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ABSTRACT The antigenic diversity of influenza A viruses (IAV) circulating in swine
challenges the development of effective vaccines, increasing zoonotic threat and
pandemic potential. High-throughput sequencing technologies can quantify IAV
genetic diversity, but there are no accurate approaches to adequately describe anti-
genic phenotypes. This study evaluated an ensemble of nonlinear regression models
to estimate virus phenotype from genotype. Regression models were trained with
a phenotypic data set of pairwise hemagglutination inhibition (HI) assays, using
genetic sequence identity and pairwise amino acid mutations as predictor features.
The model identified amino acid identity, ranked the relative importance of mutations
in the hemagglutinin (HA) protein, and demonstrated good prediction accuracy. Four
previously untested IAV strains were selected to experimentally validate model predic-
tions by HI assays. Errors between predicted and measured distances of uncharacterized
strains were 0.35, 0.61, 1.69, and 0.13 antigenic units. These empirically trained regres-
sion models can be used to estimate antigenic distances between different strains of
IAV in swine by using sequence data. By ranking the importance of mutations in the
HA, we provide criteria for identifying antigenically advanced IAV strains that may not
be controlled by existing vaccines and can inform strain updates to vaccines to better
control this pathogen.

IMPORTANCE Influenza A viruses (IAV) in swine constitute a major economic burden
to an important global agricultural sector, impact food security, and are a public
health threat. Despite significant improvement in surveillance for IAV in swine over
the past 10 years, sequence data have not been integrated into a systematic vaccine
strain selection process for predicting antigenic phenotype and identifying determi-
nants of antigenic drift. To overcome this, we developed nonlinear regression mod-
els that predict antigenic phenotype from genetic sequence data by training the
model on hemagglutination inhibition assay results. We used these models to pre-
dict antigenic phenotype for previously uncharacterized IAV, ranked the importance
of genetic features for antigenic phenotype, and experimentally validated our predic-
tions. Our model predicted virus antigenic characteristics from genetic sequence
data and provides a rapid and accurate method linking genetic sequence data to an-
tigenic characteristics. This approach also provides support for public health by iden-
tifying viruses that are antigenically advanced from strains used as pandemic prepar-
edness candidate vaccine viruses.

KEYWORDS antigenic drift, influenza A, machine learning, molecular epidemiology,
swine, viral evolution

Influenza A virus (IAV) is a primary respiratory pathogen in commercial swine in the
United States (1). Preventing infection and transmission of the virus has proven

Citation Zeller MA, Gauger PC, Arendsee ZW,
Souza CK, Vincent AL, Anderson TK. 2021.
Machine learning prediction and experimental
validation of antigenic drift in H3 influenza A
viruses in swine. mSphere 6:e00920-20. https://
doi.org/10.1128/mSphere.00920-20.

Editor Seema Lakdawala, University of
Pittsburgh School of Medicine

This is a work of the U.S. Government and is
not subject to copyright protection in the
United States. Foreign copyrights may apply.

Address correspondence to Tavis K. Anderson,
tavis.anderson@usda.gov.

Machine learning prediction of antigenic
drift in H3 swine influenza A viruses.
@ISUVetMed @bcbiastate @Tavis_Anderson

Received 9 September 2020
Accepted 23 February 2021
Published 17 March 2021

March/April 2021 Volume 6 Issue 2 e00920-20 msphere.asm.org 1

RESEARCH ARTICLE

https://orcid.org/0000-0001-5505-6931
https://orcid.org/0000-0003-2540-8769
https://orcid.org/0000-0002-5833-798X
https://orcid.org/0000-0002-4953-7285
https://orcid.org/0000-0002-3138-5535
https://doi.org/10.1128/mSphere.00920-20
https://doi.org/10.1128/mSphere.00920-20
https://msphere.asm.org
https://crossmark.crossref.org/dialog/?doi=10.1128/mSphere.00920-20&domain=pdf&date_stamp=2021-3-17


difficult due to rapid mutation that allows the virus to evade host immune defenses
and impacts the efficacy of vaccination programs by antigenic drift (2). The best
approach for effective IAV control has been the development of vaccines that reflect
the antigenic diversity of circulating swine IAV strains (3). This is dependent on robust
sampling and sequencing of contemporary strains, which is currently achieved primar-
ily through passive surveillance, whereby clinically sick pigs are sampled and the he-
magglutinin (HA) gene is sequenced and compared to vaccine antigens based on ei-
ther genetic clade or sequence identity. Vaccines that include a well-matched HA can
induce the production of antibodies that may provide sterilizing immunity, help
reduce clinical signs, or reduce transmission (4, 5). Conversely, mismatched vaccine
antigens can result in vaccine failure or potentially cause enhanced disease, emphasiz-
ing the importance of careful vaccine strain selection (6).

In the United States, swine IAV is monitored by the U.S. Department of Agriculture
(USDA) in collaboration with regional veterinary diagnostic laboratories in the
National Animal Health Laboratory Network (7). These data are synthesized primar-
ily using phylogenetic analysis (7, 8), but there is no coordinated effort to charac-
terize the phenotypic differences between circulating viruses (9). This contrasts
with the approach for human IAV, whereby vaccine antigens are selected through
comprehensive genetic and antigenic characterization of seasonally circulating
IAV strains (10). Thus, the majority of vaccine antigens in use for IAV in swine are
selected based solely on the genetic clade or amino acid identity. This effort is
fraught with risk, as there are at least 16 distinct HA genetic clades of IAV in swine
derived from multiple human-to-swine interspecies transmission events and sub-
sequent evolution in the swine host (8, 11). Further, there is evidence for regional
patterns in HA clade persistence (8, 12) and as few as six amino acid mutations
within the HA may affect the antigenic phenotype of a virus (13, 14).
Consequently, there is a critical need to not only sequence and genetically charac-
terize swine IAV but also determine what of the genetic diversity is meaningful for
antigenic drift.

The antigenic properties of IAV are a manifestation of the structural interaction
between IAV and host antibodies (15–18). Structural changes in the HA may alter
the interaction with antibodies targeting the virus, and these changes are gener-
ally correlated with the number of accumulated amino acid mutations in the HA
protein (19). Empirical data have also shown that certain amino acid mutations
have a disproportionate effect on antigenic change based on the location of the
amino acid in the protein structure (13, 15). Though there are relatively few antige-
nically characterized swine IAV HA genes (9, 13), these empirical data may be used
to establish antigenic distances between multiple IAVs in swine and to gain insight
into the contribution of site-specific amino acid mutations. These data can subse-
quently be used to predict antigenic drift and assign a ranking of importance to
specific amino acid mutations that nuance the biological relevance of genetic di-
versity collected during surveillance programs.

In this study, machine learning methods were used to model the antigenic prop-
erties of IAV in swine and predict the antigenic distance between different strains
using HA sequences. Modeling methods, such as the ones we present, are able to
overcome the prohibitive costs and logistical challenges associated with large-scale
phenotypic characterization. These data can be used in combination with in-field
surveillance platforms (20) as an approach for the early detection of antigenic var-
iants and novel viruses. Additionally, these algorithms can be disseminated to
swine practitioners in analytical pipelines (11, 20, 21) to facilitate the rational
design of vaccines that include antigens that will likely protect against the circulat-
ing IAV strains. Understanding how genetic diversity, and which amino acids within
the HA gene are the most important, can allow for the simulation of the antigenic
evolution of swine IAV and make predictions about the persistence and circulation
of future IAV strains.
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RESULTS
Machine learning model performance. Comparison of the empirical antigenic dis-

tances with the values predicted by random forest, AdaBoost decision tree, multilayer
perceptron regression, and the ensemble of all three models indicated that the
Pearson correlation for all regression models was within a range of 77% to 80%
(Table 1). The root mean square error (RMSE) was between 1.21 and 1.60 antigenic
units (AU) of error depending on the model. Tenfold cross validation of the random
forest, AdaBoost decision tree, multilayer perceptron, and the ensemble of the regres-
sion models had RMSEs of 1.566 0.29, 1.596 0.33, 1.766 0.39, and 1.586 0.27, respec-
tively. The leave-one-out cross validation demonstrated that for all models, 25%
had#0.5 AU, 50% had#1.0 AU, and 75% had#1.7 AU distance error. The maximum
observed error was 6.3 AU, with each model producing errors of .6.0 AU (Fig. 1).

Mapping antigenic predictions onto phylogenetic trees. Four trees were built
with sequences genetically similar to four selected test antigens (Fig. 2). Trees were
annotated with an amino acid motif based on positions 145, 155, 156, 158, 159, and
189, as these sites have been found to have a disproportionate effect on the observed

TABLE 1 Performance indicators for the random forest, AdaBoost decision tree, multilayer
perceptron, and ensemble regression models with tuned hyperparametersa

Performance
indicator

Value by indicated model

Random
forest

AdaBoost
decision tree

Multilayer
perceptron Ensemble

Pearson correlation 0.78 0.77 0.78 0.80
RMSE 1.60 1.28 1.32 1.21
10-fold CV (RMSE) 1.56 (60.29) 1.59 (60.33) 1.76 (60.39) 1.58 (60.27)
aPearson correlation and root mean square error (RMSE) were determined using an 80%/20% split between
training and test antigen data. A 10-fold cross validation based on the RMSE was applied. CV, cross validation.

FIG 1 Distribution of errors calculated for the predicted antigenic distance compared to actual
antigenic distance as predicted by machine learning models and hemagglutination inhibition assays,
respectively. Three regression models were used to predict distances from empirically determined
antigens using hemagglutination inhibition titers in a leave-one-out approach: random forest
regression (rf), AdaBoost decision tree regression (ada), and multilayer perceptron (mlp) regression.
All three predictions were combined into an ensemble (ens) to prevent overfitting and to minimize
errant predictions by averaging across predictions from all models. Approximately 25% of the data
have 0.5 antigenic units (AU) of error or less, and 50% of the data have 1AU of error or less, with
75% of the data having less than 2AU of error. Maximum error for outliers exceeded 6AU.
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FIG 2 (Continued).
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antigenic phenotype in both human and swine H3 (14). The antigenic motifs of test
antigen A/swine/Nebraska/A01672826/2017 and reference antiserum A/swine/
Indiana/A00968373/2012 match, both being NYNNYK (Fig. 2A). The antigenic motif
of test antigen A/swine/Indiana/A02214844/2017 was NYNNYK, while reference
antiserum A/swine/Iowa/A01480656/2014’s motif was KYNNYK, differing at position
145 (Fig. 2B). The antigenic motifs of test antigen A/swine/North Carolina/
A01732197/2016 and reference antiserum A/swine/Pennsylvania/A01076777/2010
match, both being NYNNYK (Fig. 2C). The antigenic motif of test antigen A/swine/
Iowa/A01733626/2016 was SYKNYK, while reference antiserum A/swine/Indiana/
A01202866/2011’s motif was NYHGHE, differing at positions 145, 156, 158, 159, and 189
(Fig. 2D).

Empirical validation of the predicted antigenic distance predictions. The pre-
dicted ensemble distances of the four selected test antigens were validated via HI
assay (Table 2). Test antigen A/swine/Nebraska/A01672826/2017 was predicted to be
0.15AU from reference strain A/swine/Indiana/A00968373/2012, with 99.4% amino
acid identity shared between the HA1 segments of the HA (Table 3). Both the reference
and test antigens were from the H3 cluster IVA clade (Fig. 2A), and this pairing repre-
sents a near identity and near antigenic distance prediction. The amino acid differen-
ces between the reference strain and the test antigen were at M10T and R208I
(Table 3). The HI assay demonstrated that the antigenic distance between the refer-

TABLE 2 Hemagglutination inhibition titers representing the homologous reference strain titer and heterologous test antigen titera

Test antigen

Titer for indicated serum strain

A/swine/
Indiana/
A00968373/
2012

A/swine/
Indiana/
A00968373/
2012

A/swine/
Iowa/
A01480656/
2014

A/swine/
Iowa/
A01480656/
2014

A/swine/
Pennsylvania/
A01076777/
2010

A/swine/
Pennsylvania/
A01076777/
2010

A/swine/
Indiana/
A01202866/
2011

A/swine/
Indiana/
A01202866/
2011

A/swine/Indiana/
A00968373/2012

640 2,560

A/swine/Nebraska/
A01672826/2017

1,280 2,560

A/swine/Iowa/
A01480656/2014

1,280 2,560

A/swine/Indiana/
A02214844/2017

160 80

A/swine/Pennsylvania/
A01076777/2010

2,560 640

A/swine/North Carolina/
A01732197/2016

320 160

A/swine/Indiana/
A01202866/2011

5,120 5,120

A/swine/Iowa/
A01733626/2016

40 80

Log2 difference 21 0 3 5 3 2 7 6
aEach titer was determined in duplicate, with homologous and heterologous titers determined in parallel. Boldface indicates homologous titer.

FIG 2 Phylogenetic trees of test antigens rooted to their reference strain. (A) Phylogenetic tree of test antigen A/
swine/Nebraska/A01672826/2017 and reference strain A/swine/Indiana/A00968373/2012, representing a near predicted
antigenic distance prediction (0.15 AU) for two strains of near amino acid identity (99.4%). (B) Phylogenetic tree of test
antigen A/swine/Indiana/A02214844/2017 and reference strain A/swine/Iowa/A01480656/2014, representing a far
predicted antigenic distance prediction (3.39) for two strains of near amino acid identity (98.5%). (C) Phylogenetic tree
of test antigen A/swine/North Carolina/A01732197/2016 and reference strain A/swine/Pennsylvania/A01076777/2010,
representing a near predicted antigenic distance prediction (0.81) for two strains of far amino acid identity (94.2%). (D)
Phylogenetic tree of test antigen A/swine/Iowa/A01733626/2016 and reference strain A/swine/Indiana/A01202866/2011,
representing a far predicted antigenic distance prediction (6.37) for two strains of far amino acid identity (91.2%).
Branches of the phylogenetic tree were annotated with the predicted antigenic distance from the ensemble regression
model (both test antigen and reference strain are highlighted). Each tree is pruned to 30 sequences. Influenza virus
strains are colored by the antigenic motif formed by amino acid positions 145, 155, 156, 158, 159, and 189; these
positions, located near the ligand binding site of the hemagglutinin protein, have been noted to affect the antigenic
interactions of the protein.
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ence strain antiserum and test antigen was 0.5 AU (Table 4), with an error between the
predicted distance and the empirical distance of 0.35 AU.

Test antigen A/swine/Indiana/A02214844/2017 was predicted to be 3.39AU from
reference strain A/swine/Iowa/A01480656/2014, with 98.5% amino acid identity shared
between the HA1 segments. Both the reference strain and test antigens are from the
H3 cluster IVA clade (Fig. 2B), and this pairing represents near identity but far antigenic
distance prediction. There were 5 amino acid differences between the reference strain
and test antigen (Table 3). The HI assay found a distance of 4.0 AU between the test
antigen and reference antiserum and an error of 0.61 AU between empirical and pre-
dicted distances (Table 4).

Test antigen A/swine/North Carolina/A01732197/2016 was predicted to be 0.81 AU
from reference strain A/swine/Pennsylvania/A01076777/2010, with 93.9% amino acid
identity shared between the HA1 segments. The test antigen was selected from the H3
cluster IVA clade, and the reference strain was selected from the H3 cluster IV clade
(Fig. 2C); this pair represents a far identity, but the antigen and reference strain were
predicted to be antigenically similar. There were 20 amino acid differences between
the reference strain and test antigen (Table 3). The HI assay demonstrated an average
antigenic distance between reference antiserum and test antigen of 2.5 AU, with a pre-
diction error of 1.69 AU (Table 4).

Test antigen A/swine/Iowa/A01733626/2016 was predicted to be 6.37 AU from ref-
erence strain A/swine/Indiana/A01202866/2011, with 91.2% amino acid identity shared
between the HA1 segments. The test antigen is from the H3 cluster IVA clade of virus,
and the reference strain is from the H3 cluster IVC clade (Fig. 2D). This pairing repre-
sents a far identity and far predicted antigenic distance prediction. There were 29
amino acid differences between the reference strain and the test strain (Table 3). The
HI assay demonstrated 6.5 AU between test antigen and reference antiserum, giving
an error of 0.13 AU between empirical and predicted distances (Table 4).

Ranking of predictor features. Random forest regression, one of the regressors
composing the ensemble model, ranks user-selected features by a metric of importance,
calculated by the decrease in the node variance per tree and normalized across the forest
for a single model run so that the sum of importance scores is equal to 1 (22) (Table S2).
The highest-ranking features were stable across runs, as they had a consistent decrease in

TABLE 3 Amino acid mutations detected between test antigen and reference strains used for the model validation

Test antigen Reference strain Amino acid changes
A/swine/Nebraska/A01672826/2017 A/swine/Indiana/A00968373/2012 M10T, R208I
A/swine/Indiana/A02214844/2017 A/swine/Iowa/A01480656/2014 G49S, E83K, V112I, K145N, S289P
A/swine/North Carolina/A01732197/2016 A/swine/Pennsylvania/A01076777/2010 T10M, E83K, V106A, S107T, V112I, T117N, N124S,

K142S, A163E, L164Q, M168V, N173K, I196V, T203I,
P273H, G275D, N276E, K278N, R299K, V304A

A/swine/Iowa/A01733626/2016 A/swine/Indiana/A01202866/2011 I29L, G50R, E83K, S107T, T117N, S124N, A131D,
D133G, R137N, S138T, R140K, G144V, N145S,
H156K, G158N, H159Y, A163E, L164Q, T167A,
N173K, E189K, S193N, V196A, I203V, R220V, R269K,
S273H, N276E, R299K

TABLE 4 Predicted and measured antigenic distances between test antigens and reference strain antisera using the model to calculate the
predicted distance and HI titers to calculate the empirical distance in antigenic units

Test antigen Reference antiserum
Test antigen
motif

Amino acid
identity (%)

Predicted
distance (AU)

HI distance
(AU)

Error
(AU)a

A/swine/Nebraska/A01672826/2017 A/swine/Indiana/A00968373/2012 NYNNYK 99.4 (near) 0.15 (near) 0.5 0.35
A/swine/Indiana/A02214844/2017 A/swine/Iowa/A01480656/2014 NYNNYK 98.5 (near) 3.39 (far) 4.0 0.61
A/swine/North Carolina/A01732197/
2016

A/swine/Pennsylvania/A01076777/
2010

NYNNYK 93.9 (far) 0.81 (near) 2.5 1.69

A/swine/Iowa/A01733626/2016 A/swine/Indiana/A01202866/2011 SYKNYK 91.2 (far) 6.37 (far) 6.5 0.13
aThe error was calculated by subtracting the absolute value of the predicted distance from the empirical distance.
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their average variance, although these metrics were susceptible to starting conditions
(data provided at https://github.com/flu-crew/antigenic-prediction). The most important
feature in predicting the antigenic distance between two strains was amino acid identity
within the HA1, accounting for 31.4% of the importance score. Transitions between
K and N at position 145 accounted for 8.1% of the model’s importance score, and
this change was ranked as the most important amino acid mutation. However, tran-
sitions between K and S and N and S at the same position 145 received a lower rank-
ing in the model’s importance score (totaling 0.2% importance cumulatively), dem-
onstrating that the context of the positional mutation is important. Features I202V
and R222W (representing bidirectional mutations) accounted for 5.4% and 5.2% of
the importance score, respectively. The remainder of the features in the models
accounted for less than 3% of the model on an individual basis (Fig. 3; see Table S2
in the supplemental material), with the next 10 bidirectional mutations in order of
importance being H75Q, R137Y, D101Y, E62K, I25L, P289S, D133N, E189K, K92T, and
H159Y (Fig. 3). Projecting the cumulative importance of each amino acid position on
an H3 crystal structure indicated that position 145, the most important position in
the model, is located in the groove of the active site (Fig. 4). Other sites of higher im-
portance in the model were more likely to be observed on the solvent-facing side of
the trimer. Amino acid position 202 was an exception, as it was ranked as having
high importance but was located on the inside of the trimer.

Of the 728 features included in the model, amino acid identity and the sum of
the top 10 amino acid mutation features of the model accounted for 58.3% of the
model’s importance. The top 100 features, including percent identity within the HA1
and amino acid mutations, accounted for 83% of the calculated importance. The top

FIG 3 Rank of amino acid location importance by the cumulative summation of importance per site mutation
as determined by random forest regression. Amino acid position using H3 numbering is reported on the x axis.
The importance for each site-specific mutation is summed per site and displayed on the y axis using a color
scale. The sum of importance is scaled to 1 and is unitless. The size of the circle is relative to the number of
mutations observed in the training set per site. Identity was the highest-ranking feature, with an importance of
0.312, but is not displayed on the graph. The top 10 amino acid transition features in order of importance are
K145N, I202V, R222W, H75Q, R137Y, D101Y, E62K, I25L, P289S, and D133N. The top 10 amino acid sites in order
of cumulative importance are 145, 202, 222, 75, 189, 137, 144, 133, 156, and 101.
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253 amino acid mutation features and percent identity accounted for 95% of the cal-
culated importance. The model required 397 features along with percent identity to
account for 99% of the calculated importance.

DISCUSSION

In this study, a model was developed to computationally estimate antigenic distan-
ces between different IAVs in swine based on amino acid sequence using nonlinear
machine learning methods. The method leverages data that were generated from pre-
viously characterized IAV strains in swine to train regression models. After in silico vali-
dation, the models were used to predict the antigenic distance between paired IAV
strains based on amino acid identity and mutations present between each strain. The
antigenic predictions were experimentally confirmed by comparing the distances
between homologous and heterologous hemagglutination inhibition (HI) titers.
Predicting antigenic distances from genetic sequence data can identify strains that
require further antigenic characterization, reduce the number of HI assays required to
describe circulating antigenic diversity, and aid in the selection of candidate strains for
vaccines when genetic diversity surveilled in the field does not have an adequate anti-
genic match in current vaccine formulations.

FIG 4 Projection of feature importance on a monomer of the A/Victoria/361/2011 hemagglutinin
(HA) protein (RCSB 4O5N). The importance for each site-specific mutation is summed per site and
projected onto the hemagglutinin protein model of the human H3. Higher color intensity represents
a larger calculated importance. Positions with no data are colored gray.
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This work adds to a growing body of literature that aims to quantitatively predict
antigenic phenotypes of IAV from the sequence without requiring HI titers for each IAV
strain (19, 23–26). To the best of our knowledge, earlier approaches to calculate anti-
genic distances between IAV strains were trained and tested on human IAV strains,
where the HA genes are characterized by phylogenetic trees with a single thick trunk
with short interspersed branches with far less cocirculating genetic diversity (27–29).
Compared to IAVs circulating in humans, HA gene phylogenetic trees from endemic
IAVs in swine demonstrate multiple genetic clades within the same subtype that are
derived from multiple human-to-swine spillover events across the last 100 years (7, 30).
The large genetic diversity of strains coevolving within the swine population has
resulted in a similarly large breadth of antigenic diversity and evolution. Consequently,
a broad range of HI assays including many genetically different IAVs are needed to
assess the antigenic diversity of IAVs circulating within swine. The scale of these studies
has been difficult, and there is a sparsity of antigenic characterization of IAV in swine,
frequently with large gaps of time between characterizations. This has the unfortunate
consequence of potentially misrepresenting the antigenic diversity of swine IAVs and
can make it difficult to improve our understanding of antigenic evolution of IAV in
swine (19, 26, 31).

We experimentally validated our model using four test antigens, with the empirical
data demonstrating that predictions generally had an error of less than 1AU. These
four strains were selected to represent the full spectrum of observed diversity within
the H3 cluster IV genetic clade. Our model performed very well on sequences with
high sequence identity that were predicted to be antigenically similar (near identity/
near distance = 0.5 AU, with 0.35 AU error) (Tables 2 and 4). Similarly, the model per-
formed well when making predictions on sequences that were genetically similar but
predicted to be antigenically distinct (near identity/far distance = 4AU, with 0.61 AU
error) (Tables 2 and 4) and those that were very genetically different and predicted to
be antigenically distinct (far identity/far distance = 6.37 AU, with 0.13 AU error) (Tables
2 and 4). On sequences that were genetically dissimilar but were predicted to be anti-
genically similar, the model had a nonnegligible error (1.69 AU); however, the ensem-
ble prediction was able to discern that these two strains were more antigenically simi-
lar than would be predicted based on sequence similarity alone. The large error in this
prediction, despite all features being accounted for in the model (see Table S2 in the
supplemental material), suggests limitations in our approach. We parameterized the
model with empirical data, and sequences that fit the “far identity/near antigenic dis-
tance” are very sparse in the training set, resulting in a higher prediction error. As new
empirical data are generated, they can be used to refine and improve the model. This
point is also valid for the “near identity/far antigenic distance” predictions that were
parameterized by a small number of empirical observations. It should be noted that
the HI assay is a discrete measure whereas the prediction is continuous, and thus an
error of less than 1AU is not biologically meaningful. Additionally, because of the dis-
crete nature of the HI assay, a 0.5 AU error is negligible, as the true antigenic distance
is somewhere between 0 and 1AU. Consequently, our approach, which was developed
using a relatively small empirical data set of IAV in swine, made predictions that are
useful in biological applications.

An additional benefit of machine learning methods is that they can assign an im-
portance score to the position and context of amino acid mutations, allowing biologi-
cal interpretation. This importance score is calculated by the decrease in the node var-
iance after fitting the random forest model. While sequence amino acid difference had
the highest importance score, further assessment of the model revealed that both the
position and the context of the amino acid mutation contributed to the observed anti-
genic phenotype. An example of this dynamic was H3 HA position 145, where a muta-
tion between K and N bidirectionally was ranked as the most important amino acid
mutation feature. Other observed mutations at position 145 between K and S and N
and S were less important, matching the biological nuances that have been observed
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with empirical testing and other computational predictions (15, 24). Earlier literature
has suggested that conservation of biochemical properties of the amino acid mutation
may also have some effect on the observed antigenic change (15, 19). Sites other than
these were identified as important in determining phenotype and were located on the
solvent-exposed surface of the HA protein and in antibody epitopes (Fig. 4) (32, 33).
The positions in our model demonstrated overlap with those of a human IAV machine
learning algorithm (23), the joint random forest regression (JRFR) algorithm (positions
62, 121, 131, 133, 135, 137, 142, 144, 145, 155, 156, 158, 159, 172, 173, 189, 193, 196,
and 276) (Table S2), but the relative importance of the predictor features varied
between this model and ours. Specifically, position 189 was the most important site in
human H3 with ferret antisera, whereas our model identified position 145 as the most
important position in swine H3 with swine sera (23). These differences are likely to be
reflective of host-specific interactions, and there is evidence that the source of antisera
may impact HI results (34). Additionally, our importance ranking demonstrated that a
relatively small number of sites had a disproportionate importance for the phenotype
(Fig. 3). Consequently, these data suggest that incorporating the identity of amino acid
mutation alongside sequence homology will help improve vaccine antigen selection,
as this likely has a critical influence on antigen-antibody interactions.

There are other in silico approaches that link genetic sequence data to antigenic
phenotype. Using 10-fold cross validation, our ensemble model had a higher RMSE
(1.21 AU) than JRFR, a random forest-based model that consistently has an RMSE
of,1.0 (23). Similarly, the linear mixed-effects model employed by Harvey had very
strong performance (mean absolute error, 0.75 U) (26). However, a direct comparison
between these and similar methods used in human IAV with our approach is difficult
because of the major differences between extensive training data sets and our own
and the observed genetic diversity of swine IAVs with multiple cocirculating lineages
(26). Our approach does have utility, as the robust leave-one-out cross validation dem-
onstrated that 54% of the predictions made with the ensemble model were at or
below 1AU of error, and 86% were below 2AU of error (a distance of ,2 AU is fre-
quently used to indicate biological equivalence), and we were able to experimentally
validate our in silico predictions with strains that represented the full spectrum of
genetic diversity in H3 cluster IV swine IAVs.

Our ensemble of nonlinear regression methods was chosen due to a nonlinear rela-
tionship that is not strictly additive between amino acid changes and antigenic pheno-
type. The nonlinear regression techniques used are robust against collinearity, and the
tree methods have the benefit of ranking the contribution of each feature to the pre-
dictive power of the model, designated through an importance score (22, 35). These
data can subsequently be used to inform in vitro or in vivo studies that determine mo-
lecular features associated with antibody recognition and drift (14). Several earlier
methods implement linear regression, despite the relationship between amino acid
mutation and antigenic phenotype being nonlinear and not strictly additive (19, 25).
Linear models can mitigate issues of collinearity by implementing approaches such as
ridge regression in antigen bridges (24) or lasso regression used by Nextstrain (19, 31),
but these approaches may result in models that are more difficult to interpret biologi-
cally. Consequently, our empirically validated models, although not as computationally
accurate, performed in a biologically meaningful manner and were also able to identify
the top 10 features accounting for 58.3% of the antigenic phenotype (253 features
were needed to account for 95% importance). These data have now generated explicit
predictions on when specific mutations in the HA gene may result in antigenic drift
and reduce vaccine efficacy.

Our experimental validation using test antigen and reference strains demonstrated
that this approach can be used to determine antigenic differences between IAVs with-
out requiring extensive HI testing in laboratories. It is currently impractical to antigeni-
cally characterize all strains of IAV isolated from swine, and our work shows that anti-
genic phenotype can be reasonably predicted from genetic sequence. The
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performance of our approach was sufficient even though it was parameterized with a
limited empirical data set; it is feasible that prediction can be improved as more empir-
ical data are made available. Due to multiple introductions of IAV into swine from
human and avian sources, the genetic diversity of IAV in swine exceeds what is
observed for human IAV strains (11, 30, 36). The genetic diversity of IAV in swine is also
confounded by transportation patterns that move regional IAV strains with swine to
new geographic locations, where additional antigenic drift and reassortment with
endemic strains may occur (37, 38). Consequently, this method can aid in vaccine
design efforts for IAV in swine, which currently do not have an integrated and compre-
hensive system such as the World Health Organization’s (WHO) global influenza sur-
veillance program for IAV in humans (39). Providing accurate methods such as ours
that predict antigenic distances of IAV in swine increases the ability of swine producers
and veterinarians to make informed decisions regarding vaccine antigens to help
maintain swine herd health.

MATERIALS ANDMETHODS
Swine IAV H3 antigenic reference data set. The antigenic properties of two influenza viruses can

be quantitatively compared using a hemagglutination inhibition (HI) assay. The assay is based on the
ability of the hemagglutinin to agglutinate red blood cells, which express sialic acid on their cell surface
(40, 41). The HI antibodies raised against a homologous IAV can block the agglutination of red blood
cells, even at low concentrations. Genetically different viruses often need a higher concentration of HI
antibodies to prevent agglutination than the homologous titer. Comparing the antigenic distances
between two viruses is calculated by distance Dij ¼ log2 Hjjð Þ2log2 Hijð Þ, representing a 2-fold loss in HI
antibody cross-reactivity between the homologous and heterologous HI antibody titers (42) (Hij repre-
sents the titer between heterologous serum i and antigen j, and Hjj represents a homologous titer).
These data have traditionally been used to generate pairwise antigenic distances between IAVs in swine
that are then visualized using multidimensional scaling to form an antigenic map (9, 43, 44).

The HI titers were collected from prior swine H3 HA virus characterization studies that used HI assays
(41, 45, 46). The HI titers from new IAVs selected as reference strains were collected at the time of the
experiment to expand the data set by the use of methods described in earlier literature, totaling 128 ref-
erence antigens tested against 47 reference antisera in various combinations from combined experi-
ments (40). Distances between available HI titers were calculated by subtracting the log2 of the heterol-
ogous titer from the log2 of the homologous titer (42). Distances corresponding to the same antigen-
antiserum pair were calculated as the log2 of the geometric mean by the following equation:

D ij ¼
log2

Hjj1Hjj2
Hij1Hij2

� �

2

Training and validation of machine learning regression models. Full-length HA amino acid
sequences for each antigen represented in the data set were aligned using MAFFT v7.311 (47) and then
trimmed to the HA1 domain (amino acids 1 to 328 using the H3 HA numbering with the signal peptide
removed) for subsequent analyses. Percent amino acid difference (100% 2 amino acid identity) was cal-
culated between each HA pair for all combinations of sequences. Specific amino acid substitutions were
not weighted to minimize model assumptions, and prior research in human IAV has suggested that
these approaches may add noise to analysis (23, 48). All observed site-specific amino acid substitutions
in the reference data were identified and treated as bidirectional.

The regression model data were constructed with the antigenic distance calculated from the HI titer
as the training value, with the percent amino acid difference as a continuous predictor feature and site-
specific mutations as binary predictor features. Three different machine learning regression models were
trained using scikit-learn (49): random forest, AdaBoost decision tree, and multilayer perceptron. For
each regression model, hyperparameters were tuned using a random search optimization (see Table S1
in the supplemental material). A fourth regression model was created by averaging the three prior
machine learning model predictors and is referred to as the ensemble model.

Data were split into 80% training and 20% testing data groups to calculate the Pearson correlation
and root mean square error. Additionally, 10-fold cross validation was used to assess the root mean
square error (Table 1). Given the sparsity of antigenic data available, a leave-one-out cross validation
approach was employed to generate a distribution of prediction errors for each model (Fig. 1). Each anti-
gen included in the training set (n= 128) was iteratively excluded from the training set, and distances
were predicted by using each of the four regression models. The error was calculated as the absolute
value of difference between the predicted distance and the empirical distance.

Mapping antigenic predictions onto phylogenetic trees. Maximum-likelihood phylogenetic trees
were created to assess antigenic distance predictions of genetically similar sequences of the test antigen
sequence compared to the reference sequence. Sequences were aligned using MAFFT v7.311 (47), and
phylogenetic trees were inferred using FastTree v2.1.10 (50). Trees were annotated using FigTree v1.4.3
(51), with each tree rooted to a reference strain and sorted in ascending order relative to the inferred
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evolutionary relationship. Each tip within the tree was color coded based on the antigenic motif desig-
nated by H3 numbering of positions 145, 155, 156, 158, 159, and 189, as earlier work had identified these
sites as significant for antigenic phenotype (15). Branches were annotated with the ensemble-predicted
antigenic distance relative to the root. Trees were pruned to 30 leaves to facilitate viewing.

Determining the relative importance of genetic mutations. Random forest regression models
provide a natural ranking system of feature importance (22, 35). The importance of each predictor fea-
ture was calculated by the decrease in the node variance after fitting the random forest model. The fea-
ture importance rankings for the random forest regression model were analyzed to assess the biological
importance of observed mutations in the swine H3 antigenic reference data set. The significance of each
amino acid position in the HA was determined by summing the mutation-based features grouped by
the position they represented. The resultant significance of each amino acid was projected onto a pro-
tein model of a human H3 HA gene from strain A/Victoria/361/2011 obtained from the Research
Collaboratory for Structural Bioinformatics (4O5N) (52).

Empirical validation of machine learning regression models. The H3 HA amino acid sequences of
uncharacterized IAVs in swine submitted to NCBI GenBank from the Iowa State University Veterinary
Diagnostic Lab from January 2016 to August 2018 were collected and clustered by phylogenetic clade
(7, 11). The HA gene sequences were trimmed to the HA1 domain (positions 1 to 328 using H3 number-
ing with the signal peptide removed). The HA1 sequences were compared against all antigenically char-
acterized sequences to calculate percent amino acid difference and to compare the presence or absence
of site-specific amino acid mutations. Site-specific amino acid mutations absent from the training set
were not considered in additional analyses. The antigenic distance from each uncharacterized HA gene
to each reference antigen was predicted using the previously described four trained regression models.

A selection of four contemporary IAVs were selected as test antigens to be antigenically character-
ized with in vitro HI assays to validate the regression models by using their HA genes. We selected these
HA genes from within the H3 cluster IVA genetic clade, since (i) this is a significant genetic clade that is
frequently detected in diagnostic submissions to the Iowa State University Veterinary Diagnostic Lab
(11), (ii) this genetic clade was responsible for more than 300 zoonotic infections from 2012 to present,
and (iii) there was a significant amount of uncharacterized data for this clade within the last 2 years
(n= 299 from 2018 to present, representing 8% of sequenced HA genes). Since the ensemble predictions
demonstrated the least error in the analyses above, antigenic distances of 106 H3 cluster IVA viruses
were predicted against a panel of 44 available antisera using this model. We selected four test antigen/
antiserum prediction pairs within this genetic clade based on the following criteria: near amino acid
sequence identity ($98%) and near predicted ensemble antigenic distance measured in antigenic units
(AU) (#2AU); near identity and far antigenic distance ($3AU); far identity (#95%, $90%) and near anti-
genic distance (#2AU); or far identity (#95%, $90%) and far antigenic distance ($3AU) (Fig. 2; Table 4).

The four selected antigen/antiserum pairs were tested in parallel with antigens homologous to the
antisera via HI assay. HI assays were conducted as previously described (41), with empirical distances cal-
culated by subtracting the log2 of the heterologous titer from the log2 of the homologous titer.
Empirical distances were compared against predicted values by subtraction.

Data availability. Data and code used in this research are available in a GitHub repository (https://
github.com/flu-crew/antigenic-prediction).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
TABLE S1, PDF file, 0.04 MB.
TABLE S2, PDF file, 0.1 MB.
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