
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Pier Francesco Alesina,
Helios Klinikum Wuppertal, Germany

REVIEWED BY

Gaetano Luglio,
University of Naples Federico II, Italy
Hongwei Yao,
Beijing Friendship Hospital, China

*CORRESPONDENCE

Celia Keane
celia.keane@auckland.ac.nz

SPECIALTY SECTION

This article was submitted to
Gastrointestinal Cancers:
Colorectal Cancer,
a section of the journal
Frontiers in Oncology

RECEIVED 22 June 2022
ACCEPTED 29 August 2022

PUBLISHED 16 September 2022

CITATION

Varghese C, Wells CI, Bissett IP,
O’Grady G and Keane C (2022) The
role of colonic motility in low anterior
resection syndrome.
Front. Oncol. 12:975386.
doi: 10.3389/fonc.2022.975386

COPYRIGHT

© 2022 Varghese, Wells, Bissett,
O’Grady and Keane. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 16 September 2022

DOI 10.3389/fonc.2022.975386
The role of colonic motility in
low anterior resection syndrome
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4Department of Surgery, Whangārei Hospital, Whangarei, New Zealand
Low anterior resection syndrome (LARS) describes the symptoms and

experiences of bowel dysfunction experienced by patients after rectal cancer

surgery. LARS is a complex and multifactorial syndrome exacerbated by factors

such as low anastomotic height, defunctioning of the colon and neorectum,

and radiotherapy. There has recently been growing awareness and

understanding regarding the role of colonic motility as a contributing

mechanism for LARS. It is well established that rectosigmoid motility serves

an important role in coordinating rectal filling and maintaining continence.

Resection of the rectosigmoid may therefore contribute to LARS through

altered distal colonic and neorectal motility. This review evaluates the role of

colonicmotility within the broader pathophysiology of LARS and outlines future

directions of research needed to enable targeted therapy for specific

LARS phenotypes.

KEYWORDS
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Introduction

Rectal cancer prevalence is increasing, particularly in those under 50 (1), with surgery and

radiotherapy as the mainstays of curative treatment. There have been substantial

improvements in oncological outcomes and permanent stoma rates attributable to total

mesorectal excision, neoadjuvant radiotherapy, circular stapling devices, multidisciplinary

team management, and multimodal treatment approaches (2–4). These improvements have

unmasked a high prevalence of ‘survivorship’ disease, particularly disordered bowel function

that significantly impairs patients’ quality of life (5). As colorectal cancer survivorship

continues to increase worldwide with improved screening programmes, earlier detection,

and novel treatment advances (6), these ‘survivorship’ consequences have become important

clinical and research priorities (1, 7, 8).
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Several terms have been used to describe these survivorship

disorders such as ‘pelvic radiotherapy induced dysfunction’, and

‘low anterior resection syndrome’. Recently, the symptoms and

consequences of bowel dysfunction that patients suffer after

rectal resection, termed low anterior resection syndrome

(LARS), have been defined and standardised based on

international consensus (9). LARS is a highly prevalent

outcome affecting up to 44% of patients after low anterior

resection (10, 11), and can be long-standing, often persisting

up to 18-months after surgery (12). LARS is consistently

associated with poor quality of life, and as access to rectal

cancer treatment improves, represents a growing burden of

disease (5, 10, 11, 13). Despite this significant patient- and

healthcare burden associated with LARS, much remains to be

clarified regarding the pathophysiology of LARS.

In the setting of increasingly minimally invasive surgery,

chemoradiotherapy, and emerging watch and wait approaches

(14, 15), surgical attention is beginning to focus on methods to

mitigate LARS. This is complicated by the fact that the

pathophysiology of LARS is multifactorial and complex (16).

The MANUEL project (16) provides the best current guidance

on the management of LARS, advocating for therapies directed

based on proposed disease mechanisms (16). Clarifying these

disease mechanisms and presenting objective biomarkers will be

needed to improve the prevention and therapy of LARS.

The heterogenous symptoms experienced by patients with

LARS likely also reflects the multifactorial pathophysiology of

the syndrome. Surgical trauma to the anal sphincter complex,

colonic denervation, reduced neorectal capacity and compliance,

radiotherapy-induced fibrosis, and faecal diversion, have all been

shown to negatively impact bowel function after rectal resection

(12, 17–20). While anorectal factors have been extensively

researched with regards to their role in LARS (17, 21–24), less

is known about the role of colonic physiology in the aetiology of

LARS. Research has continued to emerge that significant

alterations in colonic motility are present in LARS, likely

demonstrating an underappreciated pathophysiological

mechanism (25, 26). This review will focus on this important

role of colonic motility and its implications in LARS.
An overview of LARS

Diagnosis and symptoms of LARS

The term LARS has historically been used to report

heterogeneous symptomatology often with a focus on faecal

incontinence, neglecting other symptoms shown to be more

strongly associated with patients’ postoperative quality of life

(27). A recent international patient-provider initiative

established a consensus-based definition for LARS (9). Variable

or unpredictable bowel function, altered stool consistency,

increased stool frequency, repeated painful stools, emptying
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difficulties, urgency, incontinence, and soiling were identified as

the most important symptoms of LARS, according to real-world

patient experience. A diagnosis of LARS can be made when

patients experience at least one of these symptoms which results

in one of the following consequences: toilet dependence,

preoccupation with bowel function, dissatisfaction with bowels,

strategies and compromises, impact on; mental and emotional

wellbeing, social and daily activities, relationships and intimacy,

and/or roles, commitments and responsibilities (9). This

standardised definition enables consistent reporting of LARS

and therefore robust investigation into LARS pathophysiology.
Measurement of LARS

Accurately measuring LARS in a standardised manner is an

essential step to better understanding the pathophysiology of LARS.

Historically, a wide range of validated and unvalidated tools have

been used to report LARS, further contributing to the complexity of

assessing this syndrome (27). The best currently available tool is the

LARS score (28). While the LARS score has been widely adopted

due to its simplicity, it suffers from several limitations; including

inability to adequately capture evacuatory dysfunction, over- and

under-estimation of impact on some patients’ quality of life due to

lack of a self-reported quality of life metric, and inadequacy to

monitor treatment efficacy due to insensitivity to change (16, 29). A

new severity scoring tool, based upon the consensus definition of

LARS is currently under development, which aims to more

accurately capture patient experience and may therefore enable a

more nuanced investigation of the various pathophysiological

mechanisms for LARS.
Treatment of LARS

Current management of LARS is reactive, empirical, and

symptom based (30). Management guidelines are based on expert

opinion due to a sparse evidence base, with evidence of therapeutic

efficacy often extrapolated from literature based on studies done in

cohorts with a native rectum (16, 31). A hierarchical approach is

advocated, with the majority of patients requiring non-invasive

intervention such as dietary manipulation, pharmacological

intervention, or pelvic floor rehabilitation (16, 30, 31). There has

traditionally also been a focus on faecal incontinence or urgency

without a wider appreciation of the broad range of defecatory

dysfunctions that can be seen in LARS (31). This in part stems from

the difficulty elucidating the complex pathophysiological

mechanisms underlying LARS and in part from many clinicians’

misguided perception that incontinence has the greatest impact on

patients’ quality of life (32). Further improvements in management

will rely on appropriate patient selection, suitable outcome

measures to assess treatment efficacy, and treatments rationalised

to mechanisms of disease.
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Colorectal anatomy and physiology

Colon anatomy and physiology

The motility of the colon and rectum are mainly controlled by

overlapping neurogenic and myogenic systems, modulated by local

mucosal factors and hormonal influences (33, 34). Like the stomach

and small bowel, the colon contains networks of interstitial cells of

Cajal (ICC), which aid in the generation of rhythmic motor patterns

under co-regulation by intrinsic and extrinsic (autonomic) nervous

systems (34, 35). ICC found in the submuscular plexus (SMP) are

the primary pacemakers in the colon, these intercalate with

intermuscular ICC with closer proximity to nerve varicosities

supporting the importance of extrinsic neural control (36, 37).

The anatomy and functioning of ICC in the colon have been

comprehensively outlined in a recent review (34). Parasympathetic

supply to the distal colon is by S2-S4 pelvic splanchnic nerves, and

the sympathetic supply via the L1-L2 splanchnic nerves (emanating

from the inferior hypogastric plexus). The sympathetic nerves

inhibit proximal colonic motility tonically (38), but are excitatory

to the internal anal sphincter (IAS).
Rectal anatomy and physiology

The rectum lies between the sacral promontory and anus,

measuring between 12-15 cm, and has an important role in

continence. The empty rectum is filled with faeces by antegrade
Frontiers in Oncology 03
colonic propagating contractions (39). High amplitude

propagating contractions (HAPC) which start at the ascending

colon and propagate as far as the sigmoid colon, have been

associated with stool entering the rectum, causing an increase in

intrarectal pressure, activation of the recto-anal inhibitory reflex,

and relaxation of the IAS. External anal sphincter (EAS) and

pelvic floor muscle tone then contribute to the maintenance of

continence. The role of the cyclic motor pattern has been reviewed

previously (40), but in brief: the cyclic motor pattern originates

throughout the distal colon, most frequently at the rectosigmoid

junction, and predominantly propagating in the retrograde

direction after meals, thereby preventing rectal filling and aiding

in bowel continence (40–42). Voluntary passage of flatus and

anorectal differentiation of gaseous, liquid, and solid contents;

important functions for the voluntary control of defecation, are

mediated through the recto-anal inhibitory reflex whereby rectal

distension causes transient internal sphincter relaxation before

recovery of anal pressures (43). A conscious defecatory urge arises

with progressive rectal distension and defecation is achieved

through voluntary relaxation of the EAS, involuntary

contraction of the IAS, reduction in the anorectal angle and

propulsive rectal contractions (see Figure 1) (44).
Colonic motility in health

Distal colonic motility has long been considered important

for bowel function and continence, with particular attention
FIGURE 1

Physiological mechanisms of defecation with a focus on the role of colonic motility. The cyclic motor pattern (CMP) which characterises the
rectosigmoid brake regulates rectal filling in the continence/basal phase. During the pre-expulsive phase of defecation, high amplitude
propagating contractions (HAPCs) and the cyclic motor pattern facilitate antegrade transit. Important mechanisms of continence include ability
of voluntary contraction of the external anal sphincter (EAS) and the rectosigmoid brake. The expulsive phase of defecation is facilitated by
propulsive rectal contractions, voluntary EAS relaxation, and reflex relaxation of the internal anal sphincter (IAS) and pelvic floor (PF) muscles.
Refer to refs (16, 44) for extended details.
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given to the rectosigmoid region. As early as the 1920s, it was

posited that sigmoid motility patterns play an important role in

the control of defecation by limiting rectal filling (45, 46), a

mechanism that is normally suppressed during defecation. In a

kymographic study of 18 symptomatic individuals, a reduction

in sigmoid motility was associated with diarrhoea (47). Building

on this, O’Beirne described the rectosigmoid region as a

‘functional sphincter’ (48), and Rao and Welcher further

proposed that periodic rectal motor activity served as an

‘intrinsic braking mechanism to prevent the untimely flow of

contents’ (42).

Several groups have comprehensively characterised HAPCs,

which as noted above, are often associated with defecation (49–

52). While HAPCs are the most widely recognised colonic

motility pattern, they are not the most dominant colonic

motor pattern. Using high-resolution colonic manometry

(HRCM), which allows for comprehensive spatiotemporal

assessment of motility patterns, Dinning et al. showed that the

cyclic motor pattern (CMP) is the most active colonic motility

pattern over time (53). The CMP is a repetitive sequence of

propagating contractions with a frequency of 2-6 cycles per

minute (cpm). In a cohort of healthy controls, the CMP lasted a

mean of 12.6 ± 2.9 s, had a mean amplitude of 23.1 ± 21.4

mmHg, increased post-prandial ly , and propagated

predominantly in a retrograde direction (53). Lin et al.

extended this work and identified that the majority of CMP

originate from the rectosigmoid region (54). An increase in the

retrograde CMP in response to a meal-stimulus was considered a

physiological marker of a rectosigmoid brake, limiting rectal

filling and aiding in the maintenance of bowel continence (40).

Chen et al. also characterised rectosigmoid motility patterns

using similar HRCM methods, further describing an

intermittent pressure band 10-17 cm above the anal verge that

was described as relaxing and contracting in concert with the

anal sphincters (54, 55). These data appear to confirm the earlier

hypotheses of a “functional sphincter” in this region (48), with

this constellation of distal motility profiles collectively

considered to represent the rectosigmoid brake. In addition to

the comprehensive HRCM profiling of rectosigmoid motility

patterns, multiple modalities have verified the function of this

region of the colon. For example, high-resolution impedance

manometry demonstrated that gas insufflation of the sigmoid

colon can initiate retrograde CMP which in turn limits gas

transit into the rectum, further supporting the rectosigmoid

brake hypothesis (56).
Mechanism and regulation of the
rectosigmoid brake

As discussed above, much of the periodic gastrointestinal

motility relies on spontaneous oscillatory depolarisation of

smooth muscles typically patterned by ICC. It is thought that
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the ‘slow-waves’ predominantly generated by ICC in the colon

arise in the submucosal layer, in concert with extrinsic neuronal

input as a cooperating mechanism, together governing the cyclic

motor pattern (57, 58). An extensive overview of the role of ICC

in regulating colonic function has previously been provided by

Huizinga et al. (34) Neural input, thought to co-regulate the

CMP, is primarily from the enteric nervous system but is also

modulated by the parasympathetic and sympathetic

nervous systems.

The importance of neural innervation in regulating

rectosigmoid motor activity is evidenced by its relative

absence in spinal cord injury (59, 60), systemic sclerosis

(61), and diabetes mellitus (62). Similarly, as stimulation of

the pelvic splanchnic nerves through sacral neuromodulation

(SNM) can be highly efficacious even in cases of anal

sphincter incompetence (63, 64), it has also been posited

that neurally-mediated colonic motility pathways are a

primary mechanism for regulating continence via SNM

(41, 65).
Pathophysiology of a dysregulated
rectosigmoid brake

Rectosigmoid dysmotility may be associated with disrupted

continence. In a recent HRCM study, a suppressed rectosigmoid

brake (i.e., fewer retrograde propagating contractions in the

distal colon) was observed in patients with medically-

refractory faecal incontinence compared to healthy controls

(41). While this study was in participants with a native

rectum, it is conceivable that a similar attenuation of the

rectosigmoid brake may contribute to incontinence and soiling

in LARS (41). Numerous studies have demonstrated that sacral

neuromodulation (SNM), an established and highly successful

treatment for faecal incontinence, upregulates retrograde

motility of the sigmoid colon, restoring rectosigmoid brake

function (41, 65, 66). Successful application of SNM to relieve

symptoms in patients with LARS could also function through

this mechanism, by upregulating propagating sequences with a

braking function in the remnant colon or neorectum (67).

Interestingly, a hyperactive rectosigmoid brake has also been

recently hypothesised to contribute to constipation, by impeding

the normal passage of bowel motions through the distal

colorectum (68–70). Our group observed this effect in a

patient who underwent first stage SNM for incontinence but

failed to progress to a permanent implant due to the new onset of

constipation. Interestingly this patient demonstrated increased

baseline propagating activity with SNM (41). A similar

phenomenon is seen after surgery where a hyperactive

rectosigmoid brake is thought to impair recovery of bowel

function, and resection of the rectosigmoid has therefore been

proposed as a plausible explanation for the faster bowel recovery

after distal colectomy vs right-sided resections (71–73).
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Parasympathetic denervation of the distal colon and neorectum

may cause similar hyperactivity in patients with LARS,

particularly in those patients with evacuatory dysfunction

predominant symptoms.
Colonic motility after anterior
resection

Resection of the rectosigmoid during anterior resection is

hypothesised to result in aberrant distal colon and neorectal

motility via resection of the rectosigmoid brake and denervation

of the remnant colon and neorectum (Figure 2). High resolution

colonic (HRCM) manometry and barostat studies have

demonstrated an altered meal response or gastrocolic reflex in

patients after anterior resection compared to healthy controls,

consistent with anecdotal patient reports of a temporal

association between eating and symptom onset.

Our research group has investigated post-anterior resection

colonic motility using HRCM in multiple cohorts. Vather et al.

report a comparison between 15 patients post-resection, who

reported “normal” bowel function according to the

comprehensive faecal incontinence questionnaire (CFIQ) and

9 healthy controls (74). Keane et al. report comparisons between

11 patients post-resection who report no LARS according to the

LARS score, 12 patients with LARS, and the same 9 healthy

controls (25). The analysis methods differ with visual inspection
Frontiers in Oncology 05
in the former study and automated analysis with a high

sensitivity (5 mmHg amplitude threshold) in the latter. Both

studies found a largely conserved meal response post-resection

in patients with “normal bowel function” but a reduced post-

prandial distance of propagation for antegrade and retrograde

propagating sequences (25, 74). Interestingly though, the more

sensitive analysis also revealed fewer post-prandial retrograde

contractions compared with controls (25). Recently, Ansong

et al. performed HRCM in 9 patients with no/minor LARS and 9

patients with major LARS and found major LARS was associated

with increased antegrade CMP which correlated with symptoms,

and fewer bisacodyl-stimulated HAPCs. The increased

antegrade CMP persisted after bisacodyl stimulus (75). The

authors postulate this may relate to other findings of increased

colonic transit in LARS. The vast heterogeneity seen in these

groups with preserved bowel function post-resection highlights

that the mechanisms underlying post-operative bowel function

recovery and dysfunction are complicated. Excision of the native

rectosigmoid is likely associated with numerous compensatory

mechanisms to mitigate some of the effects of an attenuated

rectosigmoid brake.

HRCM demonstrated attenuation of the rectosigmoid brake

mechanism in the patients with LARS, as they had fewer

retrograde propagating contractions pre- and post-meal, which

propagated for a shorter distance with reduced amplitude post-

meal, compared with healthy controls (Figure 3) (25). However,

attenuation of the retrograde rectosigmoid motility doesn’t
FIGURE 2

Putative mechanisms contributing to low anterior resection syndrome during the basal, pre-expulsive, and expulsive phases. Mediators of injury
arising from surgery, radiotherapy, and ileostomies (as described in Figure 5) are described in this figure. Diverting ileostomies may cause
diversion colitis, bile salt malabsorption, small intestinal bacterial overgrowth (SIBO), and/or colonic dysbiosis. Similarly, changes in colo/
rectoanal sensation, neorectal compliance, sphincter, and pelvic floor dyssynergia, altered distal colonic motility, and limited external anal
sphincter (EAS) function also contribute. Little is known about the pathophysiological mechanisms for low anterior resection syndrome during
the expulsive phase of defecation and more research is required in this area.
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appear to be the sole mechanism responsible, as patients with

LARS also had fewer post-prandial antegrade contractions,

which propagated for a shorter distance with reduced

amplitude compared to healthy controls (Figure 3) (25).

Therefore removal of this region may have additional effects

on long feedback loops within the gastrointestinal system as well

as impacts on neorectal filling. The main limitations of the

HRCMwork are the small samples and the lack of contemporary
Frontiers in Oncology 06
comprehensive anorectal physiology testing to distil the various

mechanisms contributing to dysfunction in individual patients.

Additionally, Vather et al. showed that in 9 out of 12 patients

with “normal” bowel function post-anterior resection,

propagating motor patterns (such as HAPCs and the CMP)

traversed the anastomosis, with no drop-off at the site of the

surgical scar (Figure 4, adapted with permission fromVather et al)

(74). Return of trans-anastomotic propagation was hypothesised
A B

D

E F

C

FIGURE 3

Adapted from Keane et al. with permission. Differences in the cyclic motor pattern in low anterior resection syndrome (LARS) compared to post-
low anterior resection patients without LARS, and healthy controls. (A) number of antegrade contractions, (B) number of retrograde contractions,
(C) amplitude of antegrade propagating contractions, (D) amplitude of retrograde propagating contractions, (E) distance of propagation of
antegrade contractions, and (F) distance of propagation of retrograde propagating contractions. The resection group is made up of patients who
scored ≤20 on the LARS score.
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to have occurred through regeneration of neural tissues and/or

ICC networks as seen in the small bowel (76, 77), and previous

animal models (78–80), rather than be explained by locally

mediated stretch responses as these studies were undertaken in

prepared colons. This presumed trans-anastomotic ICC regrowth

with restoration of ICC-mediated motility suggests that extrinsic

neural denervation may have a more significant role in LARS than
Frontiers in Oncology 07
ICC loss (74). This is further supported by low-resolution

manometry studies which show reduced propagating

contractions to the neorectum and prolonged colonic transit

time with long denervation compared to short denervation (81,

82). While limited by low resolution techniques these studies were

able to identify a significant correlation between altered motility

and faecal urgency and multiple evacuations (82).
FIGURE 5

Flow diagram of mechanisms of injury as a consequence of surgery, radiotherapy and stoma formation. SCFA, short chain fatty acids; ENS,
enteric nervous system; rectoanal inhibitory reflex, RAIR.
FIGURE 4

Adapted from Vather et al., 2016 with permission. Density analysis mapping of the number of propagating events occurring within 5 cm of the
anastomosis. Some 47% of all propagating contractions occurred within 2 cm of the anastomosis (shaded area), with no drop-off at the site of
the anastomosis.
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HRCM evidence has suggested that the loss of rectosigmoid

brake function as well as loss of long gastrointestinal feedback

loops (such as the gastrocolic reflex, defecation, or sacral

autonomic reflexes) may be plausible mechanisms underlying

LARS. These hypotheses are further supported by other

physiological modalities; Mochiki et al. performed a barostat

study in 37 patients after low anterior resection, 17 with high

stool frequencies and 20 with normal stool frequencies and

found an increased gastrocolic reflex in patients after low

anterior resection (83). While a 300 kcal meal did not induce

contractions in healthy controls, patients with increased stool

frequency after low anterior resection had relative hypermotility

proximal to the anastomosis (in the colonic conduit) compared

to those with normal stool frequency (83). As these studies were

performed using barostat techniques, it could not be resolved

what specific motor patterns were occurring in the colon of these

subjects. Others have also shown spastic motility of the

neorectum to be associated with urge incontinence after

sphincter preserving surgery (81, 82, 84). In an anorectal

physiology study, 23 patients with major LARS had a

hyperactive postprandial response with a significant increase

in postprandial neorectal pressure compared to patients without

LARS (n = 9) after total mesorectal excision (85). More recently,

colonic transit studies have demonstrated that patients with

major LARS have significantly faster transit compared to those

with minor or no LARS (26). Increased transit could be a

consequence of either hypofunction of the rectosigmoid brake,

or overactivity of proximal propulsive activity, further

supporting the role of altered colonic motility in LARS.

Colonic motility is likely an important contributor to the

complex and multifactorial underlying pathophysiology of

LARS. Other critical aetiological mechanisms during surgery

relate to disruptions to intestinal continuity, denervation of the

mobilised left colon, and injury to the anal sphincter complex.

Construction of a neorectum with altered motility (often

secondary to nerve injury) (85), and decreased functional

capacity will also contribute to LARS. Other factors such as

the consequences of faecal diversion and radiotherapy as well as

postoperative medications, dietary and psychological factors are

also important considerations that have been detailed

thoroughly previously (16, 17). Figure 5 shows the various

impacts of surgery, radiotherapy and stoma formation, and the

suggested mediators that contribute to the altered physiology

underlying LARS.
Risk factors and mechanisms for
colonic dysfunction in LARS

While risk factors for LARS after anterior resection (such as

anastomotic height, radiotherapy, temporary ileostomy) (11, 12)

have been consistently established in the literature, the complex

pathophysiological mechanisms underpinning these risk factors
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are still being defined. The following sections overviews

postulated mechanisms for colonic dysmotility and

dysfunction in LARS and are summarised in Figures 2 and 5.
Correlation between anastomotic height
and degree of colonic resection on LARS

Anastomotic height has been shown to be a consistent risk

factors for poor functional outcome after rectal resection (10–

12). The primary impact of a low anastomosis is reduced

neorectal compliance and capacitance (17). Decreased

neorectal volume has been associated with temporary

neorectal irritability which occurs in response to an inability to

accommodate neorectal filling (86). Lower anastomoses are also

associated with increased risks of direct injury to the IAS or

conjoint longitudinal ligament secondary to insertion of stapling

devices and division of rectococcygeus and/or hiatal ligaments if

required (17). Damage to the neural supply to the IAS is more

likely with lower anastomoses, particularly when dissection

reaches the posterolateral prostate in men (17). The pudendal

nerve is typically spared in TME, with risk of damage usually

only in the event of lateral pelvic lymph node dissection (17).

Lower anastomoses have also been shown to be associated with a

loss of the RAIR, but this often recovers over time (19).

Similarly, just as residual rectal length impacts neorectal

capacity and compliance, the length of the remaining colon also

likely has a role in LARS given the importance of distal colonic

motility in bowel function. A greater length of functional

descending and sigmoid colon left in-situ may allow greater

compensation after rectosigmoid resection. The distal colon has

important storage functions, which may reduce ability to delay

defecation when these reserves are lost along with the rectal

storage capacity (87). Resection of the rectosigmoid junction,

removes the predominant site of origin for the CMP (53, 88),

however CMP may also originate within the distal transverse

and descending colon and the upper rectum (53, 88). It can

therefore be expected that patients who retain greater lengths of

residual colon may experience better bowel function after

surgery, however this has not been studied to our knowledge.
Impact of reconstruction technique

Alternative reconstruction methods such as side-to-end

anastomoses (SEA) and colonic J pouches (CJP) are often used

in an attempt to mitigate against bowel dysfunction associated

with straight or end-to-end anastomoses (89). Functional

outcomes have been thoroughly compared after various

reconstructive techniques in numerous meta-analyses (90–97).

When compared to straight anastomoses, CJP have been shown to

be associated with lower stool frequency for up to 12-months, but

no longer than 2 years (90, 92, 94, 95, 97, 98). SEA anastomoses
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have been associated with reduced incomplete defecation

compared to CJP (97), but generally the two techniques have

equivalent functional outcomes (90, 95, 96). In contrast to the vast

literature on functional outcomes, there is sparse investigation of

underlying physiological or mechanistic differences between the

reconstruction techniques. Some studies found minimal

differences between CJP and straight anastomoses (99), however

there is some evidence that CJP are associated with greater

maximum tolerable volume, greater maximum resting pressures,

and improved pouch compliance (100–102), however these

differences rarely persist beyond 2 years (103). Few small studies

have assessed differences in functional outcomes or anorectal

physiology between handsewn and stapled anastomoses.

Generally, there is similar symptomatology (104) between the

groups but one study reported higher incontinence scores in

association with handsewn anastomoses despite no difference in

anorectal physiology parameters (105, 106). Further investigation

of differences in colonic or neorectal motility between

reconstruction techniques may reveal important factors

associated with functional outcomes.
Impact of surgical denervation

Denervation of the colon and rectum contributes to the

pathogenesis of LARS, and is likely a significant mediator of

altered colonic motility after surgery (16). Surgical resection can

cause neorectal dysmotility due to autonomic denervation (18) as

resection of the rectum and associated blood vessels causes

parasympathetic denervation and ‘high ligation’ at the origin of

the inferior mesenteric artery (IMA) denervates accompanying

sympathetic nerve fibres (81, 84, 107, 108). Depending on the

surgical technique employed, the colonic conduit upstream of the

resection will therefore be denervated to a variable extent (81). Koda

et al. performed low resolution intraluminal pressuremeasurements

and transit studies in 67 individuals after low or ultralow anterior

resection and found intraoperative denervation of the remnant

colon significantly disrupted motility (81). When these outcomes

were compared for patients who had a long denervated segment

used to create the neorectal conduit (i.e. high ligation with the IMA

taken at its origin or the ascending fibres compromised during

lymph node dissection) vs. patients who had a short denervated

segment (the superior rectal artery divided at its origin) there was a

tendency towards worse evacuatory outcomes in the long

denervation group (81). In particular, IMA ligation resulted in

fewer propagating contractions, but increased non-propagating

minor contractions. Accordingly, colonic transit was relatively

prolonged in those that had high IMA ligation (81). Koda et al.

also associated resultant colonic dysmotility with multiple

evacuations, urgency and soiling (81).

These findings in post-surgical cohorts are consistent with

animal studies evaluating pathophysiological mechanisms.
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Research in canine and murine models has shown that

denervation of the sympathetic supply to the colon via either

surgical or chemical neurectomy of the IMA pedicle increases

rectal motility and colonic transit, while denervation of the

parasympathetic supply has the opposite effect (84, 109–111).

This effect of denervation, whereby distal colonic activity

increased with corresponding increase in stool frequency, was

independent of colonic transection in this study of rats (84, 110).

Using strain gauge transducers implanted on the serosal surface of

the descending colon of male rats, Lee et al. confirmed denervation

of the left colon was associated with increased colonic motility,

likely mediated through inhibitory alpha-sympathetic pathways

(110). Non-propagatory contractile activity has been associated

with faecal soiling, urgency, multiple evacuations and

dissatisfaction with defecatory function (81, 82). However, these

findings are not universal, as changes in motility can be associated

with heterogenous changes in transit as evidenced by other studies

demonstrating shorter colonic transit times after anterior resection

(26, 112). Additionally, the use of low-resolution techniques in such

studies, with pressure sensors spaced up to 20 cm apart (81, 82),

limits the interpretation of these results because total colonic activity

may be misinterpreted and underestimated (113). It should be

noted there remains ongoing debate on the influence of the level of

IMA ligation on functional outcomes, with a potentially greater

impact on genitourinary function (114, 115).
Impact of radiotherapy

Pelvic radiotherapy is an important aspect of rectal cancer

management, however frequently results in persistent

gastrointestinal symptoms substantially impacting patients’

quality of l i fe (116, 117). Primary mechanisms of

radiotherapy-induced symptoms include dysfunction of neural,

enzymatic, and muscular function, acute inflammation, chronic

cytokine activation, chronic colonic ischaemia, and fibrosis of

the colonic wall, stroma and mesentery (117). However,

inflammatory histopathological abnormalities correlate poorly

with symptoms (118, 119). Colonic dysmotility is often seen in

inflammatory bowel diseases (120, 121), as such it is conceivable

that an inflammatory insult to the colon through radiotherapy

may also contribute to symptoms associated with ‘pelvic

radiation disease’. The relative contributions of these different

mechanisms from multiple physiologic insults in patients

undergoing rectal cancer treatment remain difficult to separate.

As outlined above, post-surgical neural disruption can be a

significant contributor to LARS aetiology. Similarly, neuropathy

can also arise secondary to radiotherapy, largely through the

radiation induced fibrosis, atrophy, and ulceration to neural

tissues (122). Bondeven et al. showed that functional benefits of a

larger rectal remnant were abolished by neoadjuvant

radiotherapy through disruption of afferent signalling,
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potential changes in cortical processing of neorectal signals, and

brain-gut axis dysregulation (123). Both surgical and

radiotherapy insults also disrupt the autonomic coordination

of the recto-anal inhibitory reflex (124, 125). This is congruent

with neoadjuvant radiotherapy being a strong and consistently

identified risk factor for LARS in cross-sectional and

longitudinal studies (12, 126).

The gut is particularly radiosensitive due to high mucosal

turnover (127, 128), which results in elevated inflammatory

cytokines (such as IL-2, IL-6, IL-8, and particularly IL-1b)
(129). These pro-inflammatory sequelae can disrupt the

gastrointestinal milieu causing changes in the gut microbiome

composition, resulting in symptoms like diarrhoea (130).

Radiotherapy can cause local gastrointestinal dysbiosis which

in turn can promote colitis symptoms (131). Long term

radiation changes to rectal tissue not only promotes fibrosis

but ischaemic changes via obliterative endarteritis which can

facilitate necrosis or ulceration (132). Mechanisms for radiation-

related intestinal inflammation are under active investigation,

particularly the role of inflammatory cell extravasation via

leukocyte-endothelium adhesion, and there is more to discover

on how these factors impact colonic physiology and LARS (133).

Dietary fibre has anti-inflammatory properties which protect the

colonic mucosa, reduce carcinogenesis, and has been shown to

ameliorate the effects of LARS (134). The beneficial effects of

short-chain fatty acids are thought to act through HDAC

inhibition and GPR activation as summarised in a recent

review (135).
Impact of ileostomy

Diverting ileostomies are commonly used to mitigate the

harms of an anastomotic leak, particularly in the setting of low

colorectal anastomoses. One systematic review of 8 studies

reported an ileostomy rate of 61.2% (range 29% - 100%)

among patients that had LAR for rectal cancer with colorectal

or coloanal anastomosis (136). However, while protecting the

anastomosis, it is important to consider the impacts of faecal

diversion. Ileostomy formation has been consistently identified

to be a risk factor for postoperative bowel dysfunction (12, 137–

141); a relationship that persists >18 months after reversal of

ileostomy (12). It may be due to colonocyte malnutrition with

resulting bowel atrophy and/or inflammatory sequelae in the

distal bowel, nutritional deficit affecting the enteral neural plexi

(134, 142), colonic dysbiosis, or epithelial changes in the

terminal ileum itself. Loss of intra-luminal nutrition in the

defunctioned bowel, particularly short-chain fatty acids like

acetate, propionate, and butyrate can impair colonic

homeostasis (134). The anti-inflammatory effects of these

substances, particularly dietary fibre, which protect the colonic
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mucosa are lost. A defunctioning ileostomy can also cause

intestinal dysbiosis which in turn causes mucosal atrophy

(142), reducing absorptive capacity, increasing the risk of

postoperative complications, and exacerbating homeostatic

derangements. The potential to identify mediators (such as

dietary fibre) which may mitigate some of the effects may

introduce further therapeutic targets.
Future directions

LARS pathophysiology is receiving increased attention and

this review highlights the importance of a standardised definition

of LARS to guide consistent clinical investigation. Given the

varying symptoms experienced, numerous mechanisms are

likely to contribute to LARS, with specific symptom experiences

potentially explained by overlapping factors. The role of colonic

motility has been a relatively underappreciated contributor.

Further work is required to better correlate symptoms of LARS

with profiles of colonic dysmotility and such advances may direct

targeted therapies, including SNM through its modulation of

colonic motility (41). Additionally, it is of interest to see how

motility profiles change over time, particularly beyond 18-months

when function tends to improve (12). As highlighted in this

review, colonic motility assessments should be included in a

comprehensive physiological assessment of patients with LARS.

The highly invasive nature of colonic manometry has limited

the study of colonic motility, often resulting in small study

cohorts. Emerging technologies that enable non-invasive

detection of colonic myoelectrical activity through skin-surface

electrical recordings have demonstrated the ability to detect and

quantify meal responses (143). These approaches offer a

promising avenue to detect changes in motility profiles,

including in the rectosigmoid brake, in a scalable format.

Given the heterogeneity of LARS, widely accessible, non-

invasive investigations will be required to better understand

the causes of dysfunction and characterise individual phenotypes

of LARS. Ultimately, it is hoped that accurate phenotyping may

facilitate more mechanistically targeted and therefore efficacious

therapies for patients with LARS. This is a vital step towards

improving quality of life in rectal cancer survivors.
Conclusions

Altered distal colonic motility is an important contributor to the

pathophysiology of LARS and may offer an actionable biomarker

for targeted therapies. Further work is required to enable accessible

and accurate assessment of colonic motility, to guide understanding

of LARS aetiology and to facilitate physiologically congruent

management strategies for these patients.
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