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Abstract

Introduction: Breast density, commonly quantified as the percentage of mammographically dense tissue area,

is a strong breast cancer risk factor. We investigated associations between breast cancer and fully automated
measures of breast density made by a new publicly available software tool, the Laboratory for Individualized Breast
Radiodensity Assessment (LIBRA).

Methods: Digital mammograms from 106 invasive breast cancer cases and 318 age-matched controls were
retrospectively analyzed. Density estimates acquired by LIBRA were compared with commercially available software
and standard Breast Imaging-Reporting and Data System (BI-RADS) density estimates. Associations between the
different density measures and breast cancer were evaluated by using logistic regression after adjustment for

Gail risk factors and body mass index (BMI). Area under the curve (AUC) of the receiver operating characteristic
(ROQ) was used to assess discriminatory capacity, and odds ratios (ORs) for each density measure are provided.

Results: All automated density measures had a significant association with breast cancer (OR = 1.47-2.23,

AUC = 0.59-0.71, P < 0.01) which was strengthened after adjustment for Gail risk factors and BMI (OR = 1.96-2.64,
AUC = 0.82-0.85, P < 0.001). In multivariable analysis, absolute dense area (OR = 1.84, P < 0.001) and absolute dense
volume (OR = 1.67, P = 0.003) were jointly associated with breast cancer (AUC = 0.77, P < 0.01), having a larger
discriminatory capacity than models considering the Gail risk factors alone (AUC = 0.64, P < 0.001) or the Gail risk
factors plus standard area percent density (AUC = 068, P = 0.01). After BMI was further adjusted for, absolute dense area
retained significance (OR = 2.18, P < 0.001) and volume percent density approached significance (OR = 147, P = 0.06).
This combined area-volume density model also had a significantly (P < 0.001) improved discriminatory capacity
(AUC = 0.86) relative to a model considering the Gail risk factors plus BMI (AUC = 0.80).

Conclusions: Our study suggests that new automated density measures may ultimately augment the current standard
breast cancer risk factors. In addition, the ability to fully automate density estimation with digital mammography,
particularly through the use of publically available breast density estimation software, could accelerate the translation of
density reporting in routine breast cancer screening and surveillance protocols and facilitate broader research into the
use of breast density as a risk factor for breast cancer.
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Introduction

It is increasingly recommended that breast cancer screen-
ing recommendations be personalized on the basis of a
woman’s risk for breast cancer [1, 2]. This risk is known
to be influenced by a number of factors, such as reproduc-
tive history [3], family history [4], body mass index (BMI)
[5], and genetic traits [6], which form the basis for most
current breast cancer risk assessment models [7]. The
National Cancer Institute’s risk assessment tool, the Gail
model [8], is one of the most commonly used risk asses-
sment models and incorporates primarily reproductive and
familial risk factors [7, 8]. The Gail model has several
advantages, including being validated in large popula-
tions and for different racial groups [8—10], based on
relatively simple-to-assess risk factors. However, though
shown to be well calibrated at the population level, it has
only moderate discriminatory accuracy at the individual
level [11], limiting its use for personalized clinical decision
making.

An opportunity for improving the discriminatory accur-
acy of risk assessment models is the incorporation of breast
density [12]. Typically estimated via visual assessment
either qualitatively by using the American College of
Radiology Breast Imaging-Reporting and Data System
(BI-RADS) density categories [13] or quantitatively as per-
cent density (PD %) [14], mammographic density has been
consistently shown to be an independent risk factor for
breast cancer [14-22], potentially the strongest after age
[14]. This has led to the development of several fully auto-
mated breast density algorithms such as the automated
Image] method [23] and the standardized measures of area
density proposed by Heine et al. [24]. More recently, mea-
sures of the volumetric amount of dense tissue have been
proposed as more accurate representations of the under-
lying fibroglandular tissue content and, as such, potentially
better predictors of risk [21, 25-29].

To date, studies evaluating the use of volumetric versus
area density measures in breast cancer risk assessment
have focused primarily on determining which individual
measure is a better predictor of risk and have reported
mixed results [19-21, 25, 26]. Here, we investigate both
individual as well as joint associations between quantita-
tive estimates of volumetric and area density and invasive
breast cancer. As a first step, we examine these associa-
tions in a case—control setting after adjusting for stan-
dard risk factors and BMI. By establishing these associations
and evaluating their magnitude, our study provides instru-
mental evidence toward identifying new promising density
measures to be considered in breast cancer risk assessment
models [30] for improving their discriminatory accuracy. In
addition, our study is the first to evaluate associations be-
tween breast cancer and density measures as estimated by a
new publically available breast density estimation software
tool [31]. Our long-term hypothesis is that volumetric and
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area-based density measures, when considered jointly
with standard risk factors and BMI, can independently
contribute to and improve breast cancer risk assessment,
compared with percent density measures or standard risk
factors alone.

Methods
Study population
In this Health Insurance Portability and Accountability
Act-compliant study approved by the institutional review
board at the University of Pennsylvania (protocol #814186),
we retrospectively identified women whose unilateral, inva-
sive breast cancer was diagnosed at age 40 years or older
from a previously completed multimodality breast imaging
trial in our institution (2002—2006; National Institutes of
Health PO1 CA85484). The trial recruited a total of 901
women, each of whom met at least one of the following in-
clusion criteria: they were presenting for staging with newly
diagnosed breast cancer, or they had a mammographically
detected suspicious finding (BI-RADS of at least 4) after
screening or diagnostic evaluation (or both) and were di-
rected to biopsy, or they had an otherwise-suspicious palp-
able mass directed to biopsy, or they were evaluated to be
at a high risk for developing breast cancer as determined by
an estimated high lifetime risk of more than 25 % (using
either the Gail or Claus risk models), or they had a recently
diagnosed contralateral breast cancer. All women received
an array of breast imaging modalities, including digital
mammography. Informed written consent was obtained
prior to study participation. From these women, 317 were
diagnosed with primary breast cancer, of which 231 were
invasive. Of the 231 women diagnosed with invasive breast
cancer, 146 had raw (ie., “For Processing”) digital mammo-
grams available for analysis (Senographe 2000D and DS;
GE Healthcare, Little Chalfont, UK). From this subset of
146 women, 10 were excluded for having bilateral breast
cancer and thus not having a cancer-unaffected mammo-
gram available for our analysis, and eight were excluded for
having mammograms with artifacts or insufficient image
quality (i.e., blur, motion effects, etc.), preventing valid
breast density estimates from being obtained accurately
with our automated software. An additional 22 women
were excluded for being under the age of 40 and there-
fore not representative of a standard screening popula-
tion. Thus, a total of 106 women with invasive cancer
and no personal history of breast cancer were included
in our analysis. No statistically significant differences in
risk factor distributions between the included and total
excluded women in this study were observed (P > 0.05).
Controls were randomly selected asymptomatic women
who had breast cancer screening with digital mammog-
raphy in our institution over the closest possible overlap-
ping time period (2005-2006) where digital mammography
was available to the general screening population and had
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raw digital mammograms available. Controls were matched
to cases at a 1:3 ratio at 5-year age intervals. This re-
sulted in 318 controls available for analysis, yielding a
total cohort size of 424 women (average age of 55.1 + 8.9
years). For density estimation, we used the mediolateral
oblique (MLO) view mammogram of the contralateral,
unaffected breast of cases as a surrogate of inherent breast
tissue properties; MLO mammograms of controls were
subsequently side-matched to cases. For this retrospective
analysis, the requirement of informed consent was waived
under institutional review board approval.

Demographic risk factors

To account for possible confounding of the breast density
measures by other known risk factors, we also considered
self-reported information regarding standard demographic
and reproductive risk factors for breast cancer [8]. For can-
cer cases, this information was available from the previously
completed imaging trial. For controls, this information was
obtained from screening questionnaires collected at the
time at which the mammograms used in our study were
acquired.

As the Gail model [8] is the current standard for asses-
sing a woman’s risk for breast cancer, we abstracted the
available demographic and reproductive information to
match, as closely as possible, the risk factor coding used
by the Gail model [8] (Table 1). Age was treated as a cat-
egorical variable based on 5-year age intervals, as in the
matching process used during the study design. Age at
menarche, number of previous benign biopsies, and first-
degree family history (i.e., the number of first-degree fe-
male relatives with breast cancer) were treated as ordinal
variables with the lowest value chosen as the reference
group. For age at first live birth (i.e., parity), the Gail
model considers whether it occurred prior to age 20,
between age 20 and 24, 25 to 29, or after age 29 (i.e.,
30 years or older), while nulliparous women are in-
cluded in the 25- to 29-year age group as they have
similar ORs for breast cancer [8]. To approximate the
Gail model encoding given that we had only the following
three descriptive categories available for age at first live
birth in our screening questionnaires, we encoded parity as
a nominal variable, comparing women in the under 30-year
group and 30-year-or-older group versus nulliparous
women as the reference group. We also adjusted for
race as a nominal variable by using Caucasian women
as the reference group to reflect the Gail model, which
has been validated in Caucasian [8], African-American
[9], and Asian [10] populations.

In addition, BMI was abstracted from archived clinical re-
cords. Based on available height and weight information,
women were classified as normal weight (BMI < 25 kg/m?),
overweight (25 kg/m*> < BMI < 30 kg/m?), or obese
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(30 kg/m* < BMI). In this study, BMI was treated as an or-
dinal variable.

Breast density measures

Breast density was measured by using fully automated soft-
ware. Absolute dense area and area percent density (PD %)
were estimated by using a publically available software tool
[31], the Laboratory for Individualized Breast Radiodensity
Assessment (LIBRA), based on our previously proposed
adaptive multi-cluster fuzzy c-means segmentation al-
gorithm [32]. The LIBRA algorithm has been previously
validated against the current standard semi-automated
Cumulus method [33], showing similar agreement for
both raw (i.e., “For Processing”) and vendor post-processed
(ie., “For Presentation”) digital mammograms (Fig. 1) [32],
for the same vendor used in this study. Briefly, the algo-
rithm first applies an edge-detection algorithm to delineate
the boundary of the breast and the pectoral muscle. An
adaptive multi-class fuzzy c-means algorithm is applied to
identify and partition the image gray levels (Fig. 1b) within
the mammographic breast tissue area, B4, into regions
(ie., clusters) of similar x-ray attenuation (Fig. 1c). These
clusters are then aggregated by a support-vector machine
classifier to a final absolute dense area, D4, segmentation
(Fig. 1d). The ratio of the absolute dense area to the total
breast area is used to obtain a measure of breast percent
density (PD %):
o — D4
PD% = B,

(1)

Absolute dense tissue volume and volume percent density
(VD %) were automatically assessed by using FDA-cleared
software (Quantra™ version 2.0; Hologic Inc., Bedford,
MA, USA). The algorithm is based on the widely validated
method of Highnam et al. [34] adapted for digital mam-
mography [35]. Briefly, this method quantifies the thick-
ness of dense (i.e., fibroglandular) tissue within each
image pixel based on physical parameters of the breast
and the imaging system as well as on imaging physics of
individual exposures, such as attenuation coefficients for
breast tissue, x-ray spectra for the target material, x-ray
energy (i.e., peak kilovoltage), exposure, and organ dose
(i.e., decigray). Aggregation of the per-pixel volumes for
the entire breast allows estimation of the total breast vol-
ume, By; and dense tissue volume, Dy. The ratio of abso-
lute dense tissue volume to absolute breast volume
provides a measure of VD % as:
o, — DV
VD% = By (2)
Lastly, for comparison with the automated density mea-
sures, we also obtained standard four-category BI-RADS
density estimates via retrospective review of archived clinical
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Table 1 Baseline demographics and breast density estimates by case—control status

Controls Cases P value
Number of women 318 106
Age at menarche 0.02*
Reference group: <12 years (0) 34 (13 %) 26 (25 %)
12-14 years (1) 197 (75 %) 71 (67 %)
15 years or older (2) 32 (12 %) 9 (8 %)
Missing 55 0
Number of previous benign biopsies 0.36
Reference group: 0 (0) 235 (74 %) 74 (70 %)
(1) 53 (17 %) 24 (23 %)
2+ (2) 30 (9 %) 8 (8 %)
Missing 0 0
Number of first-degree relatives with breast cancer 0.89
Reference group: 0 (0) 242 (77 %) 83 (78 %)
1(1) 65 (21 %) 22 (21 %)
2+ (2) 52 %) 101 %)
Missing 6 0
Age at first live birth 0.08
Reference group: Nulliparous (0) 252 (27 %) 17 (16 %)
Before age 30 (1) 167 (53 %) 63 (60 %)
Age 30 or older (2) 65 (20 %) 26 (25 %)
Missing 1 0
Race 0.22
Reference group: Caucasian (0) 162 (64 %) 79 (75 %)
African American (1) 72 (29 %) 21 (20 %)
Asian (2) 10 (4 %) 2 (2 %)
Other (3) 8 (3 %) 33 %)
Missing 66 1
Body mass index <0.001*
Reference group: Normal weight (0) 161 (59 %) 20 (24 %)
Overweight (1) 75 (28 %) 24 (28 %)
Obese (2) 36 (13 %) 40 (48 %)
Missing 46 22
BI-RADS breast density 0.65
Reference group: Predominantly fatty (0) 21 (7 %) 4 (4 %)
Scattered fibroglandular densities (1) 134 (42 %) 50 (47 %)
Heterogeneously dense (2) 160 (50 %) 51 (48 %)
Extremely dense (3) 3(1 %) 1 (1 %)
LIBRA: absolute dense area, mean + SD 313cm? £ 178 485 cm? + 294 <0.001*
LIBRA: area percent density, mean + SD 271 % + 147 319 9% + 155 <0.001*
Quantra: absolute dense volume, mean + SD 731 cm?® £ 500 1217 cm?® + 989 <0.001*
Quantra: volume percent density, mean + SD 116 % + 64 136 % + 6.9 0.002*

Pearson chi-squared test is used to test differences in demographic variables between cases and controls with known values. Two-sample t test is used to test for
differences between log-transformed breast density estimates

The numeric coding for the categorical variables used as inputs in the regression models are provided in parentheses, with the ‘0’ groups representing the
reference group for each categorical variable

BI-RADS Breast Imaging-Reporting and Data System, LIBRA Laboratory for Individualized Breast Radiodensity Assessment, SD standard deviation

*denotes statistical significance at the a = 0.05 level
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Fig. 1 Example of density segmentation using the LIBRA software tool. a Left mediolateral oblique “For Processing” raw mammogram of a 57-year-old
woman with a negative screening exam. b Breast image intensity histogram with fuzzy c-means clustering centroids (vertical lines). ¢ Intensity-clustered
breast image. d The final breast and dense tissue segmentation. LIBRA Laboratory for Individualized Breast Radiodensity Assessment

d)

reports, in which the density assessment was made at the
time of routine clinical evaluation by the interpreting breast
radiologist for that individual mammography study.

Statistical analysis
The continuous breast density measures were first log-
transformed to account for their skewed distributions. Dif-
ferences in standard risk factors, BMI, and breast density
distributions between cases and controls were assessed by
using chi-squared tests for categorical variables and
two-sided ¢ tests for continuous variables at the stand-
ard o = 0.05 significance level. The associations be-
tween PD %, VD %, absolute dense area, and absolute
dense volume were assessed by using linear regression
and Spearman correlation, as were the associations be-
tween the four density measures and BMI. Univariate
(i.e., unadjusted) and multivariable (i.e., fully adjusted)
logistic regression was performed to assess the association
between the different log-transformed breast density mea-
sures and breast cancer before and after adjusting for the
standard risk factors and BMI. Odds ratios (ORs), 95 %
confidence intervals (Cls), and significance were estimated
for all risk factors. For categorical variables, we used a test-
for-trend analysis, except for race and parity which were
treated as nominal variables. ORs for continuous density
measures are reported per standard deviation increase
based on the distribution of the breast density metrics in
the controls. Missing risk factors (Table 1) were accounted
for by standard multiple imputation by using bootstrapping
[36] stratified by cancer status, in which 25 imputations
were used for this analysis, which is greater than the sug-
gested minimum number of 20.

The area under the curve (AUC) of the receiver operat-
ing characteristic (ROC) was used to evaluate the discrim-
inatory capacity of each unadjusted and adjusted breast

density model [30]. The adjusted density models are then
compared with baseline models fit only on standard risk
factors before and after the inclusion of BMI by using
DeLong’s test [37]. In addition, we compared the perform-
ance of the area and volume method of each type (i.e., ab-
solute and relative percent) by using DeLong’s test to
determine whether choice of the density measure influ-
ences discriminatory capacity. Finally, as the different
breast density measures were expected to be moderately
correlated [21], we applied backward stepwise feature selec-
tion with standard variable entry and removal criterion
(Penter < 0.05; Premoval > 0.1) commonly used in the litera-
ture [38] both to the risk factor-adjusted and fully adjusted
models, to identify those measures of breast density with
statistically independent associations to breast cancer while
simultaneously mitigating the risk of over-parameterizing
the individual models [39]. These feature-selected, adjusted
main-effects models were then compared with models
fitted only on standard risk factors and a model including
standard risk factors and area percent density (i.e., PD %),
before and after the inclusion of BMI. The performance of
these models was also compared by using DeLong’s test.
All analyses were performed in Stata 13.1 (StataCorp LP,
College Station, TX, USA).

Results

Comparison of risk factors between cases and controls
Women in case and control groups were similar in terms
of number of prior benign biopsies (P = 0.36), first-degree
family history (P = 0.89), race (P = 0.22), and age at first live
birth (P = 0.08) while being significantly different in terms
of their BMI (P < 0.001) and age at menarche (P = 0.02). In
terms of mammographic density estimated via automated
software, higher absolute density estimates were signifi-
cantly associated with cancer status (P < 0.001), as were the
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percent density estimates (P < 0.002), regardless of
whether area or volumetric density measures were consid-
ered, whereas BI-RADS density estimates were not signifi-
cant (P = 0.65). Table 1 provides a summary of standard
risk factors and breast density measures for our case—con-
trol groups.

Relationship between area and volumetric breast density
Statistically significant (P < 0.001) correlations were
observed between the different quantitative density esti-
mates (Spearman correlation: p = 0.24—0.73). Area per-
cent density and absolute dense area had the strongest
correlation (p = 0.73, 95 % CI 0.69-0.78). Absolute
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dense volume and area percent density had the weakest
correlation (p = 0.24, 95 % CI 0.15-0.33). Figure 2 shows
correlation and linear regression plots for the different
area and volumetric breast density measures.

Relationship between breast density measures and body
mass index

Statistically significant (P < 0.05) correlations were observed
between the different quantitative density estimates and BMI
(Spearman correlation: p = —-0.31-0.42). Absolute dense vol-
ume and BMI had the strongest correlation (p = 042, 95 %
CI 0.38—-0.53), whereas absolute dense area and BMI had the
weakest correlation (p = 0.10, 95 % CI 0.00-0.21). Figure 3
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Fig. 2 Relationship between different breast density measures. The association between the area-based and volumetric breast density is provided for
both (a) absolute measures and (b) percent measures. The relationship between absolute and percent breast density measures are shown for
(c) volumetric and (d) area density. Cancer cases are demarcated by X, controls by ‘o’. Regression lines, equations, and Spearman correlations
are provided for reference
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for (@) area percent density (PD %), (b) volume percent density, (c) absolute dense area and (d) absolute dense volume. Cancer cases are demarcated by
X; controls by ‘0". Regression lines, equations, and Spearman correlations are also provided for reference. BMI body mass index
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shows correlation and linear regression plots for the different
area and volumetric breast density measures versus BML

Associations between area and volumetric breast density
and breast cancer

Univariate analysis of the standard risk factors (Table 2)
shows that BMI (P < 0.001) and age at menarche (P = 0.01)
were significantly associated with breast cancer for our study
population, with later age at menarche being a protective
factor (OR = 0.57, 95 % CI 0.37—-0.88) and increasing BMI a
risk factor (OR = 2.97, 95 % CI 2.17-4.05). Parity after age
30 years was also observed to be a risk factor (OR = 2.00,

95 % CI 1.00-3.99, P = 0.05), as was parity prior to age 30
(OR = 1.88, 95 % CI 1.04-3.42, P = 0.04). Before adjust-
ment for the standard Gail risk factors and BMI, all four
quantitative breast density measures were statistically sig-
nificantly associated with breast cancer at the standard level
(P < 0.002; Table 3). Absolute measures of breast density
had a higher discriminatory capacity in distinguishing can-
cer status (AUC = 0.68-0.71) than percent density mea-
sures (AUC = 0.59-0.60; P < 0.05) or the Gail risk factors
(Table 2: AUC = 0.51-0.60; P < 0.05) but not higher than
BMI (AUC = 0.76). In addition, the discriminatory capacity
of absolute dense area and absolute dense volume were not
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Table 2 Unadjusted odds ratios, P values and discriminatory capacity (AUC) for the standard risk factors considered for our study

population
Risk factor Odds ratio P value AUC
Age at menarche (ordinal)
Reference group: under age 12 years 1 -
(N/A)
Between ages 12 and 14 years 0.57 0.01 0.54 (0.49-0.60)
(0.37-0.88)
Age 15 years and older 032 0.01
(0.13-0.78)
Number of benign biopsies (ordinal)
Reference group: 0 biopsies 1 -
(N/A)
1 biopsy 1.05 0.76 0.52 (047-0.57)
(0.75-1.48)
2 or more biopsies 1.11 0.76
(0.56-2.19)
First-degree family history (ordinal)
Reference group: 0 relatives 1 -
(N/A)
1 relative 0.93 0.77 0.51 (0.46-0.56)
(0.57-1.51)
2 or more relatives 0.86 0.77
(0.33-2.29)
Age at first live birth (nominal)
Reference group: nulliparous women 1 -
(N/A)
Prior to age 30 years 1.88 0.04 0.56 (0.50-0.61)
(1.04-342)
At age 30 years or older 2.00 0.05
(1.00-3.99)
Race (nominal)
Reference group: Caucasian 1 -
(N/A)
African-American 0.60 0.07 0.60 (0.54-0.65)
(0.34-1.03)
Asian 040 0.24
(0.08-1.84)
Other 0.78 0.72
(0.20-3.04)
Body mass index (ordinal)
Reference group: normal 1 -
(N/A)
Overweight 297 <0.001 0.76 (0.71-0.81)
(2.17-4.05)
Obese 8381 <0.001
(4.72-16.4)

Parentheses indicate whether the variable was treated as binary, ordinal, or nominal. Ninety-five percent confidence intervals are provided in parenthesis

AUC area under the curve, N/A not applicable
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Table 3 Unadjusted odds ratios per standard deviation increase in the log-transformed LIBRA and Quantra density measures (per-category in
the ordinal BI-RADS density measure), P values, and discriminatory capacity (AUC) of the continuous and categorical BI-RADS breast density

estimates
Density measure Odds ratio P value  AUC Odds ratios at specific percentiles/Categories

10th 50th 75th 90th
LIBRA: absolute dense 223 <0001 0717 1 333 5.81 838
area, cm’
(Continuous) (1.72-2.88) (0.65-0.76)  (N/A - reference) (2.25-4.88) (3.28-10.17) (4.21-16.52)
LIBRA: area percent 1.50 <0001  060° 1 1.66 217 271
density, PD %
(Continuous) (1.18-1.91) (0.54-0.66)  (N/A - reference) (1.23-2.24) (1.37-3.44) (1.5-4.91)
Quantra: absolute dense 204 <0001  068° 1 241 4.05 5.87
volume, cm?®
(Continuous) (1.58-2.63) (062-0.74)  (N/A - reference) (1.76-3.3) (245-6.66) (3.11-11.03)
Quantra: volume percent 147 0.002 0.59° 1 1.65 2.09 248
density, VD %
(Continuous) (1.15-1.89) (0.53-0.65)  (N/A - reference) (1.2-2.28) (1.31-3.37) (1.39-4.48)
Radiologist’s BI-RADS 1.02 093 0.50 Predominantly fatty  Scattered fibroglandular ~ Heterogeneously — Extremely
density (ordinal categories)  (0.71-1.45) (044-0.55) densities dense dense

1 1.02 1.03 1.05

(N/A - reference) (0.71-1.45) (0.51-2.10) (0.36-3.04)

Odds ratios computed at specific corresponding percentiles of the distribution of the LIBRA and Quantra density estimates relative to the 10th percentile and at
the specific categories for BI-RADS density are also provided as a reference. Ninety-five percent confidence intervals of the odds ratios are also provided in

parenthesis below the point estimate

LIBRA Laboratory for Individualized Breast Radiodensity Assessment, BI-RADS Breast Imaging-Reporting and Data System, AUC area under the curve, N/A

not applicable
“indicates a statistically significant AUC1

found to be significantly different (P = 0.38), nor were area
percent density and volume percent density (P = 0.63).
After adjustment for the Gail risk factors (Table 4), the
associations between all four measures and cancer status
remained significant and were strengthened, and the dis-
criminatory capacity of the models including absolute
measures of density (AUC = 0.74—0.75) was significantly
improved (P < 0.003) relative to the model including
only Gail risk factors. As with the unadjusted models, no
difference was observed in the discriminatory capacity
between the absolute (P = 0.57) or percent (P = 0.78)
area and volume density measures. Finally, when both
the standard Gail risk factors and BMI were adjusted for
(Table 5), all four density measures retained statistical
significance (P < 0.001), and most had strengthened as-
sociations with breast cancer relative to their unadjusted
associations as evidenced by the lower P values, or
higher ORs, or both. The discriminatory capacities of the
absolute dense area (AUC = 0.85), percent dense area
(AUC = 0.85), and percent dense volume (AUC = 0.83)
metrics were also significantly (P < 0.005) higher than the
baseline standard Gail risk factors and BMI model
(AUC = 0.80). Furthermore, after adjustment for both
Gail risk factor information and BMI, absolute dense
area was found to have a significantly (P = 0.009) lar-
ger discriminatory capacity (AUC = 0.85) relative to
absolute dense volume (AUC = 0.82), whereas the

difference between the area and volume percent density
measures only approached significance (P = 0.08). In con-
trast, BI-RADS density was not found to be significantly as-
sociated with breast cancer in our study population either
before or after adjustment for other risk factors.

In multivariable analysis (Table 6), a logistic regression
model based only on standard Gail risk factors had an
AUC of 0.64 (95 % CI 0.58-0.71). A model combining
these risk factors with the standard area percent density
(i.e, PD %) had an improved discriminatory capacity
(AUC = 0.68, 95 % CI 0.62—-0.74), which was statistically
different from the model including only the standard
risk factors (P = 0.03). A combined, feature-selected
model considering all four different breast density mea-
sures in combination with the Gail risk factors had an
AUC of 0.77 (95 % CI 0.71-0.82), which was significantly
higher than both the model including only the Gail risk
factors (P < 0.001) and the model including the Gail risk
factors plus area percent density (P < 0.001). In this com-
bined model, absolute dense volume and absolute dense
tissue area were jointly significant predictors of breast
cancer (P < 0.003), while area percent density, volume
percent density, and BI-RADS density estimates were
not retained (P > 0.1).

Adjusting for BMI in addition to the Gail risk factors
(Table 7) also led to increased discriminatory capacity in all
models (AUC = 0.80-0.86). A logistic regression model
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Table 4 Odds ratios per standard deviation increase in the log-transformed LIBRA and Quantra density measures (per-category in the ordinal
BI-RADS density measure) adjusted for the Gail risk factors (ie, age at menarche, parity, family history, age, race and number of prior biopsies),
P values, and discriminatory capacity (AUC) of the continuous and categorical BI-RADS breast density estimates

Density measure Odds ratio Pvalue  AUC Odds ratios at specific percentiles/Categories

10th 50th 75th 90th
LIBRA: absolute dense 245 <0001  0.75° 1 383 7.14 10.76
area, cm?
(Continuous) (1.86-3.24) (0.70-0.81) (N/A - reference)  (2.54-5.82) (3.9-13.17) (5.18-22.58)
LIBRA: area percent 1.64 <0.001 068 1 1.85 2.57 337
density, PD %
(Continuous) (1.25-2.14) (0.62-0.74) (N/A - reference)  (1.32-2.58) (1.53-4.28) (1.73-6.49)
Quantra: absolute dense 240 <0001 0.74° 1 295 5.57 8.79
volume, cm?
(Continuous) (1.80-3.21) (0.68-0.79) (N/A - reference)  (2.07-4.22) (3.17-9.85) (4.3-18.1)
Quantra: volume percent 1.68 <0.001 068 1 1.96 2.69 3.39
density, VD %
(Continuous) (1.09-1.72) (0.62-0.74) (N/A - reference)  (1.12-2.02) (1.18-2.82) (1.22-3.59)
Radiologist’s BI-RADS density  1.07 (0.74-156)  0.71 064 (0.58-0.71)  Predominantly Scattered fibroglandular ~ Heterogeneously — Extremely
(ordinal categories) fatty densities dense dense

1 1.07 1.15 123

(N/A - reference)  (0.74-1.56) (0.55-2.43) (0.41-3.80)

Odds ratios computed at specific corresponding percentiles of the distribution of the LIBRA and Quantra density estimates relative to the 10th percentile and at
the specific categories for BI-RADS density are also provided as a reference. Ninety-five percent confidence intervals of the odds ratios are also provided in

parenthesis below the point estimate

LIBRA Laboratory for Individualized Breast Radiodensity Assessment, BI-RADS Breast Imaging-Reporting and Data System, AUC area under the curve, N/A

not applicable

“indicates that the AUC of a model including the specific density measure has a statistically significant increase in discriminatory capacity over a baseline model

including only standard risk factors (AUC = 0.64)

based only on Gail and BMI risk factors had an AUC of
0.80 (95 % CI 0.75—0.85). The addition of the standard area
percent density measure to the Gail-BMI risk factor model
led to a statistically significant increase in performance
(AUC = 0.85, P < 0.001). A combined, feature-selected
model considering all four different breast density mea-
sures led to a statistically significant improvement in
performance (AUC = 0.86) versus the baseline Gail-BMI
model (P < 0.001) but not the Gail-BMI plus area percent
density model (P = 0.64). In this combined model, abso-
lute dense area was retained as a significant predictor after
feature-selection (P < 0.001); volume percent density
was also retained by the feature selection process as it
approached significance (P = 0.06).

Additional file 1: Table S1 and Additional file 2: Table S2
provide the full univariate logistic regression tables for ab-
solute area, absolute volume, VD %, and BI-RADS breast
density not already included in Tables 6 and 7 after adjust-
ment for the standard Gail risk factors and BML

Discussion

To date, compared with area-based measures of percent
density which have been more broadly established as a
risk factor, studies evaluating the use of volumetric dens-
ity measures in breast cancer risk assessment have pri-
marily focused on determining which individual measure

is a better predictor of risk and have reported mixed results
[19-21, 25, 26]. In this study, we investigated whether dif-
ferent quantitative measures of area and volumetric density
are jointly and independently associated with breast cancer.
Our results suggest that these novel, fully automated breast
density measures may ultimately provide complementary
information regarding breast cancer risk relative to both
Gail risk factors and BMI. We also found that the strongest
associations were obtained when absolute dense area, vol-
ume percent density, Gail risk factors, and BMI were con-
sidered in combination (AUC = 0.86, Table 7) and that this
model yielded a statistically significant increase in discrim-
inatory capacity over a model considering only the standard
Gail risk factors and BMI (AUC = 0.80, P < 0.001). Overall,
our study serves as a preliminary evaluation that will guide
the design of larger prospective studies that will rigorously
evaluate the predictive value of fully automated mea-
sures in risk assessment. In addition, our study is the
first to evaluate the new, publically available LIBRA
software [31] tool in terms of its association with breast
cancer, providing preliminary evidence for its potential
utility as an eventual marker of breast cancer risk.
Previous studies have investigated the potential value
of breast density in breast cancer risk prediction, primar-
ily using digitized film mammograms [22, 40-42]. Chen
et al. found that incorporating percent density estimates
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Table 5 Odds ratios per standard deviation increase in the log-transformed LIBRA and Quantra density measures (per-category in
the ordinal BI-RADS density measure) adjusted for both BMI and the Gail risk factors (i.e,, age at menarche, parity, family history, age,
race and number of prior biopsies), P values, and discriminatory capacity (AUC) of the continuous and categorical BI-RADS breast

density estimates

Density measure Odds ratio P value  AUC Odds ratios at specific percentiles/Categories

10th 50th 75th 90th
LIBRA: absolute dense 2.57 <0.001 0.85° 1 412 792 12.22
area, cm?
(Continuous) (1.86-3.56) (0.81-090)  (N/A - reference)  (2.54-6.71) (3.9-16.19) (5.18-28.98)
LIBRA: area percent 264 <0001  085° 1 335 6.39 10.88
density, PD %
(Continuous) (1.79-3.89) (0.81-090)  (N/A - reference)  (2.07-544) (3.04-1341) (4.18-28.21)
Quantra: absolute dense 1.96 <0001 082 1 23 374 532
volume, cm?
(Continuous) (1.44-2.67) (0.77-0.86)  (N/A - reference)  (1.57-3.36) (2.04-6.86) (247-11.46)
Quantra: volume percent 224 <0001  083° 1 2.84 4.66 6.68
density, VD %
(Continuous) (1.56-3.21) (0.78-0.87)  (N/A - reference)  (1.78-4.52) (2.34-9.26) (2.85-15.58)
Radiologist's BI-RADS density ~ 1.06 0.78 0.80 Predominantly Scattered fibroglandular ~ Heterogeneously — Extremely
(ordinal categories) (069-1.63) (0.75-0.85)  fatty densities dense dense

1 1.06 112 1.19

(N/A - reference)  (0.69-1.63) (0.48-2.66) (0.33-4.33)

Odds ratios computed at specific corresponding percentiles of the distribution of the LIBRA and Quantra density estimates relative to the 10™ percentile and at
the specific categories for BI-RADS density are also provided as a reference. Ninety-five percent confidence intervals of the odds ratios are also provided in

parenthesis below the point estimate

LIBRA Laboratory for Individualized Breast Radiodensity Assessment, BI-RADS Breast Imaging-Reporting and Data System, BMI body mass index, AUC area under

the curve, N/A not applicable

“indicates that the AUC of a model including the specific density measure has a statistically significant increase in discriminatory capacity over a baseline model

including only standard risk factors and BMI (AUC = 0.80)

into the Gail model leads to a moderate improvement in
discriminatory capacity, with an AUC of 0.64 versus a
baseline performance of 0.60 AUC without the inclusion
of density [40]. Similarly, Tice et al. found that BI-RADS
density can lead to a modest improvement in risk pre-
diction (AUC = 0.66—0.68) in a pair of very large studies
[41, 42]. However, although these studies have shown
potential to improve risk prediction using density, dis-
criminatory accuracy remains limited at the individual
level [7]. There are several potential explanations. First,
visual estimates of density are known to be highly
variable among readers [43], affecting accuracy and
standardization [14, 16]. In addition, most studies
have not considered the volumetric amount of dense
fibroglandular tissue but rather projection estimates of
area percent density [27].

Studies comparing volumetric estimates of breast dens-
ity to area-based measures have primarily focused on de-
termining which single type of density measure is a better
predictor of risk [20, 21, 25, 26] and have reported mixed
results. Most of these studies suggest that increased vol-
ume of dense tissue is associated with an increased risk of
breast cancer [20, 21, 25]; however, only in the study by
Shepherd et al. [21] were the volumetric estimates of
breast density found to be stronger predictors of risk than

area-based percent density measures. This lack of con-
cordance between studies may be due to several factors.
First, most studies to date have analyzed populations
with inherently different characteristics. In addition,
most previous studies have quantified density by using
digitized film mammograms, which are subject to add-
itional sources of variation due to the digitization process
and may require user interaction for obtaining the density
estimates.

Although the etiological basis of breast density’s associ-
ation to risk is not yet fully understood [44], an additional
possibility is that both the total amount of glandular tissue
in the breast captured by volumetric measures of breast
density as well as the distribution of this tissue within the
breast reflected by projection (i.e., area-based) measures of
density may capture independent information regarding a
woman’s risk for breast cancer. In this way, area and vol-
ume density measures could be considered components of
the parenchymal pattern originally described visually by
Wolfe in the 1970s [16, 45]. Wolfe’s patterns were designed
in such a way so as to describe not only the amount of
radio-opaque tissue in the breast (i.e., potentially best
reflected by measures of volume density) but also its
distribution throughout the breast by way of the ductal
structures (i.e., potentially best reflected by measures of
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Table 6 Logistic regression models and discriminatory capacity before and after inclusion of the breast density estimates to the Gail risk

factors

Risk factor Standard risk factors only

Gail risk factors plus
area percent density

Gail risk factors plus area
and volumetric density with
feature selection

Odds ratio P value AUC Odds ratio P value AUC Odds ratio P value AUC
Demographics
Age 0.96 0.59 1.02 0.73 1.06 041
(0.84-1.10) (0.90-1.17) (0.92-1.23)
Age at menarche 0.56 0.01 0.54 0.008 0.64 0.06
(0.36-0.89) (0.34-0.85) (0.40-1.02)
Number of benign biopsies 1.08 067 1.02 094 097 0.90
(0.75-1.55) (0.70-147) (0.65-1.45)
First-degree family history 091 0.72 0.83 049 0.72 0.26
(0.54-1.52) (0.49-1.40) (0.42-1.26)
Parity - -
Nulliparous 1 - 1 - 1 -
(N/A) (N/A) (N/A)
Prior to age 30 years 2.22 0.01 249 0.005 333 0.001
(1.18-4.16) (1.31-4.73) (1.67-6.64)
Age 30 years or older 201 0.05 212 0.04 246 0.02
(0.99-4.08) (1.03-4.35) (0-4.08)
Race 0.64 (0.58-0.71) 068’ (0.62-0.74) 077" (0.71-082)
Caucasian 1 - 1 - 1 -
(N/A) (N/A) (N/A)
African-American 0.54 0.04 0.58 0.08 0.39 0.005
(0.30-0.97) (0.32-1.06) (0.21-0.75)
Asian 045 033 0.50 040 0.55 049
(0.09-2.19) (0.10-2.52) (0.10-2.98)
Other 0.80 0.76 0.90 0.88 1.04 0.96
(0.20-3.27) (0.21-3.83) (0.23-4.74)
Continuous density estimates
LIBRA: absolute dense area - - - - 1.84 <0.001
(1.32-2.54)
LIBRA: area percent density - - 1.64 <0.001 - -
(1.25-2.14)
Quantra: absolute dense volume - - - - 1.67 0.003
(1.19-2.34)

Quantra: volume percent density — -

Odds ratios, area under the curve (AUC) of the receiver operating characteristic and 95 % confidence intervals for models based on standard risk factors alone,
standard risk factors plus area percent density, and a combined model with standard risk factors, and both area and volumetric density measures after feature

selection are provided. Dashes indicate features not included in each model

N/A not applicable, LIBRA Laboratory for Individualized Breast Radiodensity Assessment
“indicates that the predictive capacity of a model including density is statistically significant than the baseline model including only Gail risk factors

area density). This could, in turn, support our observa-
tion that both volumetric and area-based measures of
density may be associated with breast cancer risk. For
example, Fig. 4 shows a mammogram for which the
volume percent density and area percent density are

roughly equivalent in magnitude. In contrast, Fig. 5
shows an example which has a relatively lower volumet-
ric density but higher area percent density. Overall, this
may suggest that area and volume density could reflect dif-
ferent aspects of a woman’s breast density and
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Table 7 Logistic regression models and discriminatory capacity before and after inclusion of the breast density estimates to a
model containing both the Gail risk factors and body mass index

Risk factor Standard risk factors and BMI Standard risk factors and Standard risk factors and BMI plus
BMI plus area percent density area and volumetric density with
feature selection
Odds ratio P value AUC Odds ratio P value AUC Odds ratio P value AUC
Demographics
Age 0.98 0.75 1.12 021 1.11 0.24
(0.83-1.14) (0.94-1.33) (0.93-1.32)
Age at menarche 0.73 0.22 0.74 0.26 0.79 037
(0.44-1.20) (044-1.24) 047-1.32)
Number of benign biopsies 1.19 0.39 1.10 067 1.07 0.75
(0.80-1.78) (0.71-1.69) (0.70-1.65)
First-degree family history 0.89 0.68 0.78 042 0.74 033
(0.51-1.56) (0.43-1.43) (0.40-1.35)
Parity
Nulliparous 1 - 1 - 1 -
(N/A) (N/A) (N/A)
Prior to age 30 years 2.08 0.04 246 0.02 2.88 0.006
(1.03-4.17) (1.17-5.19) (1.34-6.18)
Age 30 years or older 2.00 0.09 203 0.09 227 0.06
(0.91-4.38) (0.89-4.66) (0.97-5.31)
Race
Caucasian 1 - 0.80 (0.75-0.85) 1 - 0857 (0.81-0.90) 1 - 0.86 (0.82-0.90)
(N/A) (N/A) (N/A)
African-American 0.30 0.001 0.29 0.004 0.24 0.001
(0.14-0.63) (0.13-0.64) (0.11-0.54)
Asian 0.58 0.55 0.71 0.72 0.73 0.74
(0.10-3.37) 0.11-4.72) (0.11-4.66)
Other 0.73 071 0.82 0.82 0.99 0.99
(0.15-3.69) (0.14-4.66) (0.18-5.46)
BMI 343 <0.001 5.10 <0.001 393 <0.001
(2.33-5.04) (3.07-845) (247-6.26)
Continuous density estimates
LIBRA: absolute dense area - - - - 218 <0.001
(1.53-3.11)
LIBRA: area percent density - - 264 <0.001 - -
(1.79-3.89)
Quantra: absolute dense volume - - - - - -
Quantra: volume percent density — - - - 147 0.06
(0.99-2.19)

Odds ratios, area under the curve (AUC) of the receiver operating characteristic (ROC), and 95 % confidence intervals for models based on standard risk factors
alone, standard risk factors plus area percent density, and a combined model with standard risk factors, and both area and volumetric density measures after
feature selection are provided. Dashes indicate features not included in each model

BMI body mass index, N/A not applicable, LIBRA Laboratory for Individualized Breast Radiodensity Assessment

“indicates that the predictive capacity of a model including density is statistically significant than the baseline model

parenchymal pattern, with volumetric density measures the dense tissue within the breast, with an increase in ei-
reflecting the total amount of dense tissue and area-based  ther suggesting increased risk. Further investigation in fu-
density being indicative of the extent of the distribution of  ture prospective studies of the role that different density
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a)

Fig. 4 Mammogram of a breast consisting of a similar volumetric and area breast density. Example of (a) a mediolateral oblique view, “For Processing”
(ie, raw) mammogram and (b) the dense area tissue segmentation of a 56-year-old woman with a negative screening exam who has similar volumetric
percent density (VD % = 214 %) and area breast percent density (PD % = 25.3 %) estimates

PD%: 25.3%
VD%: 21.4%

b)

measures in risk
worthwhile.

In our study, the model fit using only standard risk fac-
tors had an AUC of 0.64, which is in range of the 0.58 to
0.67 commonly reported in the literature for models based
only on demographic risk factors [11, 21, 41]. Standard area
percent density, together with Gail risk factors, had an
AUC of 0.68 (95 % CI 0.62-0.74), similar to the 0.64-0.66
range often reported for models incorporating mam-
mographic percent density [17, 21, 40, 42]. Shepherd
et al. recently reported that adding percent dense tissue
area to a fully adjusted model with fibroglandular tis-
sue volume modestly increased AUC from 0.65 to 0.67
[21]. Although it is not directly comparable, we show

might have assessment may be

that an augmented model, which includes both area
and volume density, has an appreciably higher performance
(AUC = 0.77; P < 0.05), which is further enhanced when also
adjusting for BMI (AUC = 0.86; P < 0.05). The improved
performance in our study may be partially due to the use of
digital mammography and the use of fully automated mea-
sures of density, allowing more precise estimates, potentially
alleviating the bias introduced by intra-reader variability in
manual assessment [46] or the digitization of screen-film
mammograms or both.

It is worth noting that volumetric breast density methods
which estimate breast density from two-dimensional (2D)
mammography, such as the one used in this work, do
not directly measure the “true” volume of the dense

a)

PD%: 37.4%
VD%: 14.6%

b)

Fig. 5 Mammogram of a breast consisting of a higher area breast density than volumetric density. Example of (a) a mediolateral oblique view,
“For Processing” (i.e, raw) mammogram and (b) the dense area tissue segmentation of a 59-year-old woman with a negative screening exam
who has different volumetric percent density (VD % = 14.6 %) and area breast percent density (PD % = 37.4 %) estimates
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fibroglandular tissue in the breast but rather a surrogate es-
timate based on imaging physics and validated assumptions
of the breast anatomy [47]. Recent work by Wang et al.
suggests that volumetric breast density estimates made
from 2D mammograms correlate strongly with estimates
made from true three-dimensional (3D) images, such as
those acquired via MRI [48], although the potential impact
this may have on risk assessment has yet to be evaluated.
Furthermore, given the increasing interest in the adoption
of 3D imaging modalities as a primary screening tool, such
as breast tomosynthesis [49], true 3D breast density assess-
ment may soon be feasible for the general screening popu-
lation. As such, future work should look toward the
development and validation of automated breast density as-
sessment tools for 3D screening modalities.

In our study, we found that BMI has a negative correl-
ation to both area and volume percent density (p = -0.32
to —0.16) and positive correlations to absolute dense area
(p = 0.10) and absolute dense volume (p = 0.42), which are
similar to what has been seen in prior work [50]. Prior
studies have also shown that adjusting breast density mea-
sures for BMI and other known risk factors can modify the
strength of association between density and cancer risk
[15, 18, 50]. Specifically, we found that adjusting our uni-
variate models for either Gail risk factors alone (Table 4)
or in combination with BMI (Table 5) strengthens the
individual associations between most of the fully auto-
mated breast density measures and breast cancer. The
association between absolute dense area and breast cancer
was largely uninfluenced by the inclusion of BMI. Only in
the case of absolute dense volume did the inclusion of
BMI lead to an attenuated, though still statistically signifi-
cant, association with breast cancer, likely due to the posi-
tive correlation (p = 0.42) between the two metrics leading
to an overestimation bias. Furthermore, the magnitude of
the association observed for BMI in our study was found
to be larger than what may be expected on the basis of
prior literature [51]. One potential explanation is that our
study includes a large fraction of non-Caucasian women,
especially African-American (approximately 26 %), which
may play a role in our findings as the association between
BMI and breast cancer varies by menopausal status, race,
and the breast cancer subtype which develops [52]. Larger
studies will be needed in order to fully validate the LIBRA
density estimates as an independent breast cancer risk
factor.

Although there appear to be significant differences be-
tween the individual breast density estimates (Table 3),
we observed that, as additional risk factors are consid-
ered, the predictive capacity of the different models be-
gins to converge (Tables 4 and 5). This is likely due in
part to the fact that the different density measures are
partly correlated to each other (e.g., the strongest ob-
served correlation being p = 0.73 between area percent

Page 15 of 17

density and absolute dense area). Furthermore, a com-
mon set of risk factors are used to adjust the models re-
ported in Tables 4 and 5. As a result, the various risk
factors are expected to potentially capture some similar
information about risk which leads to converging AUC
scores. However, the fact that the breast density mea-
sures reach statistical significance in the logistic regres-
sion models adjusted for the standard risk factors and
BMI suggests that they also capture some independent
information about breast cancer risk. Larger studies are
needed in order to fully clarify how breast density should
be incorporated into breast cancer risk prediction
models in a way that potentially maximizes this inde-
pendent information.

Pepe et al. proposed five phases for identifying and val-
idating predictive biomarkers [53], in which phases 1
and 2 consist of retrospective analysis to determine the
biomarker’s capacity to distinguish between individuals
with and without the outcome of interest. In this setting,
demonstrating strong associations between a biomarker
and the outcome of interest (here, breast cancer), after
adjustment for potential confounders, is the strongest
evidence that a risk model would ultimately benefit from
its inclusion [30]. Therefore, our intention was to per-
form a preliminary association analysis, with the goal of
identifying promising predictors from an array of differ-
ent novel quantitative measures of breast density which
could ultimately have value for breast cancer risk assess-
ment. As such, it is worth noting that our dataset in-
cludes a wide spectrum of incident breast cancers, being
a representative sample of the general population of
women diagnosed with breast cancer.

Limitations of our study include that our analysis is con-
fined to a relatively small sample size and the use of a
case—control study design, in which we used contralateral
mammograms at the time of diagnosis, rather than pro-
spective follow-up. Of note, certain risk factors known to
be associated with breast cancer were not found to be sig-
nificant in our study, specifically family history, prior bi-
opsy count, and BI-RADS breast density. This is likely
because our study was underpowered to reliably detect
subtle differences between cases and controls for these
measures. Furthermore, it is known that the matching
process in case—control studies may introduce biases in
assessing biomarker performance [54] because the match-
ing process leads to a skewed distribution of the consid-
ered covariates in the study sample relative to the general
population [54]. Therefore, the AUCs in our study should
be interpreted within the context of the age-matched
study design, especially given the individual discriminatory
capacity of the BMI risk factor. The AUC comparisons
performed in this study must also be considered in the
context of our study’s sample size as the sample size re-
quired to measure an ROC area difference between two
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models depends on the correlation of ROC areas for the
comparison being made. This may in part explain why the
quantitative breast density measures were statistically
significant in the logistic regression models, but the in-
creases in AUC of some of the density models were not
found to be statistically significant when compared with
the baseline risk factor models. As such, our observations
will also need to be validated prospectively in larger,
independent populations with appropriate adjustment
for additional confounders. In addition, although we
investigated the association of breast density estimates
by using mammograms acquired from a single vendor,
additional mammography vendors use different full-
field digital mammography technology and will also
need to be evaluated with the LIBRA software in order
to validate its generalizability. Ultimately, fully auto-
mated measures could alleviate the subjectivity in
density assessment by visual assessment and provide
objective quantitative measures for clinical reporting
and guiding personalized screening recommendations.

Conclusions

We demonstrate that novel fully automated area and
volumetric-based breast density measures assessed via
digital mammography are associated with breast can-
cer after adjustment for standard risk factors, such as
Gail factors and BMI. These quantitative measures, in-
cluding volumetric and absolute fibroglandular tissue
estimates, could ultimately improve breast cancer risk
prediction by providing additional information regarding a
woman’s risk for breast cancer, compared with standard
risk factors alone. In addition, the ability to fully automate
density estimation with digital mammography, particularly
through the use of publically available breast density esti-
mation software, could accelerate the translation of density
reporting in routine breast cancer screening and surveil-
lance protocols. As such, our observations will be instru-
mental in guiding the design of larger prospective studies
that will more rigorously validate the predictive value of
such new fully automated, quantitative, breast density mea-
sures in larger populations.
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