission. Serum was pre-

pared from the clotted blood samples by centrifugation for 10 minutes at 1000 x g at 4˚C, then

was stored at −80˚C prior to assay. A total of 29 cytokines were measured in duplicates using

Milliplex panel (human cytokine/chemokine magnetic bead panel, kit catalog code HCYT-

MAG-60K-PX29, Merck Millipore, Darmstadt, Germany) with the Luminex 3D platform

(Luminex, Austin, TX), according to the manufacturer instructions. The cytokine panel

included epidermal growth factor (EGF), eotaxin, granulocyte-colony stimulating factor

(G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon (IFN)-

α2 and IFN-γ, interleukin (IL)-1α, IL-1β, IL-1ra, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10,

IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-17A, inducible protein-10 (IP-10), monocyte chemo-

attractant protein (MCP)-1, macrophage inflammatory protein (MIP)-1α, MIP-1β, tumor

necrosis factor (TNF)-α, TNF-β, and vascular endothelial growth factor (VEGF).

Statistical analysis

Due to the exploratory nature of the study, there was no sample size calculation performed.

Statistical analyses were performed using SAS version 9.2 (SAS Institute, Cary, NC). We used

principal component analysis (PCA) as a data reduction technique to capture the maximum

variation patterns in the 29 cytokine levels measured at day one in few linearly independent

components.[10] PCA summarizes variation in data without any prior assumptions about

whether the samples come from different treatment groups or have phenotypic differences,

thus avoids introducing inherent bias.[10] PCA was carried out on the correlation matrix of

the 29 cytokine measures at baseline using the “PRINCOMP” procedure of SAS. The analysis

generated principal components with a set of eigenvalues and eigenvectors. Eigenvalues mea-

sures the magnitude of the variance captured by each principal component. We have sorted

the principal components so that the first principal component accounted for the largest possi-

ble variance in the data (reflected by the highest eigenvalue), and each following component

accounted for as much of the remaining variance as possible. We have retained the top 6 prin-

cipal components using the scree plot method. The eigenvectors represent a set of weights that

describe the loading of each cytokine on the extracted principal components.

We compared baseline characteristics, interventions and outcomes among patients in the

permissive underfeeding and standard feeding. We reported categorical variables as frequen-

cies with percentages and continuous variables as medians with quartiles 1 and 3 (Q1, Q3). We

compared categorical variables using the chi-square or Fisher’s exact test, as appropriate and

continuous variables using Wilcoxon Mann Whitney test. We assessed the association of

Cytokines and feeding in critically ill
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permissive underfeeding compared to standard feeding with 90-day mortality and incident

renal replacement therapy using logistic regression analysis adjusting for the resulting princi-

pal components. To assess whether permissive underfeeding compared to standard feeding

was associated with difference cytokine levels over time, we constructed repeated measures

mixed linear models. A two-tailed P value <0.05 was considered statistically significant.

Ethics approval and consent to participate

The study was approved by the National Guard Health Affairs Institutional Review Board

(IRB), Riyadh, Saudi Arabia. Informed consent was obtained from subjects enrolled in this

study.

Results

A total of 72 patients were enrolled in this sub-study with 36 patients receiving permissive

underfeeding and 36 standard feeding (S1 Fig). Their baseline characteristics are presented in

Table 1. Patients in the permissive underfeeding group received less calories per day for the

study period (up to 14 days) compared with the standard feeding group as per the study crite-

ria [911.4 kcal (789.1, 1072.5) vs. 1137.3 kcal (819.2, 1639.0), p = 0.006]. Other aspects of inter-

ventions and co-interventions are reported in Table 2. Clinical outcomes, including mortality

(at ICU and hospital discharge, 90 days, 28 days, 180 days), incident renal replacement ther-

apy, mechanical ventilation duration, ICU and hospital lengths of stay (LOS), and ICU-associ-

ated infections during the ICU stay, were not different between the two groups (Table 3).

Principal component analysis

PCA reduced the original 29 cytokines to 6 components that could explain 78% of the total

variance. The principal component 1 explained 42% of the total variance, while the other prin-

cipal components 2–6 were responsible for 12%, 10%, 6%, 4% and 4% respectively (S1 Table).

S2 Table represents the loading of each of the 29 cytokines on the retained 6 principal compo-

nents. GM-CSF, IFN-α2, IL-1β, IL-2, IL-3, IL-4, IL-7, IL-12 (p40), IL-12 (p70), IL-13, IL-15,

IL-17A,TNF-α and TNF-β had a loading weight value greater than 0.2 on the principal compo-

nent 1.

Association of permissive underfeeding with outcomes adjusting for

baseline cytokine principal components

When adjusted to principal components, permissive underfeeding was not associated with

90-day mortality (adjusted odds ratio (aOR) 1.97, 95% CI 0.47, 7.89, p = 0.34) or with incident

renal replacement therapy (aOR 0.36, 95% CI 0.07, 1.96, p = 0.24, Table 4). None of the princi-

pal components were generally associated with 90-day mortality or incident renal replacement

therapy.

Effect of permissive underfeeding on cytokine levels over time

There was no difference in any of the cytokine levels over time between the permissive under-

feeding and standard feeding (Fig 1 and S2 Fig).

Discussion

Our study showed that the association of permissive underfeeding compared to standard feed-

ing (with similar protein intake provided) with mortality and incident renal replacement ther-

apy was not influenced by the inflammatory profile. Cytokine components were not associated

Cytokines and feeding in critically ill
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with outcomes. Permissive underfeeding compared to standard feeding (with similar protein

intake provided) was not associated with any major differences in the inflammatory response

in critically ill patients.

Table 1. Baseline characteristics of patients in the permissive underfeeding and standard feeding.

Variable Permissive underfeeding

N = 36

Standard feeding

N = 36

P value

Age–(yr), median (Q1, Q3) 46.8 (24.1, 70.4) 53.5 (33.0, 71.3) 0.16

Female sex–no. (%) 9 (25.0) 12 (33.3) 0.44

Height–(cm), median (Q1, Q3) 168 (162, 170) 165 (155, 170) 0.57

Weight–(kg), median (Q1, Q3) 74.5 (57.0, 86.0) 72.5 (60.0, 95.0) 0.39

BMI–(kg/m2), median (Q1, Q3) 26.1 (22.0, 31.2) 29.3 (23.0, 35.7) 0.18

BMI� 30 kg/m2, no. (%) 11 (30.6) 15 (41.7) 0.33

Diabetes, no. (%) 19 (52.8) 19 (52.8) 1.00

Inclusion blood glucose–(mmol/L), median (Q1, Q3) 10.9 (8.3, 13.6) 8.7 (6.7, 12.5) 0.12

Admission category, no. (%)

Medical 19 (52.8) 21 (58.3)

0.88Surgical 4 (11.1) 4 (11.1)

Post-operative trauma 13 (36.1) 11 (30.6)

Renal replacement therapy, no. (%) 1 (2.8) 1 (2.8) 1.00

APACHE II–median (Q1, Q3) 21 (16, 25) 21 (12, 27) 0.92

Mechanical ventilation, no. (%) 33 (91.7) 35 (97.2) 0.30

Severe sepsis at admission, no. (%) 7 (19.4) 11 (30.6) 0.27

Vasopressor, no. (%) 23 (63.9) 25 (69.4) 0.67

Hemoglobin–(g/L), median (Q1, Q3) 109 (86, 126) 111 (97, 131) 0.38

INR–median (Q1, Q3) 1.1 (1.0, 1.3) 1.1 (1.0, 1.3) 0.88

SOFA Score on Day 1 –median (Q1, Q3) 10 (9, 12) 10 (8, 13) 0.58

PaO2/FiO2 ratio, median (Q1, Q3) 150.0 (117.0, 269.0) 125.5 (73.5, 242.0) 0.44

Platelets–(x 109/L), median (Q1, Q3) 186.0 (141.5, 277.5) 187.0 (137.5, 243.0) 0.55

Bilirubin–(μmol/L), median (Q1, Q3) 11.7 (8.6, 26.9) 17.1 (9.7, 27.9) 0.30

SOFA Hypotension score–median (Q1, Q3) 3 (3, 4) 4 (1, 4) 0.23

GCS–median (Q1, Q3) 3 (3, 6) 3 (3, 6) 0.54

Creatinine–(μmol/L), median (Q1, Q3) 97.5 (73.0, 118.0) 84.5 (67.0, 121.0) 0.49

C-reactive Protein–(mg/L), median (Q1, Q3)) 120.5 (60.7, 190.5) 118.1 (55.4, 171.0) 0.77

24-hour urinary urea nitrogen–(mmol/L), median (Q1, Q3) 205 (101, 346) 255 (183, 371) 0.21

Serum lipid profile–(mmol/L), median (Q1, Q3)

Cholesterol 2.5 (1.9, 3.0) 2.6 (2.1, 3.3) 0.36

Triglycerides 1.1 (0.7, 1.6) 1.2 (0.9, 1.8) 0.30

HDL 0.6 (0.4, 0.9) 0.6 (0.4, 0.9) 0.76

LDL 1.0 (0.6, 1.4) 1.2 (0.8, 1.7) 0.23

Albumin–(g/L), median (Q1, Q3) 29 (25, 32.5) 28 (27, 31) 0.68

Prealbumin–(g/L), median (Q1, Q3) 0.1 (0.1, 0.1) 0.1 (0.08, 0.1) 0.60

Hemoglobin A1c, median (Q1, Q3) 0.06 (0.05, 0.07) 0.06 (0.05, 0.07) 0.87

Minute ventilation–(L), median (Q1, Q3) 9.4 (7.7, 11.3) 8.6 (7.2, 10.7) 0.28

Maximum temperature–(0C), median (Q1, Q3) 37.2 (36.7, 37.7) 37.0 (36.6, 37.6) 0.58

BMI: body mass index; APACHE II: Acute Physiology and Chronic Health Evaluation II; INR: international normalized ratio; SOFA: Sequential Organ Failure

Assessment; GCS: Glasgow coma scale PaO2:FiO2 ratio: the ratio of partial pressure of oxygen to the fraction of inspired oxygen; HDL: High density lipoproteins; LDL:

Low density lipoproteins. The denominators for all percentages is the N for each column. Continuous variables are represented as median (quartile 1 and quartile 3)

https://doi.org/10.1371/journal.pone.0209669.t001
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Caloric restriction has been associated with increased life span and protection against dia-

betes, cardiovascular disease and cancer in animals and non-critically ill humans.[11] There is

accumulating evidence that caloric restriction may modulate inflammatory response in these

settings. A review of the published data suggests that caloric restriction may protect against

aging of the immune system, maintain naive T cells, and modify the host response to infection.

[12] A randomized controlled trial in 316 older obese adults showed that diet induced weight-

loss led to significant reduction in C-reactive protein (CRP), IL-6, and soluble TNF-α receptor

1.[2] A study evaluated a 15-week lifestyle intervention (hypocaloric diet and daily exercise) in

27 severely obese patients and found that the intervention was associated with significant

decrease in IL-6, IL-8, and TNF-α.[13] In a pre-post study, 8-week hypocaloric diet in 41

obese subjects led to reduction in CRP, complement C3 and TNF-α levels compared to base-

line.[14]

In animal models of critical illness, caloric intake has been shown to influence the inflam-

matory response. Mice subjected to 40% energy-restriction for 4 weeks, showed less elevation

Table 2. Nutritional and metabolic data in patients in the permissive underfeeding and standard feeding.

Variable Permissive underfeeding

N = 36

Standard feeding

N = 36

P value

Calculated caloric requirement–(kcal/day), median (Q1, Q3) 1727 (1613, 2030.5) 1876 (1586, 2062) 0.43

Study caloric target–(kcal/day), median (Q1, Q3) 1074 (962, 1218.5) 1876 (1586, 2062) <0.0001

Daily caloric intake for the intervention duration–

No. of kilocalories, median (Q1, Q3) 911.4 (789.1, 1072.5) 1137.3 (819.2, 1639.0) 0.006

Percent of requirement, median (Q1, Q3) 54.1 (46.7, 57.3) 69.8 (47.4, 88.8) 0.004

Caloric source for the intervention duration–(kcal /day), median (Q1, Q3)

Enteral 785.5 (650.0, 1022.5) 1121.7 (731.1, 1507.9) 0.004

Propofol 75.6 (19.1, 129.9) 73.7 (20.1, 147.6) 0.83

Intravenous dextrose 3.6 (0.0, 22.9) 0.0 (0.0, 32.9) 0.27

Total parenteral nutrition 0 (0, 0) 0 (0, 0) 0.33

Calculated protein requirement–(g/day), median (Q1, Q3) 78.5 (68, 90) 83.0 (70.5, 96.5) 0.14

Daily protein intake for the intervention duration, median (Q1, Q3)

No. of grams 55.3 (42.8, 67.1) 53.4 (34.0, 66.5) 0.45

Percent of requirement 72.6 (63.0, 84.0) 63.3 (41.6, 83.3) 0.12

Daily average protein intake/kg (g/day) 0.77 (0.66, 0.91) 0.70 (0.40, 0.92) 0.28

Protein source–(g/day), median (Q1, Q3)

Main enteral formula 27.0 (23.4, 37.0) 50.6 (31.3, 64.1) <0.0001

Supplemental enteral protein 23.4 (19.2, 34.0) 0.0 (0.0, 1.2) <0.0001

Parenteral protein 0 (0,0) 0 (0, 0) 0.33

Duration of intervention–(days), median (Q1, Q3) 11 (7, 14) 13 (5.5, 14.0) 0.86

Co-interventions during study period

Insulin

Use–no. (%) 21 (58.3) 24 (66.7) 0.47

Dose–(units/day), median (Q1, Q3) 4.6 (0.0, 29.0) 6.7 (0.0, 31.8) 0.53

Blood glucose–(mmol/L), median (Q1, Q3) 7.7 (6.7, 10.3) 9.0 (6.7, 11.5) 0.35

Enteral formulae on day 1 –no. (%)

Disease-non-specific 16 (44.4) 15 (41.7) 0.66

Disease-specific 20 (55.6) 21 (58.3)

Disease-non-specific formula: Osmolite, Jevity, Promote, Ensure plus, Resource, Ensure, Resource plus, Jevity (1.2).

Disease-specific formula: Glucerna, Nutric hepatic, Nepro, Pulmocare, Novasource Renal, Peptamen (1.0), Peptamen (1.2), Suplena, Oxepa.

https://doi.org/10.1371/journal.pone.0209669.t002
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of IL-1β, IL-6 and TNF-α after lipopolysaccharide injection compared with mice in the control

group.[4] In another prospective controlled laboratory experiment in mice, 40% dietary

restriction for 3 weeks followed by induction of abdominal sepsis or endotoxemia was associ-

ated with significantly reduced visceral fat-derived messenger RNA expression of IL-6, throm-

bospondin-1, plasminogen activator inhibitor-1, and tissue factor and of serum IL-6 and with

improved survival.[5]

In critically ill patients, enteral nutrition (EN) may modulate inflammation through several

potential mechanisms including affecting the gastrointestinal microbiome,[15] maintaining

the intestinal mucosal barrier function[16] and restoring gut immunity.[17] However, the

effect of EN on cytokines has not been universally demonstrated. A randomized controlled

trial of EN versus parenteral nutrition in 50 patients with severe pancreatitis showed that EN

was not associated with changes in IL-6, IL-8 or CRP.[18] A study randomized 20 ICU patients

to either receive EN alone or similar EN feeding with supplemental parenteral nutrition to

increase caloric intake for 7 days and found that IL-1, IL-6 and TNF-α measured on days of 0,

3 and 7 did not differ between the two groups.[19]

Data on the effect of caloric intake on cytokines in critically ill patients are scarce. In 103

mechanically ventilated patients, markers of inflammation (TNF-α, IL-1β, IFN-γ, IL-6, IL-8,

IL-10, IL-12) were not different at day 6 between patients who were randomized to receive

Table 3. Outcome data in patients in the permissive underfeeding and standard feeding.

Variable Permissive underfeeding

N = 36

Standard feeding

N = 36

P value

Death by 28 days–no. (%) 5 (13.9) 4 (11.1) 0.92

Death by 90 days–no. (%) 7 (19.4) 5 (13.9) 0.53

Death by 180 days–no. (%) 7 (19.4) 7 (19.4) 1.00

Death in the ICU–no. (%) 4 (11.1) 3 (8.3) 0.69

Death in the hospital–no. (%) 5 (13.9) 5 (13.9) 1.00

New renal replacement therapy–no. (%) 3 (6.1) 9 (25.7) 0.06

ICU-associated infections–no. (%) 19 (52.8) 19 (52.8) 1.00

ICU length of stay–(days), median (Q1, Q3) 16 (10, 21) 15 (10, 21) 0.76

Hospital length of stay–(days), median (Q1, Q3) 33 (17, 72) 40 (22, 86) 0.23

Duration of mechanical ventilation–(days), median (Q1, Q3) 10 (7, 16) 11 (5, 17) 0.93

ICU: intensive care unit

https://doi.org/10.1371/journal.pone.0209669.t003

Table 4. The association of permissive underfeeding compared to standard feeding with 90-day mortality and

incident renal replacement therapy adjusted for the principal components of the cytokines.

90-day mortality Incident renal replacement

therapy

aOR (95% CI) P value aOR (95% CI) P value

Permissive underfeeding vs Standard feeding 1.75 (0.44–6.95) 0.43 0.25 (0.04–1.45) 0.12

Principal component 1 1.07 (0.87–1.31) 0.52 4.82 (0.91–25.69) 0.07

Principal component 2 1.14 (0.85–1.53) 0.39 0.71 (0.37–1.37) 0.31

Principal component 3 1.35 (0.84–2.18) 0.22 2.37 (0.43–12.95) 0.32

Principal component 4 1.14 (0.72–1.82) 0.58 1.02 (0.61–1.72) 0.93

Principal component 5 0.76 (0.43–1.33) 0.33 0.70 (0.41–1.22) 0.21

Principal component 6 1.17 (0.62–2.23) 0.63 3.08 (1.26–7.50) 0.01

aOR: adjusted odds ratio, CI: confidence interval

https://doi.org/10.1371/journal.pone.0209669.t004
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trophic feeds (15±11% of target calories) compared to the full calorie group (75 ±39%).[20, 21]

The current study was similar in that both used EN with standard non-immune enhancing for-

mulae. However, it differed in that caloric restriction in our study was moderate but more

Fig 1. Serial measurements for selected acute pro-inflammatory cytokines in patients randomized to permissive underfeeding and standard feeding groups. The

differences between groups, with time and between groups with time (group�time) were tested by repeated measures mixed linear models. Box plots are displayed with

medians and quartiles 1 and 3. The error bars refer to 10th and 90th percentiles.

https://doi.org/10.1371/journal.pone.0209669.g001
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prolonged (up to 14 days versus up to 6 days) and supplemental protein was provided to the

patients in the permissive underfeeding group, so the restriction involved only calories.[6, 20,

21] Nevertheless, the two studies showed no major difference in cytokines with caloric restric-

tion. In addition, our study shows that the association of caloric intake with clinical outcomes

was not different even after accounting for cytokine profiles.

Why the effects of caloric restriction on cytokines in obesity and in animal models were not

observed in critically ill patients in our study? There may be multiple reasons. First, the popu-

lation was different: our patients were severely ill with a mean APACHE II score of 21.2±10.1,

68 (94.4%) ventilated and 48 (66.7%) on vasopressors, so data on patients who are less severely

ill may not be generalizable to ICU patients. Second, the inflammatory response during critical

illness is different from that observed in chronic conditions like obesity: our patients had a pre-

dominantly acute pro-inflammatory profile, characteristic of critical illness and may correlate

with evolution of acute organ dysfunction.[22–26] This was observed in our study by the pre-

dominance of pro-inflammatory cytokines loading on principal component 1. Furthermore in

mice the plasma levels of IL-6 were significantly reduced by dietary restriction and correlated

with adipose IL-6 messenger RNA levels and fat mass suggesting that the action of dietary

restriction on suppressing IL-6 production was mediated by its effect on resident adipose cells.

[5] Whether similar effect on adipose cells occurs with moderate short-term caloric restriction,

like in our trial, remains unknown. Third, the intensity of the intervention is different: caloric

differences in our study were less intense and were for shorter period (14 days) than in many

other studies in non-critically ill patients or in animal models. Unlike what has been achieved

in animal models but similar to other randomized clinical controlled trials of normocaloric

versus hypocaloric enteral nutrition, the permissive underfeeding feeding in our study was not

very hypocaloric and the standard feeding did not achieve full caloric target.[27, 28] Although

we achieved a significant difference in caloric intake between the two groups, the target caloric

intake was not reached in the standard- group, and as such, the differences in caloric intake

were moderate. This was most likely due to feeding intolerance and feeding interruptions

which are common in critically ill patients. This may have reduced the chance of identifying

an effect on cytokine levels. Feeding at 100% or more of the energy target during the acute

phase of critical illness may be harmful compared to lower caloric levels that are comparable to

what we achieved in both study arms.[29–31] Therefore, the results may not be generalizable

to patients being fed at full energy target; and our findings cannot exclude that full feeding dur-

ing the acute phase of critical illness may elicit an inflammatory response. Fourth, the timing

of the intervention is different: in animal studies, animals were “pre-conditioned” with several

weeks of caloric restriction before inducing critical illness, while in critically ill patients the

nutritional interventions follow the critical illness. Fifth, we provided similar protein intake to

both groups. There is accumulating evidence suggesting that meeting protein goals and not

caloric goals is associated with improved outcomes.[31–34] Therefore, it is possible that an

effect of caloric restriction on cytokines in our study might have been “masked” by different

effects of protein. Sixth, given the results of the recent NUTRIREA-2 trial, one may question

whether a potential beneficial effect of EN on reducing inflammatory response might have

been masked by an effect of EN triggering subclinical intestinal ischemia (resulting in

increased cytokine levels) in patients with hemodynamic failure, who constituted two thirds of

the study population. In the NUTRIREA-2 trial, ventilated patients who were in shock were

randomized to receive early EN or early parenteral nutrition within 24 hours after endotra-

cheal intubation aiming to achieve nutritional goals on day 1.[35] The study found no differ-

ence in the primary endpoint of all-cause mortality at 28 days. However, early EN was

associated with a 4-fold increase in ischemic bowel and colonic pseudo-obstruction.[35] Sixth,

the large variation of cytokine levels in critically ill patients, which is reflected in the wide
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interquartile ranges for all cytokines might have precluded detecting differences in cytokines with

the current sample size. Seventh, circulating cytokines may not reflect local inflammatory pro-

cesses. For example, extracorporeal blood purification therapies in septic patients have been

shown to be effective in clearing inflammatory mediators from the plasma, but there effect on

mortality has not been demonstrated.[36] Finally, nutrition might also influence the inflammatory

response by modulating autophagy, a pathway that may not be reflected in cytokine profiles.[37]

The study should be interpreted in the light of its strengths and weaknesses. The strengths

include that it was sub-study of a randomized controlled trial; therefore, the assignment to per-

missive and standard feeding was randomized. We tested for 29 cytokines to obtain a compre-

hensive picture about the inflammatory response. Serial serum samples at 5 time points were

obtained. We used PCA as a data reduction technique, so the variance from all 29 cytokines

can be accounted for in the multivariate analysis. The study limitations include being single

centered study. Because of the large variability in cytokines and the sample size, the study may

have been underpowered to detect differences in cytokine levels. Additionally, the differences

in calories achieved in the clinical setting of the trial were moderate and it remains unclear

whether more profound differences would affect cytokines. The study was also not sufficiently

powered to perform subgroup analyses.

Conclusion

In conclusion, the association of permissive underfeeding compared to standard feeding (with

similar protein intake provided) with mortality was not influenced by the inflammatory pro-

file. Permissive underfeeding compared to standard feeding was not associated with differ-

ences in the serum levels of cytokines in critically ill patients. Whether delivering more

restricted caloric intake (lower than what we have achieved in the permissive underfeeding

group) reduces inflammatory response or alternatively whether delivering full caloric intake

(higher than what we have achieved in the standard feeding group) elicits an inflammatory

response with or without full protein supplementation remains to be studied.
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