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Abstract: Matrix representation with parsimony (MRP) can be used to combine trees in the supertree or the consensus 
settings. However, despite its popularity, it is still unclear whether MRP is really a consensus method or whether it behaves 
more like the total evidence approach. Previous simulations have shown that it approximates total evidence trees, whereas 
other studies have depicted similarities with average consensus trees. In this paper, we assess the hypothesis that MRP is 
equally related to both approaches. We conducted a simulation study to evaluate the accuracy of total evidence with that 
or various consensus methods, including MRP. Our results show that the total evidence trees are not signifi cantly more 
accurate than average consensus trees that accounts for branch lengths, but that both perform better than MRP trees in the 
consensus setting. The accuracy rate of all methods was similarly affected by the number of taxa, the number of partitions, 
and the heterogeneity of the data.
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Introduction
Matrix representation with parsimony (MRP) is certainly the most popular method to construct supertrees 
(Baum 1992; Ragan 1992), but it also applies in the consensus setting (sensu Bininda-Emonds 2003) 
when the input trees combined have the same leaf sets. Although MRP combines trees rather than the 
primary characters, Bininda-Emonds and Bryant (1998) discussed fundamental differences between 
MRP and consensus (namely, the ability of MRP to generate novel clades that were not implied by the 
input trees). Furthermore, the simulation study of Bininda-Emonds and Sanderson (2001) showed that 
MRP could be considered a good approximation of character combination (or total evidence, sensu 
Kluge 1989). Although Baum (1992) originally introduced MRP as a consensus method (see also Bryant 
2003), and Pisani and Wilkinson (2002) showed that in the consensus setting MRP behave exactly as 
a consensus method is expected to behave, it is still unclear whether MRP trees are more similar to 
consensus or total evidence trees. 

Interestingly, the differences between these alternative approaches are not as important as they 
seem when the data and trees are treated in a coherent fashion and when branch lengths are taken into 
account when combining trees (Lapointe et al. 1999). Indeed, Levasseur and Lapointe (2001) have 
shown that combining character or trees can provide very similar solutions, when using the average 
consensus (Lapointe and Cucumel 1997). More recently, Lapointe et al. (2003) further demonstrated 
that, in the consensus setting, there exists a close relationship between MRP and average consensus 
trees, when branch lengths are set to one. However, MRP has never been directly compared to the 
average consensus as a means of combining trees with branch lengths. In this paper, we investigate the 
similarities between total evidence (TE), MRP, and two variants of the average consensus (AC) that 
account for branch lengths or not when combining trees. With simulations, we compare the relative 
accuracy of the competing approaches in the consensus setting to assess whether MRP behaves more 
like consensus or total evidence.

Methods
Model trees (MT) were generated with a Yule branching process using the program r8s (Sanderson 
2003) and molecular sequences (or data partitions) of fi xed lengths (2000 base pairs) were evolved on 
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those trees using the program Seq-Gen (Rambault 
and Grassly 1997). The evolution of sequences 
was performed according to a Jukes-Cantor model 
(Jukes and Cantor 1969) with a site-to-site hetero-
geneity rate (shape parameter set to 0.5). To limit 
the number of simulations, we considered extreme 
cases only by fi xing the number of taxa (n) to 10 or 
30, and the number of data partitions (k) to 2 or 10. 
Homogeneous and heterogeneous data partitions 
were also generated for comparison purposes. To 
do so, the molecular sequences were respectively 
evolved on k trees with identical topologies and 
identical branch lengths (homogeneous data parti-
tions), or k trees with identical topologies and 
branch lengths generated at random for a uniform 
[0–1] distribution (heterogeneous data partitions). 
For every combination of parameters (n and k), 
1000 replicates were generated, and the molecular 
sequences evolved on the corresponding trees were 
treated as separate data partitions.

The data partitions were then analyzed either 
jointly or individually to estimate total evidence 
(TE) and separate trees alike. In all cases, a distance 
matrix was computed with a Jukes-Cantor model 
matching that used to generate the data, and an 
unweighted least-squares algorithm (Cavalli-
Sforza and Edwards 1967) was employed to 
estimate trees with PAUP* (Swofford 1999). For 
the MRP analyses, the trees from separate data 
partitions were coded using RadCon (Thorley 
and Page 2000), and the resulting matrices were 
combined and analyzed with parsimony using 
PAUP* (see the protocol described in Bininda-
Emonds and Sanderson 2001). When multiple 
equally parsimonious trees were obtained, the strict 
consensus of those trees was taken as the MRP 
solution. To compute average consensus (AC) 
trees, path-length distances were fi rst extracted 
from the separate trees to compute an average 
distance matrix (program available upon request 
from the authors), and this average matrix was then 
analyzed using the same unweighted least-squares 
criterion (Cavalli-Sforza and Edwards 1967) that 
was used for the estimation of TE trees. In order 
to assess the effect of branch lengths, topological 
average consensus (TAC) trees were also computed 
by setting all branch lengths to one prior to the 
computation of the average distance matrix. Both 
variants of the average consensus were computed 
using the FITCH algorithm (with p = 0 and global 
rearrangements enabled) in PHYLIP (Felsenstein 
1993). 

The TE, MRP, AC, and TAC trees were compared 
with the model tree (MT) onto which the sequences 
were evolved to assess the performance of the 
competing approaches. Accuracy rates were 
obtained by counting the number of times that any 
given method recovered the correct MT topology, 
and ANOVA tests were computed to determine 
whether the rates of competing approaches were 
statistically different. Then, the different trees 
were compared with one another to assess the 
similarities among the various approaches. Topo-
logical identity (Ti) was measured by counting the 
number of times that any two methods produced 
identical trees, whereas topological similarity (Ts) 
was measured by computing the consensus fork 
index (Colless 1980) of the trees compared. A 
maximum value of one (1.0) is thus obtained for 
Ts when the two trees are identical and their strict 
consensus is fully resolved, whereas a null value 
(0.0) is obtained when their consensus is unre-
solved. Average values of Ti and Ts computed over 
the 1000 replicates are reported for comparison 
across methods.

Results
Results of phylogenetic accuracy are reported in 
Table 1, for different numbers of taxa (n) and data 
partitions (k), as well as for homogeneous and 
heterogeneous data sets. These values indicate 
that TE always provides the best accuracy rates, 
whereas MRP always performs signifi cantly worse 
than all other methods. Furthermore, AC that 
accounts for branch lengths outperforms TAC, 
providing results as good as TE except in the 
most extreme cases. Interestingly, both methods 
that ignore branch lengths (MRP and TAC) are 
also those that provide less resolved trees, thus 
explaining their poor accuracy rates. However, all 
approaches are affected identically by the number 
of taxa and data partitions. Increasing the number 
of taxa from 10 to 30 decreases accuracy rates, 
while increasing the number of data partitions from 
2 to 10 increases accuracy rates. The best results are 
thus obtained for 10 taxa and 10 data partitions. In 
addition, the results for homogeneous data sets are 
always better than those based on heterogeneous 
data sets.

Table 2 presents the results of pairwise compari-
sons among TE, MRP, AC, and TAC trees. On 
average, the Ti index reveals that TE trees are 
more often identical to AC trees than they are to 
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MRP trees. Furthermore, accounting for branch 
lengths does make a difference, as TAC and AC 
trees do not always produce trees with identical 
topologies. MRP trees seem to behave somewhat 
like TAC trees, especially for a larger number of 
data partitions. The Ts index further exhibits this 
trend for all methods and all conditions (Table 2). 
This similarity index reveals that even the most 
different methods (i.e. TE and MRP) have at least 
80% of the nodes in common, in extreme cases. In 
general, the conclusions of these pairwise compari-
sons also mirror those obtained when comparing 
the competing trees to the model tree (Table 1). 
That is, that better results are obtained for more 

data partitions (k = 10), fewer taxa (n = 10), and 
homogeneous data.

Discussion
In the present paper, we have assessed the accuracy 
and similarity of alternative approaches for treating 
separate data partitions in phylogenetic analysis. 
Using simulations, we evaluated the effect of the 
number of taxa, the number of partitions, and 
data heterogeneity to compare the performance 
of the competing approaches. We wanted to 
know whether MRP would behave more like a 
consensus method or like total evidence. Finally, 

Table 1. Accuracy rates of total evidence (TE), average consensus (AC), topological average consensus (TAC), 
and matrix representation with parsimony (MRP) under different simulation parameters. The different letters are 
associated to the methods that are signifi cantly different from the others in each set of simulations. n = number 
of taxa; k = number of data partitions.

 Homogeneous data Heterogeneous data
n = 10 k = 2 k = 10 k = 2 k = 10
TE 589 a 787 a 538 a 768 a
AC 572 a  761 ab 511 a  751 ab
TAC 477 b 730 b 419 b 729 b
MRP 303 c 668 c 247 c 655 c
    
n = 30 k = 2 k = 10 k = 2 k = 10
TE 85 a 333 a 67 a 317 a
AC 72 a 265 b 54 a 261 b
TAC 26 b 187 c 20 b 223 c
MRP  6 c 118 d  2 c 125 d

Table 2. Results of pairwise comparisons of total evidence (TE), average consensus (AC), topological average 
consensus (TAC), and matrix representation with parsimony (MRP). Topological identity (Ti) values are reported, 
as well as topological similarity (Ts) values (in parentheses). n = number of taxa; k = number of data partitions.

 Homogeneous data  Heterogeneous data
n = 10 k = 2 k = 10 k = 2 k = 10
TE - AC 778 (0.964) 870 (0.979) 731 (0.954) 857 (0.977)
TE - TAC 606 (0.931) 804 (0.969) 525 (0.914) 802 (0.968)
TE - MRP 359 (0.859) 721 (0.953) 293 (0.837) 702 (0.947)
AC - TAC 637 (0.938) 851 (0.978) 566 (0.925) 845 (0.977)
AC - MRP 359 (0.860) 745 (0.957) 295 (0.839) 735 (0.954)
TAC - MRP 359 (0.860) 816 (0.969) 297 (0.839) 785 (0.962) 
   
n = 30 k = 2 k = 10 k = 2 k = 10
TE - AC 309 (0.953) 505 (0.974) 279 (0.946) 427 (0.968)
TE - TAC  86 (0.914) 321 (0.959)  63 (0.902) 327 (0.957)
TE - MRP  10 (0.831) 183 (0.935)   5 (0.812) 173 (0.932)
AC - TAC 134 (0.928) 456 (0.971)  97 (0.921) 467 (0.971)
AC - MRP  11 (0.832) 221 (0.941)   5 (0.815) 211 (0.940)
TAC - MRP 10 (0.834) 294 (0.949)   5 (0.816) 265 (0.947)
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we were interested in comparing consensus trees 
obtained by using actual branch length (AC), or 
by setting all branch lengths to one (TAC) prior 
to the computation. 

Our results show that under the conditions inves-
tigated with simulations, the combined analysis of 
all data (TE) usually provide more accurate trees 
than separate analysis, regardless of the consensus 
method selected to combine trees. However, in most 
cases AC trees do almost as good as TE, and the 
results are only signifi cantly better for a combined 
analysis in the most extreme cases (i.e. 30 taxa 
and 10 data partitions). On the other hand, MRP is 
always showing signifi cantly worse accuracy rates 
than any other method. Moreover, accounting for 
branch lengths signifi cantly improves the perfor-
mance of AC trees with respect to TAC trees, except 
for one set of conditions (i.e. 10 taxa and 10 data 
partitions). These interesting results corroborate 
the study by Levasseur and Lapointe (2001) who 
already showed with actual data sets that total 
evidence and consensus can produce identical 
results when treated in a coherent fashion, using the 
average consensus (see also Lapointe et al. 1999).

Our results also show that the different 
approaches are affected in the same way by the 
parameters of the simulations. Better accuracy 
rates are always obtained with more partitions, 
fewer taxa, and homogeneous data, in agreement 
with the conclusions of other simulation studies 
(Bininda-Emonds and Sanderson 2001; Bininda-
Emonds 2003), and other theoretical works (Erdos 
et al. 1999, Moret et al. 2002). For one, adding 
more characters increases the number of informa-
tive sites, which also increases the phylogenetic 
signal. For that matter, all simulations based on 
10 partitions (20000 characters) provided much 
better results than those based on 2 partitions 
(4000 characters). On the other hand, using fewer 
taxa reduces the number of possible trees, and 
this also decreases the probability of estimating 
the wrong tree. Consequently, the worst results 
are obtained for 30 taxa and 2 data partitions. 
In such situations, the best method recovers the 
correct MT topology in only 10% of the replicates 
generated. Finally, data heterogeneity also affects 
accuracy by decreasing the phylogenetic signal. 
Although our simulations were based on model 
trees with identical topologies, randomizing the 
branch lengths had a strong negative impact on the 
accuracy rates. Previous simulations (Levasseur 
and Lapointe 2003) have also shown that changing 

the evolutionary rate of data partitions decreases 
accuracy. In practice, this problem is likely to be 
even worse when data partitions with incompatible 
phylogenetic histories are combined. 

The negative effect of the number of taxa on 
accuracy is not comforting, since the methods that 
are compared in this paper were also developed 
to construct large supertrees. Bininda-Emonds 
and Sanderson (2001) observed that a reduc-
tion of the overlap among the trees combined 
greatly decreases accuracy. When heterogeneous 
data partitions representing overlapping sets of 
leaves are combined (i.e. in the supertree setting), 
this effect is even more dramatic (Lapointe and
Levasseur 2004), and such conditions are likely to 
jeopardize the quest for the Tree of Life. Still, one 
strong argument for supertree methods (including 
MRP) is that it ought to be faster to build several 
small trees and piece them together than to 
compute one large tree (see Sanderson and Driskell 
2003), given the computational complexity of the 
optimization problems.

We have already shown (Levasseur and 
Lapointe 2001) that average consensus trees are 
more similar to total evidence trees than those 
derived from consensus methods that ignore branch 
lengths (e.g. strict, majority rule, Adams). The 
present study corroborates these results by showing 
that accounting for branch lengths makes a differ-
ence, even when the same consensus method is 
employed. We also show that MRP trees are further 
from total evidence trees than either form of the 
average consensus. Furthermore, when actual 
branch lengths are ignored in the computation, 
average consensus trees become increasingly 
similar to MRP trees, as predicted by Lapointe
et al. (2003). 

Last but not least, contrary to the claim of 
Bininda-Emonds and Bryant (1998), our simula-
tions clearly showed that MRP does not behave 
like total evidence. There seems to be similarities 
between MRP and average consensus trees when 
all branch lengths are set to one, although the 
consensus approach always outperforms MRP 
in terms of accuracy. In their paper comparing 
MRP with several topological consensus methods, 
Bininda-Emonds and Sanderson (2001) suggested 
that MRP trees can produce novel clades that are 
contradicted by some or all of the input trees. 
Average consensus trees also share this property 
(Wilkinson et al. 2005). The joint use of average 
consensus and total evidence has been proposed 
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to increase phylogenetic accuracy in such cases 
(Lapointe et al. 1999). Further studies should 
now evaluate the relationships between super-
tree methods that account for branch lengths
(e.g. Criscuolo et al. 2006) and weighted version 
of MRP that accounts for bootstrap support values 
(Ronquist 1996), with respect to the analysis of 
supermatrices in a phylogenomic framework 
(Delsuc et al. 2005). 
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