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Background: The tumor microenvironment (TME) is involved in the

development and progression of lung carcinomas. A deeper understanding

of TME landscape would offer insight into prognostic biomarkers and potential

therapeutic targets investigation. To this end, we aimed to identify the TME

components of lung cancer and develop a prognostic signature to predict

overall survival (OS).

Methods: Expression datawas retrieved fromTheCancer Genome Atlas (TCGA)

database and differentially expressed TME-related genes were calculated

between tumor and normal tissues. Then nonnegative matrix factorization

(NMF) clustering was used to identify two distinct subtypes.

Results: Our analysis yielded a gene panel consisting of seven TME-related

genes as candidate signature set. With this panel, our model showed that the

high-risk group experienced a shorter survival time. This model was further

validated by an independent cohort with data from Gene Expression Omnibus

(GEO) database (GSE50081 and GSE13213). Additionally, we integrated the

clinical factors and risk score to construct a nomogram for predicting

prognosis. Our data suggested less immune cells infiltration but more

fibroblasts were found in tumor tissues derived from patients at high-risk

and those patients exhibited a worse immunotherapy response.

Conclusion: The signature set proposed in this work could be an effective

model for estimating OS in lung cancer patients. Hopefully analysis of the TME

could have the potential to provide novel diagnostic, prognostic and

therapeutic opportunities.
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Introduction

Lung cancer is the leading cause of cancer-related morbidity

and mortality, and in particular, non-small-cell lung cancer

(NSCLC) is the most prevalent form Sung et al. (2021). The

treatment of NSCLC includes surgery, chemotherapy, and

targeted therapy. Recent advances in lung cancer treatments,

such as targeted therapy and immune therapy, have improved

clinical outcomes, and some patients have shown satisfactory

therapeutic responses (Chen et al., 2014). Immune checkpoint

blockade (ICB) is an effective approach that disturbs cancer cell

immune surveillance subversion (Ribas and Wolchok, 2018).

However, despite its efficacy in some patients, many patients fail

to respond to ICB. Therefore, alternative therapeutic

investigations have taken other pro-tumorigenic cells

including macrophages, endothelial cells and fibroblasts into

consideration (Mahoney et al., 2015). Hence, an emerging

need for full characterization and an in-depth understanding

of the TME has surged. Previous studies have shown that the

TME plays an important role in the progression and treatment

response of NSCLC (Wood et al., 2014). Therefore, genes which

are key to TME would be likely differentially expressed between

patients at high risk and for those at low risk. Consequently, these

genes would be ideal makers for predicting prognosis and

therapy response.

In this study, we systematically analyzed the characteristics of

TME-related genes in NSCLC patients using data from TCGA

RNA-seq datasets. Then, we performed cluster analysis for

FIGURE 1
Identification of NSCLC subclasses using NMF consensus clustering. (A), A volcanomap of differentially expressed genes related to the TME. (B),
NMF clustering using microenvironment-related genes. (C,D), Survival analysis of patients in Clusters one and two.
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NSCLC based on TME-related gene expression signatures and

divided them into two different clusters. Furthermore, a TME-

related gene model was constructed to predict the prognosis of

NSCLC patients.

Methods

Data acquisition and processing

The gene expression data of 497 lung cancer tissue samples

and 54 normal lung tissue samples and the corresponding clinical

information were acquired from The Cancer Genome Atlas

(TCGA) database (https://portal.gdc.cancer.gov/). 39 sample

was rejected for lack of survival outcome. A Wilcoxon test

was used to analyze differentially expressed genes in the

TCGA sample using the “limma” package in R (The R

Foundation for Statistical Computing, Vienna, Austria)

(Ritchie et al., 2015). To identify differentially expressed genes

in lung cancer, the cutoff threshold in TCGAwas set as |log2-fold

change (FC)| ≥1.0, and the false discovery rate (FDR) was set

at <0.05. The corresponding clinical information of the patients

with lung cancer was collected and used for the subsequent

analyses. The external validation cohort consisted of the

expression data and the comparative clinical data acquired

from the Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/) (GSE50081, GSE13213). The

TCGA and GEO sample ids was showed in Supplementary

Material (Supplementary Data S1). TME-related genes were

obtained from published studies (Newman et al., 2015;

Rooney et al., 2015; Becht et al., 2016; Chifman et al., 2016; Li

et al., 2016; Tirosh et al., 2016; Aran et al., 2017), and a total of

4061 genes were included. A flow chart to depict the study design

was shown in Supplementary Figure S1.

Subclasses identification

The microenvironment-related genes obtained were

subsequently used in nonnegative matrix factorization (NMF)

clustering. We used univariate Cox proportional hazards model

to examine the associations between gene expression and overall

survival. Genes with false discovery rate (FDR) less than

0.01 were considered to be statistically significant and

included in consensus clustering analysis. Specifically, NMF

was applied to gene expression matrix A that contained

prognostically significant TME-related genes aforementioned

(Supplementary Data S2). Matrix A was factorized into two

nonnegative matrices W and H (i.e., A ≈ WH). Repeated

factorization of matrix A was performed and its outputs were

aggregated to obtain consensus clustering of samples. The

optimal number of subtypes was selected according to

cophenetic, dispersion, and silhouette coefficients (Kim and

Park, 2007). Unsupervised NMF clustering methods were

performed using the “NMF” package of the R software

package on the metadata set, and the best cluster number was

chosen as the coexistence correlation coefficient K value 2

(Gaujoux and Seoighe, 2010).

Prognostic model construction

We used the “survival” package (https://CRAN.R-project.

org/package=survival) in R to perform a univariate Cox

regression analysis for all differentially expressed

microenvironment-related genes and screened for

significant candidate genes. Subsequently, the prognostic

risk characteristics were assessed using the “glmnet” and

“caret” R packages based on the least absolute shrinkage

and selection operator (LASSO) method (Simon et al.,

2011). Then, a prognostic model containing seven

microenvironment-related genes was constructed based on

the screened candidate genes. According to the median value

of the risk score, the patients with lung cancer were classified

into high-risk and low-risk groups. Kaplan-Meier analysis was

FIGURE 2
Abundances of immune cell subtypes in two clusters of
patients.
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used to construct a survival curve. Then, a log-rank test was

applied to compare the overall survival (OS) of the two

subgroups. Thereafter, a receiver operating characteristic

(ROC) curve was drawn to evaluate the performance of the

prognostic model using the “survivalROC” package in R

(Heagerty and Zheng, 2005). According to the patient’s

clinical information and risk score, independent prognostic

clinical factors were selected by multivariate Cox regression

analysis. A nomogram was constructed using the survival rate

and “RMS” R package (Núñez et al., 2011), and a correction

curve was drawn to evaluate the consistency between the

actual and predicted survival rates. Moreover, the

concordance index (C index) was calculated. The

correlation between the risk score and various clinical

factors was analyzed using the “limma” package in R and

then visualized by the “ggpubr” package in R (Whitehead et al.

, 2019).

The correlation between the risk score
and cell types

The abundance of tumor-infiltrating microenvironment

cells was calculated using the “MCPcounter” package in R

(https://github.com/ebecht/MCPcounter) and then

correlation analysis was performed with the risk score

using the “corrplot” package in R (https://cran.r-project.

org/web/packages/corrplot/vignettes/corrplot-intro.html). In

addition, we used the “IMvigor” software package in R to

obtain the IMvigor dataset, which helped us study the

signature-immunotherapy efficiency relationship.

Statistical analysis

We used Kaplan–Meier analysis to construct survival

curves using the “survival” and “survminer” packages in R

and a log rank test to evaluate the significance of differences

between the two subgroups (https://CRAN.R-project.org/

package=survminer). Univariate and multivariate Cox

proportional hazards model were used to analyze the

association between subtypes and prognosis with R survival

package. Wilcoxon signed-rank tests were performed to

explore quantitative variables. Significance was defined as

p < 0.05. All statistical analyses were performed using R

version 4.0.3.

Results

Classification of non-small-cell lung
cancer based on tumormicroenvironment
genes

We used data from the TCGA dataset to calculate

differentially expressed genes between tumor and normal

FIGURE 3
Identification of a risk signature by LASSO regression analysis. (A), Cross-validation for tuning parameter selection in the proportional hazards
model. (B), LASSO coefficient spectrum of seven genes.
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tissues, and genes related to the TME were selected. A total of

1283 differentially expressed genes were identified, of which

949 genes were upregulated in tumor tissues (Figure 1A).

Thereafter, NMF analysis was used to divide patients into two

different clusters (C1 and C2), where the consensus matrix

heatmap maintained a superior boundary (Figure 1B)

compared to other classifications with more than two

clusters (Supplementary Figure S2). In addition, patients in

Cluster two had a longer survival time (Figure 1C) and a better

progression survival time (Figure 1D) than Cluster one

patients. Considering that immune cells play a key role in

the TME, we used a gene expression–based approach to

estimate the abundances of specific immune cell types in

two clusters of patients. Recent research has identified six

immune subtypes associated with the TME and showed that

patients with a higher inflammatory subtype signature have

the best prognosis. (Thorsson et al., 2018). Consistent with

these findings, the inflammatory subtype was also

preferentially distributed in Cluster 2 (Figure 2).

Gene signature for lung cancer prognosis

We identified 187 overall survival-associated genes from

lung cancer patients in the TCGA cohort. To minimize the

risk of overfitting, LASSO regression algorithm analysis was

used to generate the best gene model (Figures 3A,B).

Ultimately, a gene model with seven genes was created.

These seven prognosis related genes play important roles in

cancer progression. High-risk genes (C1QTNF6, LDHA,

IGF2BP1) resulted in poor clinical outcomes by promoting

cancer cell metabolism and proliferation. PLEK2 and

FAM133A involved in tumor migration. In contrast, the

tumor suppressor genes (BEX5, KLHL35) were correlated

with longer survival time. We calculated the risk score for

each patient according to the coefficient value of the seven

genes. Subsequently, patients were classified into high-risk

and low-risk groups based on the median risk score. We

divided the patients from the TCGA cohort into the

training set (n = 322) and the testing set (n = 136). There

TABLE 1 The clinical characteristic of TCGA testing set and training set.

Characteristic Total Test group Train group p-value

Age

<=65 224 (48.91%) 73 (53.68%) 151 (46.89%) 0.220

>65 234 (51.09%) 63 (46.32%) 171 (53.11%)

Gender

Female 250 (54.59%) 67 (49.26%) 183 (56.83%) 0.151

Male 208 (45.41%) 69 (50.74%) 139 (43.17%)

Stage

Stage I 247 (53.93%) 73 (53.68%) 174 (54.04%) 0.729

Stage II 110 (24.02%) 30 (22.06%) 80 (24.84%)

Stage III 74 (16.16%) 23 (16.91%) 52 (16.15%)

Stage IV 21 (4.59%) 10 (7.35%) 16 (4.97%)

T stage

T1 156 (34.06%) 39 (28.68%) 117 (36.35%) 0.327

T2 241 (52.62%) 75 (55.15%) 166 (51.55%)

T3 39 (8.52%) 13 (9.55%) 26 (8.07%)

T4 22 (4.80%) 9 (6.62%) 13 (3.03%)

M stage

M0 432 (94.32%) 126 (92.65%) 306 (95.03%) 0.376

M1 26 (5.68%) 10 (7.35%) 16 (4.97%)

N stage

N0 301 (65.72%) 85 (62.50%) 218 (67.70%) 0.122

N1 84 (18.34%) 22 (16.18%) 62 (19.25%)

N2 65 (14.19%) 28 (20.59%) 41 (12.73%)

N3 2 (0.44%) 1 (0.73%) 1 (0.32%)

Risk score

High risk 218 (47.60%) 57 (41.91%) 161 (50.00%) 0.125

Low risk 240 (52.40%) 79 (58.08%) 161 (50.00%)
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was no difference in clinical features between the testing group

and the training group (Table 1). The sample ids was showed

in Supplementary Material (Supplementary Data S1). First, we

investigated the prognostic role of our model in the training

set. A longer survival time was found in low-risk patients than

in the high-risk training set (p = 0.006; Figure 4A) and in the

testing set. To further evaluate the accuracy of the prognostic

value of the risk score, time-dependent ROC curves were

plotted (Figure 4C), and the area under the curve (AUC) at

1 year of overall survival (OS) was 0.758. Thereafter, the gene

signature was tested for its prognostic performance in the

independent TCGA testing set. Consistent with the training

set, patients in different risk groups showed significantly

different OS. Furthermore, the AUCs at 1 year, 3 years, and

5 years of OS were higher than 0.7 in the testing set

(Figure 4D). To further validate our risk model in different

platforms, we confirm our finding using data from GSE50081

(n = 181). High-risk patients had poorer survival times than

low-risk patients (Figure 5A), yielding a 1-year AUC of 0.712

(Figure 5B). These results are similar to those observed in the

TCGA training set and testing set. We have also verified the

model using the data from GSE13213 (n = 117), confirming

our previous finding (Supplementary Figure S3).

Association with clinicopathologic factors

To integrate multiple risk factors, we used a nomogram to

quantify the risk in lung cancer patients. Using the synthesis of

seven gene signatures, a nomogramwas constructed based on sex, age,

FIGURE 4
Survival analyses of two groups of patients. The survival was significantly different between the high-risk group and low-risk group in the training
set (A) and the testing set (B). The area under the receiver operating characteristic (ROC) curve in the training set (C) and the testing set (D).
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stage, degree of tissue involvement (T), lymphatic involvement (N),

and risk score to predict the probability of 1-, 3-, and 5-year OS

(Figure 6A). Meanwhile, the calibration curve results showed that the

predicted survival rate was closely related to the actual survival rate

(Figure 6B). We then used a multi-index ROC curve to evaluate the

accuracy of multiple risk indicators, where the nomogram and risk

score showed superior accuracy (Figure 7A). In addition, we assessed

the relationship between the risk score and clinicopathologic factors.

We found that the risk score showed a good correlation with stage, T,

andN (Figures 7B–D). Patients in the early stage tended to have lower

risk scores than patients in the advanced stage. Additionally, in N and

T, a higher risk score correlated with more malignant lung cancer.

Predictive treatment response of the
identified subgroups

We studied the correlation between the risk score and

microenvironment-related cell types and found that the patients

with higher scores had less immune cell infiltration but more

fibroblasts (Figure 8A). To further evaluate the predictive role of

our gene model on treatment response, we compared the risk score

between patients with different therapy responses. We defined

patients with complete or partial response to treatment as having

a satisfactory response, whereas lung cancer patients with a stable

and progressive disease status were defined as having a poor

FIGURE 5
Validation of our risk model in the GSE50081 dataset. The survival time (A) and the area under the ROC curve (B) in the two groups of patients.

FIGURE 6
Prognosis prediction by the nomogram. (A), A nomogram used to predict the overall survival. (B), Calibration plots for survival.
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response. Our results suggested that patients who were more

sensitive to therapy had a lower risk score, indicating the

predictive role of the risk score on treatment response (Figure 8B).

Discussion

As stated by numerous studies, characterizing TME at high

resolution to understand how tumor cells avoid surveillance to

maintain proliferation and promote metastasis are of vital

importance (Altorki et al., 2019). Genes that deeply involved in

promoting tumor growth/TME appear to be capable of classifying

NSCLCpatients into two different prognostic subtypes. The high-risk

subtype had higher proportion of cells that possessed regenerating

ability and highly expressed Interferon-γ (IFN-γ), while the low-risk
subtype hadmore inflammatory cells (the different immune subtypes

identified by an extensive immunogenomic analysis of TCGA

(Thorsson et al., 2018). Then, through LASSO regression analysis,

we selected seven tumormicroenvironment-associated genes to build

a prediction model that could divide patients into two groups based

on risk scores. The patients in the low-risk group seemed to show a

better response to immunotherapy. Finally, we integrated the gene

model score and clinicopathologic factors to construct a nomogram

for predicting patient survival rates.

FIGURE 7
The associations between risk score and clinicopathologic factors. (A), Multiindex ROC curve of risk score and other indicators. The association
of risk score and stage (B), N, lymphatic involvement (C), and T, degree of tissue involvement (D).
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The TME consists of cellular components and the extracellular

matrix (ECM). The cells include immune cells, cancer-associated

fibroblasts, endothelial cells, and adipocytes (Ribeiro Franco et al.,

2020). The TME plays an important role in the progression of

tumors and the immune treatment response (Quail and Joyce,

2013). Tumor associated immune cells harbour infiltrating

lymphoid and myeloid cells. Thymus dependent lymphocyte

(T cells) are an important component of lymphocytes, which

take part in cellular immunity. It is essential for tumor

immunotherapy. Recently, Chimeric Antigen Receptor T-Cell

(CAR-T) cell therapy was applied in clinical practice to counter

the tumors. Some studies have shown that patients with more

T cells in tumors seem to have better outcomes (Kishton et al.,

2017; Mohanty et al., 2019). B cells are another main lymphocytes

mediating humoral immunity by secreting immunoglobulins or

promoting the T cell response (Tokunaga et al., 2019). Some

studies have shown that higher numbers of B cells are associated

with better prognosis (Eerola et al., 1999; Al-Shibli et al., 2008). For

myeloid cell populations, Natural killer cells (NK cells) are also

closely related to the tumor immune response (Morvan and

Lanier, 2016). Past studies found that more infiltration of NK

cells was associated with longer survival time in solid tumors

(Nersesian et al., 2021). Neutrophils involved with the staging of

oncogenesis, but the effect of neutrophil maturity on their

antitumor activity or tumor promotion has not yet been

elucidated (Mackey et al., 2019). Dendric cells (DC) take part

in all procedures of the antitumor immune response by presenting

antigens and synthetic peptides to activate T cells, consequently

leading to an antitumor immune response. In this regard, a high

level of DC is related to better progression-free survival time in

NSCLC patients (Wang Y. et al., 2020). Currently, an increasing

number of studies have focused on the function of tumor-

associated macrophages (TAMs). TAMs can be classified into

two categories: protumorigenic M2 macrophages and

antitumorigenic M1 macrophages. TAMs were recruited by

interleukin-17 of cancer cells, in return, it can specifically affect

the aggressiveness of tumors through a variety of proteases. In

addition to immune cells, fibroblasts also make up a major part of

the TME. Cancer-associated fibroblasts (CAFs) can promote

tumor growth and invasion via the secretion of tumor-related

factors (Wang et al., 2009). For instance, CAFs can increase the

expression of α-smooth muscle actin and downregulate the cell

cycle gene p53 (Bar et al., 2009; Chatzistamou et al., 2011).

Furthermore, alterations in the ECM also contribute to the

development of tumors, such as protease-mediated matrix

degradation and oxidative stress pathway activation (Wood

et al., 2014). Considering the correlation between the TME and

lung cancer prognosis, the related genes participating in the

regulation of the TME and immune systems should be

potential biomarkers for evaluations of prognosis and treatment

response. In our study, we selected prognostic TME-associated

genes to classify the two significantly different prognosis clusters

and found that fewer immune cells but more CAFs infiltration in

the tumor of high-risk patients. To predict clinical outcome

accurately, a nomogram was constructed combining the risk

score with clinicopathological factors.

We selected seven prognosis-related genes as our predictive

signature. Similar to our study, Wang Q. et al. (2020) identified

FIGURE 8
Microenvironmental characteristics of lung cancers. (A), Correlation between the risk score and microenvironment-related cell types. (B), Risk
score distribution between patients with different treatment responses.
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immune-related signatures of lung adenocarcinoma. Patients in two

distinct subtypes were characterized by significantly different

survival outcomes: TIDE score, programmed death-ligand 1 (PD-

L1) expression, and tumor mutation burden (TMB). Song and

Shang (2019) also built a model to predict the prognosis of

NSCLC patients via immune-related genes, with a c-index of

0.723. Our prognostic model showed a similar rate compared

with previous studies. However, our work focused on TME-

related genes. The genes used in our risk prediction model are

functional related not only to immune activity but also to the

interaction between the tumor and microenvironment. The C1q/

TNF-related protein (CTRP) family is involved in the body’s

metabolism and immunity (Schäffler and Buechler, 2012).

CTRPs play important roles in the development and progression

of NSCLC by promoting metabolic disturbances, is one of

independent risk factors for oncogenesis (Kong et al., 2021).

PLEK2 (pleckstrin-2) participates in the epithelial-to-

mesenchymal transition (EMT) progress of lung cancer cells,

resulting in tumor invasion and metastasis (Wu et al., 2020).

Lactate dehydrogenase A (LDHA) is an enzyme that catalyzes

the interconversion of pyruvate and lactate. Some research has

demonstrated that LDHA phosphorylation promotes cancer cell

invasion and tumor metastasis (Jin et al., 2017; Feng et al., 2018).

Additionally, IGF2BP1 (IGF2 mRNA binding proteins 1) was also

reported to accelerate carcinogenesis (Huang et al., 2018). For

protective genes, BEX5 is a member of the brain-expressed

X-linked (BEX) family. A previous study demonstrated that

BEX5 was associated with prognosis of NSCLC patients. Low

expression levels of BEX5 indicate poor clinical outcomes (Zhang

et al., 2019). Knockdown of KLHL35 (kelch-like family member 35)

was also shown to increase tumor growth, providing direct

functional evidence of tumor suppressor activity (Morris et al.,

2011). In short, genes in our model are associated with tumor

proliferation and partly take part in the regulation of the TME.

Nowdays, some researchers used patient-derived lung cancer

organoids as in vitro models to predict drug responses. This cancer

model could recapitulate the histological and genetic features of lung

cancer and respond to drugs based on their genomic alterations.

However, a critical limitation of the models is the lack of a cancer

microenvironment (Kim et al., 2019). Considering the central role of

the TME in the initiation and progression of lung cancer, we not

only study the characteristics of immune cells, but also focused the

genes which take part in regulating the TME. Even the gut

microbiota may influence the cancer immune response. Recent

study has analyzed the microbiota spectrum of lung cancer

patients and established a gut microbial signature for the

potential prediction of the early-stage lung cancer (Zheng et al.,

2020). Comprehensive insights into the TME landscape in lung

cancer may usher in a new era of cancer medicine.

In conclusion, this study classified NSCLC patients into two

different prognosis clusters by TME-related genes. The two clusters

seemed to display various immune subtype cells. A prognostic

model constructed by the seven TME-related genes is presented

that can independently predict prognosis of NCSLS patients. Our

model was further validated by independent cohorts with data from

GSE50081 and GSE13213. The high-risk group showed a worse

immunotherapy response than the low-risk group. We also

integrated the clinical factors and risk score to construct a

nomogram for predicting prognosis. However, as our study was

a retrospective analysis, statistical power was hampered by possible

selection bias. Also, other clinical confounders (e.g., heterogeneous,

populations pathological type) may influence the accuracy of the

LASSO regression model. Further works are also needed to confirm

the functions of these marker genes in lung cancer progression as

well as their impact on patient survival.
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