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Abstract
Renal cell carcinoma (RCC) is one of the leading causes of cancer- related death world-
wide. Tumour metastasis and heterogeneity lead to poor survival outcomes and drug 
resistance in patients with metastatic RCC (mRCC). In this study, we aimed to assess 
intratumoural heterogeneity (ITH) in mRCC cells by performing a combined analysis 
of bulk data and single- cell RNA- sequencing data, and develop novel biomarkers for 
prognosis prediction on the basis of the potential molecular mechanisms underlying 
tumorigenesis. Eligible single- cell cohorts related to mRCC were acquired using the 
Gene Expression Omnibus (GEO) dataset to identify potential mRCC subpopulations. 
We then performed gene set variation analysis to understand the differential func-
tion in primary RCC and mRCC samples. Subsequently, we applied weighted correla-
tion network analysis to identify coexpressing gene modules that were related to the 
external trait of metastasis. Protein- protein interactions were used to screen hub 
subpopulation- difference (sub- dif) markers (ACTG1, IL6, CASP3, ACTB and RAP1B) 
that might be involved in the regulation of RCC metastasis and progression. Cox re-
gression analysis revealed that ACTG1 was a protective factor (HR < 1), whereas the 
other four genes (IL6, CASP3, ACTB and RAP1B) were risk factors (HR > 1). Kaplan- 
Meier survival analysis suggested the potential prognostic value of these sub- dif 
markers. The expression of sub- dif markers in mRCC was further evaluated in clinical 
samples by immunohistochemistry (IHC). Additionally, the genetic features of sub- 
dif marker expression patterns, such as genetic variation profiles, correlations with 
tumour- infiltrating lymphocytes (TILs), and targeted signalling pathway activities, 
were assessed in bulk RNA- seq datasets. In conclusion, we established novel sub-
population markers as key prognostic factors affecting EMT- related signalling path-
way activation in mRCC, which could facilitate the implementation of a treatment for 
mRCC patients.
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1  | INTRODUC TION

Renal cell carcinoma (RCC) is characterized by various genetic ab-
normalities, and the accompanying clinical and biological hetero-
geneity plays a crucial role in the modification of drug resistance, 
signalling networks, distant metastasis and prognosis.1- 3 Clear cell 
RCC (ccRCC) is the most prevalent histopathological type, consti-
tuting more than 85% of metastatic RCC (mRCC) cases and showing 
a poor prognosis. Nearly 20% of ccRCC cases present with de novo 
metastatic disease at initial diagnosis, and the 5- year overall survival 
(OS) rate of metastatic cases is as low as 10%.4,5

Over the last 12 years, the clinical management of mRCC has 
progressed significantly. Multiple targeted agents have been devel-
oped to block the activity of known tyrosine kinases and signalling 
pathways, such as inhibitors of the mammalian target of rapamycin 
(mTOR), platelet- derived growth factor (PDGF) and vascular endo-
thelial growth factor (VEGF) pathways, which mediate crucial net-
work functions involved in ccRCC, metastasis and angiogenesis.6- 10 
Although targeted drugs for VEGF or PI3K/mTOR are effective first- 
line treatment options, many patients with mRCC eventually tend 
to develop drug resistance. The median time of disease progression 
into a drug- resistant phenotype is approximately 6- 15 months, de-
pending on the therapeutic programmes and intratumoural hetero-
geneity (ITH).11,12

Epithelial- to- mesenchymal transition (EMT), a process in which 
epithelial cells lose their apical- basal polarity and concomitantly ac-
quire a migratory phenotype,13,14 is a key step in tumour metastasis. 
The EMT programme in tumour metastasis adapts to the ITH and 
constantly evolving microenvironment to allow tumour cells to suc-
cessfully metastasize.13 Since EMT is dynamically regulated during 
metastasis, more studies on the molecular regulators of EMT could 
shed light on the therapeutic approaches to inhibit tumour coloni-
zation. However, the mechanisms by which EMT heterogeneity co-
operates with the tumour microenvironment (TME) and activates 
distinct downstream signalling pathways in metastatic sites to pro-
mote tumour progression remains unclear.

The emerging single- cell RNA- sequencing (scRNA- seq) technol-
ogy provides deeper insights into transcriptome expression profiles 
at a single- cell resolution and a detailed understanding of ITH.15- 18 
Tumour metastasis is an evolutionary process, and cells may acquire 
novel or different phenotypes through selection.19,20 scRNA- seq has 
helped reveal unidentical subpopulations, greatly facilitating the de-
velopment of novel approaches for improving precision targeted 
therapy.21 Nevertheless, elucidation of the role of ITH in mRCC cells 
and its contribution to drug resistance remains a challenge, and this 
information is expected to have profound implications in improving 
our understanding of the process of tumour subclonal evolution and 
development of effective treatment regimens. Thus, in this study, we 
sought to assess mRCC cell heterogeneity by analysing a combination 
of bulk data and scRNA- seq data.

We hypothesized that alterations in gene expression profiles 
during the evolutionary process of tumour metastasis affect the 

phenotype of metastatic cancer cells, resulting in the activation 
of distinct signalling pathways and drug resistance to specific 
treatments. Our analyses indicated that EMT activation reflects 
a main cell subset with distinct mechanisms of action in mRCC. 
Using publicly available human sequencing datasets (The Cancer 
Genome Atlas [TCGA] and Gene Expression Omnibus [GEO] 
Series [GSE73121]) and immunohistochemistry (IHC) analysis, we 
confirmed that IL6, CASP3, ACTB, ACTG1 and RAP1B, which are 
referred to as subpopulation- difference or sub- diff markers, are 
co- regulators of the differentially expressed gene (DEG) network 
between two metastatic subpopulations and play key roles in RCC 
metastasis. We further explored the expression patterns and ge-
netic mutations of these five sub- dif markers to evaluate their in-
fluence on the prognosis of RCC in large patient cohorts. These 
results indicated that the activation of pathways differed in mRCC 
subpopulations and that EMT was the main pathway. Sub- dif mark-
ers are key prognostic factors that participate in EMT induction 
in mRCC subpopulations. Furthermore, the correlations of sub- dif 
markers with immune infiltration and drug response were analysed 
to ascertain their value as molecular markers for predicting a sub-
population evolution course, and as novel potential pharmacolog-
ical targets.

2  | METHODS

2.1 | Gene expression data and IHC- confirmed 
patient population

Bulk RNA- seq data for kidney renal clear cell carcinoma (KIRC) tu-
mours and normal samples, including level- 3 RNA- seq data and clini-
cal data, were downloaded from the TCGA data portal (https://gdc.
nci.nih.gov) and used as bulk RNA- seq data to explore sub- dif marker 
gene function.

Using the single- cell sequencing data of 118 cell samples (after 
removing three bulk RNA- seq samples from the 121 cell samples) 
from patients with primary RCC and mRCC, single- cell transcriptome 
profiles were obtained from the GEO repository under the accession 
number GSE73121. The criteria for filtering single cells for down-
stream analyses included exclusion of low- quality cells (<200 genes/
cell, <3 cells/gene and >10% mitochondrial genes) and log2- 
transformation of gene expression levels by using the ScaleData R 
function, as described in the Seurat manual. Subsequent data anal-
ysis was performed using R software (version 4.0.2) and the Seurat 
package (version 2.3.4).

For the validation study, we selected 30 pairs of RCC tissues, 
matched non- tumorous adjacent tissues and lung metastatic tissues 
from patients with a definite histological diagnosis at the Liaoning 
Province Cancer Hospital & Institute between 2015 and 2019. The 
study protocol was approved by the Ethics Committee of Liaoning 
Province Cancer Hospital & Institute (Ethical Approval Number: 
20201252).

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73121
https://gdc.nci.nih.gov
https://gdc.nci.nih.gov
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73121
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2.2 | Gene set variation analysis of primary and 
metastatic tumour subpopulations

To estimate the differential activities of 50 hallmark pathway gene 
signatures between primary ccRCC and metastatic ccRCC, we im-
plemented the gene set variation analysis (GSVA) algorithm in the 
scRNA- seq data. Significantly enriched pathways were identified 
based on a |logFoldChange| ≥ 1 and an adjusted P value of <0.05. In 
addition, to evaluate whether the metastatic subpopulations were 
highly enriched with EMT-  and VEGF- activated pathways, GSVA was 
employed to determine the pathway gene set activity score for each 
sample by using a non- parametric and unsupervised algorithm in the 
GSVA R package.22

2.3 | Principal component analysis and t- distributed 
stochastic neighbour embedding analyses in 
metastasis subgroups

Based on the assumption that genes capturing cell heterogene-
ity often display high variability, we focused on identifying highly 
variable genes (HVGs) by using the FindVariableFeatures function 
and used them for subsequent analyses.23 Principal component 
analysis (PCA) was conducted on the scaled HVGs, which returned 
six principal components (PCs) based on Cattell's screen test, and 
the first four principal components were chosen for visualization 
(Figure S1). The six returned PCs were presented for t- distributed 

stochastic neighbour embedding (tSNE) dimension reduction to 
obtain a two- dimensional representation of the cell state. The 
FindClusters function was used for clustering to realize a modular 
and optimized clustering algorithm of the shared nearest neigh-
bour, which resulted in the formation of two clusters, and a resolu-
tion of 2.2 was selected. We further analysed the gene expression 
patterns of the mRCC subpopulations and identified 734 signifi-
cant DEGs with dynamic expression changes under the threshold 
of an adjusted P value of <0.05. Cluster- specific marker genes from 
the two clusters were identified and presented as violin plots and 
tSNE plots.

2.4 | Defining core subpopulation differential genes 
in metastatic cancer cells

Weighted correlation network analysis (WGCNA) was used to 
acquire metastatic subpopulation- related protein clusters.24 To 
identify the gene co- expression modules, a hierarchical cluster-
ing analysis and a soft threshold power were assigned to group 
genes with similar expression patterns, and co- expression net-
works were created. The networks consisted of highly similar co- 
expression modules, and the eigengenes of these modules were 
further determined. Finally, Pearson correlations between the 
module eigengenes and clinical data were displayed. A protein- 
protein interaction (PPI) network was constructed using the 
STRING online portal (https://strin g- db.org/). A protein with a 

F I G U R E  1   Flow diagram of the study 
protocol

https://string-db.org/
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contribution >6 was selected to construct the PPI network, which 
was visualized using Cytoscape software (version 3.6.1) (http://
www.cytos cape.org).25

2.5 | Analysis of sub- dif marker expression 
patterns and prediction of drug sensitivity

The cBioPortal database (http://www.cbiop ortal.org) serves 
as a web resource for exploration, visualization and analysis of 
multidimensional cancer genomics data, and it contains DNA 
copy number, DNA methylation, transcriptome, micro RNA and 
non- synonymous mutation data.26,27 In this study, the cBioPortal 
database was used for systematic analysis of the single- nucleotide 
variation profile of the sub- dif markers. Gene set cancer analysis 
(GSCALite), a web- based platform for gene set cancer analysis,28 

was applied to analyse the drug sensitivity of the sub- dif marker 
genes along with the pathway activities of TCGA- KIRC samples. We 
further evaluated the correlation between gene expression and IC50 
using the Genomics of Drug Sensitivity in Cancer (GDSC) database.

2.6 | Tumour IMmune Estimation Resource 
database analysis

The Tumor IMmune Estimation Resource (https://cistr ome.
shiny apps.io/timer/) is a web tool that provides a robust and 
comprehensive estimation of immune infiltration levels in diverse 
cancer types.29 Correlation analysis of sub- dif marker expression 
with tumour- infiltrating immune cells (TIICs) was conducted using 
the ‘Gene’ module. Prognostic analysis of sub- dif marker expression 
and TIICs was conducted using the ‘Cox’ module. The x- axis of 

F I G U R E  2   Differential distribution patterns and involved pathways between primary RCC and metastatic RCC. A, A total of 3719 high- 
variant genes were identified through the M3Drop R package, and the yellow dots represent the genes with a high dropout rate. Fitting 
analysis suggests that these genes may be differentially expressed in cell subpopulations. B, Clustering heatmap generated by unsupervised 
hierarchic clustering reveals that the high- variant genes discriminate primary RCC from metastatic RCC. C, Differences in pathway activities 
scored per cell using GSVA between tumour cells isolated from primary RCC or metastatic RCC. t values are independent of effects from the 
patient of origin

http://www.cytoscape.org
http://www.cytoscape.org
http://www.cbioportal.org
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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the scatterplot represents the expression level of TIICs, whereas 
the y- axis represents the expression level of the sub- dif markers. 
All gene expression levels were represented by log2 RNA- Seq by 
Expectation- Maximization (RSEM), and the adjusted P value of 
<0.05 was considered to be statistically significant.

2.7 | Immunohistochemistry

Tissue microarrays (TMAs) containing samples from 20 metastatic 
renal carcinoma patients with a definite pathological diagnosis of 
ccRCC were constructed for immunohistochemical analysis, as previ-
ously described.30 After dewaxing in xylene, rehydration in alcohol, 
antigen repair (0.01 M citrate buffer, pH 6.0), blocking endogenous 
peroxidase activity and closed with goat serum, the TMAs were 

incubated overnight at 4°C with rabbit anti- human monoclonal anti-
bodies against IL6 (dilution 1:800, clone BP53- 1; Biogenex), CASP3 
(dilution 1:100, clone G168- 728; Pharmingen), ACTB (dilution 1:125, 
cloneFE11; Calbiochem, Oncogene Research Products), ACTG1 (dilu-
tion 1:125, cloneFE11; Calbiochem, Oncogene Research Products), and 
RAP1B (dilution 1:125, cloneFE11; Calbiochem, Oncogene Research 
Products). The TMAs were then incubated at room temperature with 
secondary antibodies (ab97080, goat anti- rabbit, 1:2000; ab97040, 
goat anti- mouse, 1:500; Abcam) for 20 minutes and horseradish 
peroxidase- labelled Streptase ovalbumin for 20 minutes, and DAB was 
used for colour development and counterstained with haematoxylin. 
IHC staining was scored independently by two expert pathologists to 
determine the degree of staining positivity in each sample. The per-
centage of the positively stained area was 0 (fewer than 10% positive 
cells), 1 (10%- 25% positive cells), 2 (26%- 50% positive cells) and 3 (50% 

F I G U R E  3   Single- cell RNA- seq identified subpopulations from mRCC. A, Cell cluster distribution in mRCC. Two cell clusters were 
identified and are shown with tSNE maps in cluster 0 and cluster 1 samples, respectively. B, Violin plots of genes showing the highest 
difference in expression regulation estimates between cluster 0 and cluster 1. C, Violin plots showing the smoothened expression 
distribution of the cluster- specific marker genes across the subgroups (GSVA: Gene Set Variation Analysis; ES: enrichment score). 
D, Heatmap of genes showing the highest difference in expression between cluster 0 and cluster 1
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or more positive cells). The final IHC score was defined as 0 (−, negative 
expression), 1- 2 (+, weak expression), 3- 4 (++, medium expression) and 
5- 6 (+++, strong expression).

3  | RESULTS

3.1 | Data availability and processing

Figure 1 shows the flow diagram for study enrolment. After applying 
quality control and filtering for cells and genes, we retained 12 135 
genes and 118 cells from patient- derived primary RCC and mRCC; of 
these, a total of 3719 HVGs were identified using the M3Drop R pack-
age for downstream analysis (Figure 2A). The top 200 HVGs were se-
lected for unsupervised cluster analysis, and the results (Figure 2B) 
showed two significantly different distribution patterns between the 

primary RCC tissue and mRCC samples, indicating differential ex-
pression patterns between the primary and metastatic sites in RCC. 
Functional differences between the primary and metastatic cancers 
were further explored using GSVA (Figure 2C) because one study 
showed that the two tumour cell clusters exhibit differences in the 
hallmark pathway gene signatures.31 The direct comparison revealed 
apical_junction, oxidative_phosphorylation, EMT, and P53_pathway 
as the top four enriched signatures in mRCC. Comparatively, angio-
genesis and DNA repair were the enriched signatures in the primary 
RCC. Indeed, a study indicated that cell- cell adhesion and baso- apical 
polarity imply the loss of epithelial properties resulting from EMT.32 
Angiogenesis and remarkably changed metabolic pathways have 
been shown to be instrumental for cancer cell metastasis.33,34 Taken 
together, these findings indicate that tumour metastatic cells are re-
modelled to up- regulate their EMT, angiogenesis and inflammatory 
pathway activities. These data extend the findings of other studies 

F I G U R E  5   The role of sub- dif markers in major cancer- related pathways (GSCALite)

F I G U R E  4   The metastasis- associated module selection and protein- protein interaction networks. A, Determination of the soft- 
thresholding power in the mRNA WGCNA. B, Module- trait associations of mRNAs were evaluated by correlations between MEs and clinical 
traits. Left: Analysis of the scale- free fit index for various soft- thresholding powers (β). Right: Analysis of the mean connectivity for various 
soft- thresholding powers. C, Scatter plot of the correlation between gene MM in the grey module, which was associated with pathologic 
metastasis. D, PPI network of DEGs with an interaction score >0.7. Based on STRING and Cytoscape analysis, proteins (the red nodes) with 
a contribution of greater than six were filtered into the PPI network complex identified as hub genes for the RCC metastatic phenotype, and 
the red circles were referred to the sub- dif markers
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that have demonstrated a synergistic effect of tumour vessel normali-
zation and EMT on tumour metastasis.

3.2 | Single- cell expression atlas of RCC metastases

To generate a comprehensive view of cellular diversity in RCC metas-
tases, we selected metastasized cells for further analysis. We applied 
PCA to HVGs across all 71 metastasized cells (n = 1602 genes) using 
tSNE on the informative PCs (n = 8). We generated two- dimensional 
maps of the data using tSNE and partitioned the cells into two main 
clusters (Figure 3A). Marker gene expression in cell clusters was dis-
similar. Individual clusters were labelled with subpopulation- specific 
marker genes and stratified into the EMT pathway- related cluster 
(EMT- RC) (yellow) or the VEGF pathway- related cluster (VEGF- RC) 
(blue) for characterization (Figure 3B). GSVA analysis suggested 
that subclonal populations of ITH contribute to induction of EMT in 

metastatic cancer cells (Figure 3C). A heatmap revealed the differ-
ential expression patterns of the top 40 DEGs from the two clusters 
(Figure 3D). In this analysis, EMT- RC and VEGF- RC were identified 
as the main changeable subclonal populations associated with dis-
tinct signalling pathway activation in the tumour metastatic samples 
(Figure S2). The analysis implied considerable heterogeneity within 
the mRCC cell populations, which indicates that the EMT- RC and 
VEGF- RC subpopulations are major functional subpopulations ex-
tensively expanded in mRCC. These differences reflect well- known 
disparities in clonal selection following cell evolution in tumour 
metastasis.35

3.3 | WGCNA and PPI

To estimate the relative contributions of the DEG subpopulations of 
the two clusters to bulk RNA expression, we applied WGCNA, which 

F I G U R E  6   Genetic alterations of sub- dif markers in RCC determined with the cBioPortal database
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is a powerful tool for identifying coexpressing gene modules and relat-
ing these modules to external traits, including metastasis. Using a soft 
threshold power setting of four (Figure 4A), we identified five modules 
with genes with similar expression patterns in the TCGA- KIRC RNA- seq 
dataset (Figure 4B). The grey module, containing 179 genes, was sig-
nificantly correlated with metastasis (R2 = 0.22, P = 3e- 06; Figure 4C). 
Using the STRING online database and Cytoscape software, a total of 
178 coexpressing genes from the grey module were filtered into the 
PPI network, which contained 87 nodes and 103 edges (Figure 4D). 
The five most significant nodes in the network were IL6, CASP3, ACTB, 
ACTG1 and RAP1B, which were identified as hub genes for the RCC 
metastatic phenotype and are referred to as sub- dif markers.

3.4 | Pathway activity analysis of sub- dif markers

Sub- dif markers were selected to perform the pathway activity 
analyses. We identified genes that are widely associated with char-
acteristic metastasis- related biological processes, such as cell cycle, 

PI3K/AKT and RAS/MAPK, which are involved in cell proliferation 
(Figure 5A). The dysregulation of these sub- dif markers may trigger 
cell cycle dysfunction and cell proliferation, differentiation and ap-
optosis pathways, thus inducing tumour cell metastasis, which is in 
accordance with another independent group's publication.36 Some 
sub- dif marker genes (RAP1B, IL6 and ACTB) were positively cor-
related with the EMT pathway (Figure 5B). We also identified two 
positively correlated signalling pathways related to apoptosis and 
DNA damage response. Thus, we not only confirmed the metastasis- 
related pathways frequently reported in other studies, but also veri-
fied the strong relationship between sub- dif markers and the EMT 
pathway.

3.5 | Genetic alteration, pathway analysis and drug 
sensitivity analysis of sub- dif markers

To explore the genetic features of sub- dif marker expression pat-
terns, we analysed the genetic variation profiles of the sub- dif markers 

F I G U R E  7   Drug sensitivity analysis of sub- dif markers in RCC based on the GDSC drug sensitivity database. The Spearman correlation 
represents the correlation of gene expression with the drug. A positive correlation indicates that high gene expression is resistant to the 
drug and vice versa
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in 1602 cases that were retrieved from four studies (538 cases from 
TCGA, Firehose Legacy; 446 cases from TCGA, Nature 2013; 512 
cases from TCGA, PanCancer Atlas; and 106 cases from Nat Genet 
2013) using the cBioPortal database. We found that the sub- dif mark-
ers exhibited a low mutation frequency in the range of 0.12%- 0.25%. 
ACTG1, ACTB and RAP1B were well represented with mutation fre-
quencies of 1%, 0.8% and 0.25%, respectively. Specifically, 0.12% of 
the total patient series harboured only the IL6 amplification mutation, 
whereas 0.25% of the patients harboured the CASP3 deletion muta-
tion (Figure 6). Next, we investigated the effect of sub- dif markers 
on drug sensitivity. Using the GDSC database, we found that IL6 and 
CASP3 are potential therapeutic targets. High expression of CASP3 was 
correlated with sensitivity to 45 small molecular drugs, while high ex-
pression of IL6 was associated with sensitivity to seven drugs but with 
resistance to MPS- 1- IN- 1 and WZ3105 (Figure 7), which may provide 

further support for the optimization of targeted therapy in patients 
with mRCC. The nature of the sub- dif marker response to therapy is 
unclear, and our data provide a basis for further elucidation of drug 
sensitivity prediction through these marker genes.

3.6 | Correlation between sub- dif marker 
expression and immune biomarkers and prognosis 
in KIRC

In the tumour microenvironment, the crosstalk between tumour 
cells and TILs is essential for tumour metastasis. We further 
investigated the relationship between the sub- dif markers and 
TILs, which is associated with disease prognosis.37,38 This analy-
sis showed strong positive correlations between sub- dif markers 

F I G U R E  8   The correlation between sub- dif marker expression level and the immune infiltration in KIRC (TIMER)
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and all the TILs, which suggests that the TILs, a hallmark of the 
tumour microenvironment, are involved in crosstalk with sub- 
dif markers and might affect EMT subpopulation differentiation 
(Figure 8). We also investigated the clinical effects of this popu-
lation. The prognostic values of the immune cell type fractions 
and EMT genes were assessed using Cox regression analysis, 
in which ACTG1 was identified as a protective factor (HR < 1), 
whereas the other four genes (IL6, CASP3, ACTB and RAP1B) 
were identified as risk factors (HR > 1) (Table 1). Accordingly, 
the Kaplan- Meier plot analysis revealed that higher expression 
levels of IL6 (Figure 9A), CASP3 (Figure 9B), ACTB (Figure 9C) and 
ACTG1 (Figure 9D) were significantly associated with worse OS. 
In contrast, higher RAP1B (Figure 9E) expression was associated 
with a better prognosis. These results further validated that sub- 
dif markers are of great significance for assessing the prognosis 
of mRCC.

3.7 | Validation of sub- dif markers by IHC staining

To support our findings, we sought to provide an independent vali-
dation by assessing the protein expression of classifier genes by IHC 
analysis of primary prostate cancers. We validated the expression 
and prognostic value of the five candidates, including one protective 
factor (ACTG1), and four risk factors (IL6, CASP3, ACTB and RAP1B) 
in RCC patients with lung metastasis (n = 20) by IHC analysis of the 
bulk RNA- seq datasets. Medium or high expression of IL6, CASP3, 
ACTB and RAP1B was observed in 14/20 (~70%) lung metastasis 
tissues and in 11/20 (~55%) tumour tissues, whereas the expres-
sion was negative in the majority of adjacent non- tumour tissues. In 
contrast, ACTG1 was stained moderately in 13/20 (~65%) adjacent 
non- tumour tissues and showed negative or low expression in the 
majority of the RCC tissues and lung metastasis tissues (Figure 10). 
These observations further confirmed our previous results.

4  | DISCUSSION

In the present study, we used scRNA- seq to identify two distinct 
subpopulations in metastatic ccRCC samples. We found evidence 
of cancer cell heterogeneity within each distinct subpopulation by 
using different markers. Our findings are analogous to those of other 
studies, which demonstrated that tumours are transcriptomically 
heterogeneous.3,4,39 The two separate lineages evolve separately 
into two pathways, EMT- activated pathways, and VEGF- related 
pathways, which apparently include more related genes in the con-
text of metastatic ccRCC. Moreover, we showed that sub- dif mark-
ers from the subpopulations are linked to RCC TILs, drug sensitivity 
and prognosis. These results indicate that a combined regimen of 
anti- vascular therapy and anti- EMT therapy may be an effective 
therapeutic strategy for patients with mRCC.

Intratumoural genomic heterogeneity in RCC has been well- 
documented.40- 42 Most tumours consist of heterogeneous sub-
populations with distinct genotypes, called subclones.40 Several 
studies have indicated that combination therapies targeting multi-
ple subclones may be highly effective against mRCC.43- 45 However, 
the role of heterogeneity in therapeutic failure and cancer me-
tastasis in metastatic ccRCC remains unclear. Our findings from 
single- cell sequencing analysis and the validation of biomarkers 
in clinical samples support the observations in other studies that 
identified two cancer metastatic subclones associated with the 
activation of different pathways. Furthermore, we provided new 
insights revealing how the heterogeneity of resting metastatic 
cancer cells predetermines the drug treatment response and prog-
nosis. The two subpopulations identified in our study separately 
activated EMT- related and VEGF- related pathways. GSVA analysis 
also supported these predictions. Multiple subpopulation- specific 
genes were identified. TSPAN1 was found to promote EMT through 
PI3K/AKT signalling.46 Consistent with these results, we identi-
fied seven EMT- related subpopulation- specific markers (MFSD2A, 

Coef HR 95%CI_l 95%CI_u P value Sig

B_cell −0.749 0.473 0.025 9.063 0.619

CD8_Tcell −1.853 0.157 0.034 0.734 0.019 *

CD4_Tcell −1.667 0.189 0.013 2.785 0.225

Macrophage −1.543 0.214 0.02 2.273 0.201

Neutrophil 1.463 4.317 0.059 316.55 0.504

Dendritic 0.685 1.984 0.329 11.971 0.455

IL6 0.143 1.154 1.063 1.253 0.001 **

ACTB 0.926 2.525 1.47 4.338 0.001 **

CASP3 0.373 1.453 0.91 2.32 0.118

RAP1B 0.035 1.036 0.661 1.625 0.878

ACTG1 −0.676 0.509 0.338 0.766 0.001 **

Abbreviations: CI_l, lower confidence interval; CI_u, upper confidence interval; Coef, coefficient; 
HR, hazard ratio risk.
**P < 0.01. 
*P < 0.05. 

TA B L E  1   Cox proportional hazard 
model analysis
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RGS4, TSPAN1, CLIC2, CCNG1, NET1 and DKK1). Consistent with 
our observations, the functions of these specifically expressed 
markers were primarily related to cancer metastasis. CLIC2 is re-
portedly involved in the formation and/or maintenance of tight 
junctions, which allows the intravasation of cancer cells.47 Cyclin 
G1 (CCNG1), a target of wild- type TP53, promotes tumour cell 
motility by inducing EMT and regulating the Notch3 pathway.48 
Thus, we described these specifically expressed markers based 
on their associated pathway activation characteristics, for exam-
ple, the EMT- related subpopulation. We also observed the other 
subpopulation that expressed genes specifically involved in VEGF- 
related pathways to promote angiogenesis through IGF- 1/IGF- 1R/
ERK signalling.49,50 Moreover, we termed VEGF (a key positive 
regulator of angiogenesis) and some proangiogenic genes (IGF1, 
MMP1, TGFB3, PDGFRB and PGF) that were expressed specifically 

in cluster 1 as the VEGF- related subpopulation. These observa-
tions suggest that each cell plays a different role.51 Further explo-
ration of whether the expression of specifically expressed genes 
can be inhibited to prevent the EMT- related subpopulation from 
undergoing a protumorigenic fate or whether the VEGF- related 
phenotype can be reverted to improve anti- angiogenesis efficacy 
will be valuable.

The single- cell transcriptome analysis approach has received 
considerable attention because of repeated attempts to gain an in- 
depth understanding of the role of ITH. Herein, we identified po-
tential EMT- activated subpopulation- related markers at the gene 
expression level using transcriptomic data. Accordingly, the EMT 
programme constitutes the dominant recognized mechanism for ini-
tiating the metastatic behaviour of epithelial tumours. Because the 
roles of EMT in cancer metastasis have been clarified, the biological 

F I G U R E  9   Kaplan- Meier plot for the 
survival curve of sub- dif markers. Kaplan- 
Meier survival analysis of tumour samples 
grouped by gene median expression value 
c. The sample numbers for each group are 
shown in brackets. Statistical significance 
was determined using the log- rank test 
(A, IL6; B, CASP3; C, ACTB; D, ACTG1; E, 
RAP1B)
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significance of EMT biomarkers needs to be explored. EMT is a bio-
logical process that allows epithelial cells to undergo multiple mor-
phological and biochemical changes, thus enabling them to acquire a 
mesenchymal cell phenotype, including elevated invasive migratory 
ability, enhanced resistance to apoptosis, and increased production 
of extracellular matrix components.52

Analysis of the expression profiles of the DEGs between 
different subpopulations suggested that the sub- dif markers 
are important genes that activate EMT- related pathways to in-
duce metastasis. We identified the two cell populations associ-
ated with the activation of different signalling pathways as the 
most prevalent subpopulations in metastatic cells, and this find-
ing is consistent with those obtained in a study by Elzbieta.53 
Furthermore, we showed that IL6, CASP3, ACTB, ACTG1 and 
RAP1B are hub genes that regulate the tumour metastasis regula-
tion network. The expression of these hub genes is related to the 
prognosis in patients with mRCC. The association between IL- 6 
and JAK2, and STAT3 signalling pathway activation and cancer 
cell migration was observed in a paracrine or autocrine IL- 6- rich 
inflammatory environment.54 Moreover, IL6 is associated with 
a network that controls cellular movement, and it serves as an 
unfavourable prognostic biomarker in terms of overall survival.55 
Our study revealed that the IL- 6- rich network hub gene is closely 
related to the EMT and VEGF subgroups. Using bulk sequencing 
data from cancerous and normal cell samples, we showed that 
significant differences in the expression of sub- dif markers have a 
high prognostic value, which implies that the sub- dif markers play 

crucial roles in the acquisition of the EMT phenotype. This finding 
is consistent with our hypotheses.

Growing evidence indicates that immune cell infiltration plays 
an important role of in cancer metastasis, which could affect the 
prognosis of cancer patients.56- 58 Moreover, immune- related path-
ways and immunotherapeutic strategies in cancers are expected to 
provide a potential direction for cancer therapy.59 Notably, the sig-
nificant associations of sub- dif markers with TILs, drug sensitivity 
and OS suggest the potential of using these sub- dif markers as clin-
ical prognostic biomarkers for predicting the risk in mRCC patients. 
Some immune biomarkers, such as PD- 1, have been suggested to 
function as negative immunoregulatory molecules and regulators of 
cancer cell immune evasion.60 Thus, sub- dif markers may play a vital 
role in immune escape in the mRCC microenvironment.

In summary, we demonstrated that utilization of ITH in met-
astatic subpopulations with different pathway activities can fa-
cilitate the development of a combined treatment strategy with 
favourable prognoses. Subgroup heterogeneity leads to the acti-
vation of different pathways and therefore provides reasons for 
selecting targeted combined immunotherapy. Examination of gene 
expression in single cancer cells not only provides a rationale for 
combinatorial anti- VEGF and TKI therapies, particularly PD- 1- 
directed therapies, but also paves the way for future investiga-
tions on the effects of ITH on primary or acquired resistance to 
targeted therapy. However, larger cohorts are required to screen 
other subgroups and aberrantly activated signalling pathways in 
mRCC.

F I G U R E  1 0   Representative figures 
showing IHC staining for IL6, CASP3, 
ACTB and RAP1B and ACTG1. The 
figures shown in sequence from left 
to right are negative control, adjacent 
normal tissues, renal cell carcinoma 
tissues, lung metastases (×400, for IHC 
staining)
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4.1 | Limitations

Our study had some limitations. First, we analysed only meta-
static tumour samples and could not elucidate the results in the 
primary tumour samples. Second, we did not compare our findings 
with those of other independent cohort studies, which is essential 
for validating our findings and could have yielded more reliable 
results.
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