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Inferred retinal sensitivity 
in recessive Stargardt disease using 
machine learning
Philipp L. Müller1,2,3,4*, Alexandru Odainic1, Tim Treis5, Philipp Herrmann1,2, Adnan Tufail3,4, 
Frank G. Holz1,2 & Maximilian Pfau1,6

Spatially-resolved retinal function can be measured by psychophysical testing like fundus-controlled 
perimetry (FCP or ‘microperimetry’). It may serve as a performance outcome measure in emerging 
interventional clinical trials for macular diseases as requested by regulatory agencies. As FCP 
constitute laborious examinations, we have evaluated a machine-learning-based approach to 
predict spatially-resolved retinal function (’inferred sensitivity’) based on microstructural imaging 
(obtained by spectral domain optical coherence tomography) and patient data in recessive Stargardt 
disease. Using nested cross-validation, prediction accuracies of (mean absolute error, MAE [95% CI]) 
4.74 dB [4.48–4.99] were achieved. After additional inclusion of limited FCP data, the latter reached 
3.89 dB [3.67–4.10] comparable to the test–retest MAE estimate of 3.51 dB [3.11–3.91]. Analysis of 
the permutation importance revealed, that the IS&OS and RPE thickness were the most important 
features for the prediction of retinal sensitivity. ’Inferred sensitivity’, herein, enables to accurately 
estimate differential effects of retinal microstructure on spatially-resolved function in Stargardt 
disease, and might be used as quasi-functional surrogate marker for a refined and time-efficient 
investigation of possible functionally relevant treatment effects or disease progression.

Recessive Stargardt disease (STGD1, Online Mendelian Inheritance in Man #248200), caused by biallelic 
mutations in the ATP-binding cassette sub-family A member 4 (ABCA4, Online Mendelian Inheritance in Man 
#601691) gene, is one of the main causes for inherited retinal degeneration and loss of vision in early life1,2. It 
leads to excessive accumulation of lipofuscin in the lysosomal compartment of postmitotic retinal pigment 
epithelium (RPE) that has been shown to have toxic effects on the RPE cells and photoreceptors3,4. It is clinically 
characterized by alterations at the posterior pole that can be visualized with digital imaging technologies as pat-
terns of increased and decreased fundus autofluorescence (AF) on a background of increased AF intensity as 
well as thinning of retinal layers in the optical coherence tomography (OCT)5–12.

While sophisticated analyses of disease stages and progression based on morphologic changes have been 
proposed8,9,13,14, regulatory agencies have previously stated their preference for performance/functional outcome 
measures15. Best-corrected visual acuity (BCVA) is a practical, but not ideal marker of function due to its slow 
rate of change over time, individual variability, phenomena such as foveal sparing, and limited spatial representa-
tion restricted to the preferred retinal locus16,17. In this context, fundus-controlled perimetry (FCP, also termed 
microperimetry) is an established psychophysical assessment allowing for spatially-resolved measures of retinal 
sensitivity at different predefined retinal locations while compensating for fixation instability18,19. However, 
FCP requires dedicated equipment and is time-consuming. Due to limited examination time, every FCP test 
is a trade-off between the size of the test-field, spatial-accuracy (i.e., location and number of test-points) and 
threshold-accuracy (i.e., step size of the staircase strategy and number of reversals). The examination time is 
crucial concerning subjects’ fatigue and compliance (e.g. false-positive and false-negative responses).

OCT allows for axially resolved imaging of the retina, has been extensively investigated for retinal diseases, 
offers validated biomarker such as central retinal thickness in exudative maculopathies including neovascular 
age-related macular degeneration (AMD), and is widely available20. The lateral (or en-face) resolution of cur-
rent OCT devices (up to 5.7 µm/pixel for the Spectralis OCT 2 device, Heidelberg Engineering, Germany) is 
more than one log unit higher compared to the typically used Goldmann III (128 µm diameter) stimulus in 
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FCP testing. The preparation and acquisition time is short (i.e., no pupil dilation needed), and the imaging 
does not require long periods of subject engagement and alertness21. Recently, the possibility to predict FCP 
results based on structural OCT data (also termed ‘inferred sensitivity’) using artificial intelligence algorithms, 
including machine learning techniques like random forest regression, was described for AMD22,23. In the view 
of upcoming therapeutic trials and the attempt to keep study protocols slender while achieving maximal validity 
and power24, the prediction of reliable functional outcome measures based on fast and routine retinal imaging 
might be a reasonable solution.

In this longitudinal, natural history study of patients with STGD1, we (1) therefore investigated the accuracy 
of machine learning models to predict retinal function based on structural imaging data (‘inferred sensitivity’), 
(2) estimated the effect of measurement error and patient reliability on the modeling process, (3) assessed the 
relative importance of retinal biomarkers for the prediction, and (4) examined the ability to detect change over 
time.

Results
Demographic characteristics.  A total of 267 eyes from 134 patients with STGD1 with a median (IQR) 
age of 37.1 years (22.0, 50.2) at baseline and 87 eyes from 54 controls (36 female, 18 male) with a median age 
of 41.0 years (25.7, 53.2) were included (Table 1). For all following analyses, patient data was standardized by 
normal data in consideration of the spatial differences in retinal sensitivity as well as OCT layer thicknesses and 
reflectivity intensities (cf. “Methods” section and Fig. 1). Accordingly, only patient data was used to derive the 
estimates for the prediction accuracies to obtain most conservative estimates. 

In terms of age of onset subgroups, 32 patients were affected by early-onset STGD1 (≤ 10 years), 77 patients 
by intermediate-onset STGD1 (10 < age < 45 years) and 25 by late-onset STGD1 (≥ 45 years). At baseline, 62 
patients were assigned to full-field electroretinogram (ERG) group 1, 53 patients to ERG group 2, and 19 patients 
to ERG group 3 (cf. “Methods” section). Longitudinal follow-up data was available for 52 STGD1 patients with 
a median review period of 2.16 years (1.21, 3.10) corresponding to a median of 1 (1, 2) follow-up visits. Further, 
follow-up data was available for 14 of the control subjects with a median review period of 1.64 years (0.99, 3.17) 
corresponding to a median of 1 (1, 1) follow-up visit.

Accuracy of light sensitivity predictions in patients with STGD1.  The cross-validated mean abso-
lute errors (MAE [95% CI]) values obtained through the outer resampling of the nested cross-validation (i.e., 
without optimization bias, cf. “Methods” section, Supplementary Fig. S1) were 4.86 dB [4.62–5.09] for imaging 
data only (feature-set 1), 4.85  dB [4.61–5.08] with addition of patient reliability indices (feature-set 2), and 
4.74 dB [4.48–4.99] with further addition of functional and demographic patient characteristics (feature-set 3, 
Fig. 2). All of these were markedly better compared to the representative null model (MAE of 10.80 dB [10.52–
11.08]).

Analysis of the prediction error in dependence of the ETDRS subfields revealed, that the predictions errors 
were slightly higher for the central and inner ETDRS subfields as compared to the outer ETDRS subfields and 
peripheral retinal (Table 2).

Table 1.   Patient baseline characteristics. BCVA best-corrected visual acuity, ERG electroretinogram, IQR 
interquartile range. a One eye at baseline was excluded due to prior retinal detachment.

Overall (baseline) cohort Cohort with test–retest examinations Cohort with longitudinal follow-up

Patient-level data

Patients (n) 134 patients 92 patients 52 patients

Sex (female/male) 85/49 59/33 30/22

Age at first examination (median [IQR]) 37.1 years (22.0, 50.2) 37.1 years (21.4, 49.1) 34.0 years (21.1, 44.2)

Age of onset categories (n)

 Early-onset 32 patients 22 patients 14 patients

 Intermediate-onset 77 patients 56 patients 29 patients

 Late-onset 25 patients 14 patients 9 patients

Electrophysiological subtypes

 ERG group 1 62 patients 47 patients 25 patients

 ERG group 2 53 patients 33 patients 23 patients

 ERG group 3 19 patients 12 patients 4 patients

Follow-up time (median [IQR]) n/a n/a 2.16 years (1.21, 3.10)

Follow-up visits (median [IQR]) n/a n/a 1 (1, 2)

Eye-level dataa

Eyes without foveal sparing (n) 175 80 62

Eyes with foveal sparing (n) 92 40 42

BCVA (median [IQR]) 0.9 LogMAR (0.2, 1.0) 0.9 LogMAR (0.2, 1.0) 0.7 LogMAR (0.2, 1.0)

Fixation stability in terms of the 95% bivariate 
contour ellipse (median [IQR]) 1.48 log10(deg2) (0.98, 1.75) 1.54 log10(deg2) (1.08, 1.70) 1.37 log10(deg2) (0.88, 1.68)
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As an alternative, a combined approach of shortened FCP testing and prediction of sensitivity was probed, 
given that a brief FCP examination is not very burdensome for patients. Addition of 7 test-points (feature-set 
4) and 13 test-points (feature-set 5) decreased the MAE (outer resampling) for the prediction of sensitivity at 
the remaining loci to 4.11 dB [3.88–4.35] and 3.89 dB [3.67–4.10] (Fig. 2 and Table 2). Again, this was markedly 
better than the corresponding null model MAE estimate of 6.57 dB [6.08–7.07].

Comparison of predictions and perimetry test–retest‑reliability.  For 120 eyes of 92 patients, intra-
session test–retest examinations were available. The point-wise mean absolute test–retest difference estimate 
was 3.51  dB [3.11–3.91] for these patients. This MAE values was slightly lower compared to corresponding 
feature-set 5 prediction MAE estimate of 3.80 dB [3.56–4.03] for the same subset of patients with intra-session 
test–retest examinations.

However, based on the root-mean-squared error (RMSE) estimates, which penalize outliers more than the 
MAE estimates, the test–retest RSME with 6.04 dB [5.41–6.61] was larger than the prediction RSME of 5.49 dB 
[5.2–5.77]. Bland–Altman plots comparing the test–retest differences and the prediction-observation differences 
further reveled no possibly biasing learning effect between first and second FCP test (mean difference around 
0). Further the plots underscored that the accuracy of random forest-based predictions using feature-set 5 was 
indeed comparable to the retest-variability (Fig. 3).

Importance of imaging biomarkers for retinal sensitivity.  Analysis of the permutation impor-
tance revealed, that the IS&OS thickness (median [IQR]) 110.75% IncMSE [119.90, 101.53] and RPE thick-
ness 100.81% IncMSE [96.68, 106.99] were the most important imaging features for the prediction of retinal 
sensitivity. Graphical analysis of the imaging feature contributions (feature set 1) emphasized the predictive 
feature importance of the IS&OS and RPE thickness (Fig. 4). The so-called goodness-of-visualization R2 of the 
IS&OS thickness (0.92) and RPE thickness (0.81) indicates that the residual variance of feature contributions 

Figure 1.   Image segmentation and multimodal registration. (a,b) The spectral-domain optical coherence 
tomography (OCT) volume scan was semi-automatically annotated. The herein used segmentations for the 
full retina (FR, bright blue overlay), inner retina (IR, green overlay), outer nuclear layer (ONL, yellow overlay), 
photoreceptor inner and outer segments (IS&OS, purple overlay), retinal pigment epithelium (RPE, pink 
overlay) are highlighted. (c) The fundus-controlled perimetry (FCP) results (color coded dots on infrared 
reflectance image) were registered to the en-face thickness and projection maps of the five OCT layers. The 
green rectanlge on the FCP results indicates the location of the respective OCT volume scan. For each stimulus 
location, the mean thickness as well as mean, maximal and minimal projection intensity were extracted for each 
layer.
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not explained by these simple X–Y plots (due to possible interaction effects) is low. Also for the other feature 
sets, IS&OS and RPE thickness revealed the highest permutation importance values (Supplementary Fig. S2). 
Figure 5 shows two exemplary patients that demonstrated the functional relevance of the thinning of these outer 
retinal layers as well as the high accuracy of the machine learning-based predictions longitudinally.

Figure 2.   Patient-wise prediction accuracy. The figure shows the patient-level estimates (est.) for the mean 
absolute errors (MAE) between the predictions and observations in dependence of the five feature-sets. The red 
dot and error-bar indicate the mixed-model estimate for the MAE and the 95% confidence interval. To avoid 
overplotting, we used semi-transparent points. By adding additional patient specific features (i.e., feature-sets 4 
and 5), the prediction accuracy could be markedly improved. dB decibels.

Table 2.   Mean absolute errors (MAE [in dB]) between retinal sensitivity predictions and observation. CI 
confidence interval, Out outer, In inner, SF ETDRS subfield, Nasal periphery test-points nasal to the outer nasal 
SF, Temporal periphery test-points temporal to the outer temporal SF.

Location

Feature-set 1 Feature-set 2 Feature-set 3 Feature-set 4 Feature-set 5

Estimates CI Estimates CI Estimates CI Estimates CI Estimates CI

Overall 4.86 4.62–5.09 4.85 4.61–5.08 4.74 4.48–4.99 4.11 3.88–4.35 3.89 3.67–4.10

Nasal periphery 4.55 4.12–4.98 4.56 4.13–4.98 4.6 4.17–5.03 3.72 3.30–4.14 3.71 3.31–4.10

Nasal out. SF 4.7 4.45–4.95 4.66 4.41–4.92 4.58 4.31–4.85 3.89 3.63–4.15 3.69 3.45–3.92

Nasal in. SF 5.34 5.07–5.60 5.33 5.07–5.60 5.19 4.91–5.47 4.63 4.37–4.90 4.30 4.04–4.55

Central SF 5.37 5.09–5.65 5.38 5.10–5.65 5.08 4.79–5.37 4.53 4.25–4.81 4.42 4.16–4.69

Temporal in. SF 4.88 4.59–5.17 4.88 4.59–5.17 4.89 4.59–5.20 4.26 3.96–4.57 4.07 3.76–4.39

Temporal out. SF 4.34 4.06–4.62 4.34 4.06–4.61 4.27 3.98–4.57 3.58 3.28–3.89 3.29 2.97–3.60

Temporal periphery 4.37 4.08–4.67 4.38 4.08–4.68 4.29 3.98–4.60 3.43 3.12–3.74 2.9 2.58–3.22
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Discussion
Since its introduction in 1959, the term machine learning covers different approaches to artificial intelligence, 
enabling computers to learn without being programmed26. In the last decade, machine learning techniques 
have entered visual science, including analysis in the context of retinal imaging27. It has recently been shown 
to offer great potentials in the detection and classification of pathological features28, and in the prediction of 
retinal function22,29,30. Based on these developments, this study investigated the possibility of machine learning 
algorithms to predict spatially-resolved retinal function in STGD1 based on (1) OCT imaging data, (2) indicators 
of retest variability, (3) functional along with patients’ demographic measures, and (4) brief FCP testing for the 
first time. The prediction accuracy of the model was comparable with the retest variability (Fig. 3), while the RPE 
and IS&OS thicknesses were shown to represent the most important predictive imaging parameters. In accord-
ance with previous studies in AMD22,23, we used the term ‘inferred sensitivity’ for this machine learning-based 
analysis strategy. It may serve as a quasi-functional surrogate marker in future clinical trials.

In the view of emerging therapeutic approaches for STDG124, adequate clinical trial design including the 
selection of suitable endpoints constitutes a prerequisite for the evaluation of potential benefits. As regulatory 
agencies have previously stated their preference for functional outcome measures15, FCP represents a suitable 
candidate, as it has a broad measurement range, and offers spatially-resolved measures of retinal sensitivity 
at different predefined retinal locations. Furthermore, retinal sensitivity measured by FCP tends to decrease 
over time in a rather monotonous manner (excluding retest-variability, Supplementary Fig. S3)31,32. In contrast, 
BCVA may frequently plateau in patients (e.g., due to foveal sparing). The disadvantages of FCP include the 
need for specific microperimetry devices, the duration of the examination, and the dependency on patients’ 
performance19. Accordingly, the demand for slender study designs and the problem of subject fatigue limit the 
accuracy and usability of FCP. In this context, quasi-functional surrogate markers obtained through machine 
learning algorithms offer a practicable alternative.

As we demonstrated herein, it is possible to predict FCP results through routine imaging, functional and 
demographic parameters with a high accuracy validating ‘inferred sensitivity’ as a possible candidate for a 
future quasi-functional surrogate marker for STGD1. Due to the dependence on 3-dimensional OCT data, the 
main advantages of ‘inferred sensitivity’ comprise that (1) it could be obtained within a short time frame even 
in patient unfit for psychophysical testing, (2) it is ubiquitously available, (3) it can theoretically provide a much 
higher lateral resolution compared to current functional testing (i.e., modern OCT devices have a spatial en-face 
resolution of up to 5.7 µm/pixel), (4) it can represent opposing effect (e.g. reduction of subretinal deposits versus 
RPE atrophy), which would be inadequately represented by often used endpoints such as central retinal thick-
ness, (5) it could be compared across different retinal diseases, and (6) is susceptible to early changes in disease 
progression before the development of atrophy. The use of ‘inferred sensitivity’ thereby does not only offer an 
easily available, accurate and highly susceptible quasi-functional surrogate marker, but also gives an additional 

Figure 3.   Point-wise retest-variability and prediction accuracy. The differences (diff.) between the first 
and second microperimetry test were overall slightly larger (A) compared to the differences between the 
cross-validated predictions (pred., feature-set 5) and observations (obs., B). Severe degrees of sensitivity loss 
(compared to normative data) appear to be slightly underestimated by the random forest-based predictions. 
Please note, for the right plot, twice the number of points were available compared to the left plot, since the 
random forest predictions were compared to the observations from the first and second test separately. The 
point-wise differences between single test results to the predictions are larger than the point-wise differences 
between the average of both test runs and the predictions. Thus, the most conservative estimate of the model 
performance is shown. The estimates for the mean test–retest difference (solid red line) and the 95% limits of 
agreement (dashed red lines) were computed with consideration of the hierarchical data structure. The dotted 
lines indicate the 95% confidence intervals for the test–retest difference and limits of agreement. dB decibels.
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diagnostic dimension and allows to enroll patients before the development of RPE atrophy, which is mostly used 
in trials for STDG1 but thought as the end-stage after a possible point of no return9,14,33.

Previous studies revealed distinct structure–function correlations between retinal sensitivity and multimodal 
imaging in STGD1, albeit with only a limited number of narrowly selected predictors and/or application of 
linear models9,34–40. By using a wide array of potentially predictive variables and machine learning, we could 
provide more evidence that the association between structure and function in STGD1 is tight. By electing to use 
a supervised machine learning random forest regression, we could evaluate the feature importance and feature 
contributions. The fact that the IS&OS and RPE thickness, which represent the anatomical site of phototrans-
duction and photopigment recycling, were the most important features, underscores the biological plausibility 
of our model. In contrast, in a recent AMD study using a similar methodology, ONL was identified as the most 
predictive factor22. While this difference could be governed by true biological effects between these diseases, it 
may likely be explained by ‘feature noise’. In the context of AMD and reticular pseudodrusen, precise deline-
ation of the photoreceptor inner and outer segments is challenging, which may have led to a relatively higher 
importance of the ONL thickness. In contrast, in this cohort of STGD1 patients, the delineation of IS&OS was 
very much feasible.

The smaller benefit (in comparison to AMD)22,23 of adding patient- and eye-specific data to the training-
set may be linked to the overall more homogeneous patient cohort in STGD1. In contrast to previous work in 
AMD22, eye characteristics not reflected by OCT imaging (e.g., lenticular opacification) are much less likely to 
play a major role given the age of the patients. Further, the overall training-set was much larger than in the pre-
vious study22. Accordingly, the training set may be more or less fully representative of the relationship between 
retinal function and retinal structure in the STGD1.

Figure 4.   Feature importance. (A) The panel shows the permutation feature importance of layer thickness 
(thick.) as well as mean, maximal (max) and minimal (min) intensity projections (int.) in terms of the 
percentage of increase in mean squared error (%IncMSE). Overall, the photoreceptor inner and outer segments 
(IS&OS) thickness and retinal pigment epithelium (RPE) thickness were the two most important features. The 
permutation feature importance of the other feature sets can be found in Supplementary Fig. S2. (B–F) The 
other panels demonstrate the feature contributions [dB] of the respective retinal layer thickness. The dashed 
lines show the normal range (− 2 to + 2 normative standard deviations) for the thicknesses. The y-axis for these 
plots was inverted to ensure that sensitivity loss is plotted downwards. The so-called goodness-of-visualization 
R2 metric25, which denotes the variance of feature contributions explained by these simple X–Y plots was 0.89 
for the full retinal (FR) thickness (B), 0.42 for the Inner retinal (IR) thickness (C), 0.8 for the outer nuclear layer 
(ONL) thickness (D), 0.92 for IS&OS thickness (E), and 0.81 for the RPE thickness (F).
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As established41, the “evidence for surrogacy depends upon (1) the biological plausibility of the relationship, 
(2) the demonstration in epidemiologic studies of the prognostic value of the surrogate for the clinical outcome 
and (3) evidence from clinical trials that treatment effects on the surrogate correspond to effects on the clinical 
outcome”. As stated above, the biological plausibility could be provided for ‘inferred sensitivity’ in STGD1. In 
contrast to traditional morphologic endpoints that do not or only indirectly represent function, ‘inferred sen-
sitivity’ is quasi-functional itself. Therefore, the second criterion is not fully applicable. Concerning the third 
criterion, the longitudinal accuracy of the models could be confirmed based on the subset of data with more than 
one visit in terms of natural-history (Fig. 5). However, models are strictly limited by their applicability domain. 
For treatment trials, a two-track approach with imaging and (limited) FCP testing appears warranted, since 
treatment could putatively lead to a structure–function dissociation (e.g., in the case of toxic optic neuropathy).

In principle, a deep-learning approach, as previously suggested in the setting of Macular telangiectasia (Mac-
Tel) type 242, to estimate sensitivity directly from SD-OCT images may provide slightly higher prediction accu-
racies. However, deep-learning models are unsuitable to quantitatively evaluate feature importance, and may 
produce predictions outside of the outcome range. Notably, towards lower values, our model provided much 
less biased estimates (Fig. 3) compared to the previous deep-learning approach, which systematically overesti-
mated light sensitivity for locations with reduced sensitivity. Given the high-stakes setting of medicine, it may be 
preferable to have a two-step pipeline as demonstrated here: first image segmentation (which may be automated 
using deep-learning), followed by a more parsimonious machine learning model to ensure predictions within 
the outcome range and examine biological plausibility22,43. Somewhat similar, this separation of segmentation/
preprocessing and the actual classification has been previously proposed for screening and classification of retinal 
disease43. Of note, the models have been trained in a disease-specific manner and may therefore not be easily 
applied to other disease entities. However, the modeling pipeline could easily be extended to feature these. While 
the prediction accuracies should theoretically be similar for mesopic measurements across devices (with adjust-
ment of the dB scale), this may empirically not apply. It has been previously established that the inter-device is 
suboptimal, which may be (partially) attributed to device-specific floor and ceiling effects44. Strengths of this 
study are the systematic comparison of five feature-sets, differential analysis of the importance of retinal layers on 
the sensitivity prediction as well as the exploration of longitudinal test–retest data. As the innovative diagnostic 
tool of quantitative autofluorescence is thought to reveal disease-associated alterations before other changes 
can be detected45–47, the implementation into the machine learning algorithm might be warranted in the future.

Figure 5.   Prediction accuracy of sensitivity-loss over time. The predicted (grey points) and observed (color 
coded) fundus controled perimetry results (in decibels, dB, top), and corresponding horizontal optical 
coherence tomography (OCT) B-scan of two exemplary patients are longitudinally demonstrated. The green 
line on the infrared reflectance image indicates the approximate location of the respective OCT B-scan. (a) The 
functional consequence of the loss of foveal non-involvement over time is adequately recognized by the imaging 
feature based model. Also the growth of outer retinal atrophy is represented by a loss of observed as well as 
predicted retinal sensitivity in the first patient. (b) The second patient exhibits a more diffuse foveal involving 
retinal thinning, which is also parallelled by a loss of observed and predicted retinal light sensitivity. In the 
follow-up visit (bottom row), the development of a small spot of outer retinal atrophy (e.g., at approximately 
N-7) with loss of retinal sensitivity could correctly be predicted. A summary of the individual longitudinal data 
can be found in Supplementary Fig. S3.
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In summary, this study investigated a machine learning model to predict spatially-resolved retinal function 
based on easily available patient data and provided evidence of the high accuracy of this approach in STGD1. 
IS&OS and RPE thickness were the most predictive imaging parameters. The findings of this study indicate that 
the use of ‘inferred sensitivity’ as a quasi-functional outcome measure offers the possibility for a refined investi-
gation of possible treatment effects in upcoming interventional trials for STGD1 particularly superior to other 
functional outcome measures. In the future, this approach may also be expanded for high-resolution mapping 
of spatially-resolved functional impairment in other retinal dystrophies.

Methods
Subjects.  Patients with STGD1 were recruited from a clinic dedicated to rare retinal diseases. The diagnosis 
was based on at least one disease-causing mutation in ABCA4 (NM_000350.2) and a phenotype consistent with 
STGD1 including RPE atrophy and flecks48. Additional retinal pathology, previous vitreoretinal surgery, or other 
ocular comorbidities substantially affecting visual function (e.g. relevant media opacity like lenticular changes, 
amblyopia or optic nerve disease) led to exclusion from the study. Follow-up visits were scheduled at the discre-
tion of the physician and patient. Healthy subjects without retinal pathology or prior ocular surgery served as 
controls. They were recruited from accompanying persons, students, friends, and colleagues. All subjects under-
went a comprehensive ophthalmologic examination including BCVA testing using Early Treatment Diabetic 
Retinopathy Study (ETDRS) charts, slit lamp examination, indirect ophthalmoscopy, and an imaging protocol 
after pupil dilation using 0.5% tropicamide and 2.5% phenylephrine. Due to unwished bilateral pupil dilatation 
and/or restricted time quota, only one eye underwent imaging and functional testing in 17 healthy controls.The 
study protocol was in accordance with the relevant guidelines and regulations and approved by the Institutional 
Review Board of the University of Bonn (ethics approval ID: 316/11 and 288/17). Written informed consent 
conforming to the tenets of the Declaration of Helsinki was acquired from all participants.

Imaging and functional testing.  The standardized retinal imaging protocol consisted of fundus photog-
raphy (Visucam, Carl Zeiss Meditec, Jena, Germany), AF-imaging (Spectralis HRA, Heidelberg Engineering, 
Heidelberg, Germany), and spectral domain OCT (Spectralis HRA-OCT, Heidelberg Engineering) capturing 
volume scans (25° × 30°, 61 scans) with at least 20 frames per scan averaged. Furthermore, patients underwent 
full-field ERG (Toennies Multiliner Vision 1.70, Hochberg, Germany) testing. Mesopic (i.e., combined cone- 
and rod-photoreceptor function) FCP was performed using the MAIA device (CenterVue, Padua, Italy), which 
has an inbuilt confocal scanning laser ophthalmoscope (830 nm, 36.5° × 36.5°, 25 frames per second) that ena-
bles automated real-time fundus tracking. The custom-made test pattern consisted of 50 test-points centered on 
the fovea (based on prior OCT images) and primarily along the horizontal meridian (Fig. 1, modified from the 
foveo-papillary profile proposed by Cideciyan et al. to cover nasal and temporal macula)49, as it represents the 
whole range of individual disease stages and respective functional impairment independent from the disease 
severity. The protocol has been described before31,50. Briefly, after 20 min of adaptation to the white test back-
ground luminance at 1.27 cd/m2, retinal sensitivity was obtained using achromatic (400–800 nm) Goldmann III 
stimuli (duration of 200 ms) and a 4–2 staircase strategy with a dynamic range of 3.6 log units (0.08–318.5 cd/
m2). One full FCP test was performed before examination was executed to reduce learning effects.

Disease classification.  As potential predictive features (apart for imaging features), we also evaluated con-
ventional disease classifications for STGD1. Patients were classified based on (a) age-of onset into early-onset 
(≤ 10 years), intermediate-onset (10 < age < 45 years) and late-onset (≥ 45 years)14, (b) foveal status into foveal 
involving and foveal sparing RPE atrophy based on multimodal imaging consisting of OCT and fundus auto-
fluorescence, as well as (c) full-field ERG according to Lois and colleagues51: Group 1 included eyes with normal 
responses on scotopic and photopic full-field ERG, group 2 eyes with normal scotopic responses but reduced 
(over 2 standard deviations) photopic B-wave and 30-Hz flicker amplitudes and group 3 eyes with ERG reduc-
tions involving both rod- and cone-driven responses.

Image processing and analysis.  In order to obtain spatially-resolved structural data at the exact loca-
tion of the individual FCP stimuli, a proprietary approach was implemented as previously described22. First, we 
performed segmentation of volumetric OCT data using the preset software (Spectralis Viewing Module 6.3.2.0, 
Heidelberg Engineering, Heidelberg, Germany). The segmentation was then reviewed and, if indicated, manu-
ally corrected. For layer thickness, we defined the distance between the internal limiting membrane (ILM) and 
Bruch’s membrane (BrM) as ‘full retina (FR)’. The ‘inner retina (IR)’ encompasses all layers between the ILM and 
the outer plexiform layer (OPL)-outer nuclear layer (ONL) boundary52. The Henle fiber layer (HFL) was counted 
towards the ‘ONL’53. The photoreceptor ‘inner and outer segments (IS&OS)’ ranged from band 1 (external limit-
ing membrane, ELM) to band 3, and ‘RPE’ from band 3 to BrM (Fig. 1a.b)52.

Thickness as well as reflectivity maps (min-/mean-/max-intensity projections) for each layer were transferred 
as a tab-delimited file to ImageJ (U.S. National Institutes of Health, Bethesda, Maryland, USA). The FCP data 
was then registered to the retinal en-face images using the moving least squares (non-linear) method (alpha 1.0, 
mesh resolution 64, affine transformation) as implemented in ImageJ. At the exact locations of the FCP stimuli 
(diameter of 0.43°), the mean thickness for each layer as well as the mean value for the minimum, mean and 
maximum reflectivity intensity projection maps (i.e., en-face maps depicting the reflectivity along each A-scan 
for each layer) were extracted (Fig. 1c). In summary, five thickness values (FR, IR, ONL, IS&OS, and RPE) and 
fifteen intensity values were measured for each test-point.
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Preprocessing.  Patient data were standardized using normal data of included healthy controls to enhance 
the interpretability of the structure–function analysis. Without this standardization, disease-specific associa-
tions would be ‘occluded’ by trivial associations (e.g., the non-standardized inner retinal thickness [essentially as 
an indicator of eccentricity] would be predictive of retinal function). Sensitivity values (x) were transformed to 
sensitivity loss by point-wise comparison to the spatially corresponding normative mean ( xnormative ). Structural 
features were standardized (z-scores = (x− x́normative)/SDnormative). The normative mean ( ́xnormative ) and standard 
deviation value (SDnormative) for each respective variable and each test-point were derived through mixed model 
linear regression analysis (respective variable as dependent variable, age as independent variable and eye nested 
in patient as random effects term). The median patient age was applied as reference.

Predictive modeling.  Predictive modeling was performed in R (version 3.6.1), using the library random-
Forest (version 4.6-14)54. Random forest regression was elected as learning algorithm based on its favorable 
bias–variance trade-off, robustness to multicollinearity and inherent ability to uncover interactions among 
predictors55. Sensitivity loss constituted the target variable for all random forest models. In consideration of 
randomness in resampling and in fitting of random forest models, an outermost loop was implemented to repeat 
all modeling steps (outer and inner resampling as well as model fitting) using 7 random seeds.

Nested resampling was applied to estimate the accuracy of the models without optimization bias56. Specifically, 
outer resampling was applied (fivefold cross-vaidation with patient-wise splits) to determine the accuracy with 
nested inner resampling (again fivefold cross-vaidation with patient-wise splits) to optimze the tuning parameter 
‘mtry’. Supplementary Fig. S1 explains graphically the nested-cross validation procedure. The hyperparameter 
‘mtry’, which denotes the number of predictors sampled for spitting at each node, was tuned over the values 6, 14, 
and 22 for the first three feature-sets and over values of 120, 160 and 200 for the last two feature-sets (see. below).

The MAE estimates (i.e., mean of the absolute differences between predicted values and true values) served 
as measure of goodness-of-fit and were computed in consideration of the data structure (visit nested in eye 
nested in patient) and averaged across seeds. Five feature-sets with putative predictive variables were compared:

•	 Feature-set-1 (number of predictors p = 20): imaging features only.
•	 Feature-set-2 (p = 22): imaging-features and indicators of retest-variability (false-positive responses, mean 

reaction time).
•	 Feature-set 3 (p = 26): imaging-features, indicators of retest-variability and further functional and demo-

graphic data (fixation stability, BCVA, ERG group, age-of-onset category).
•	 Feature-set 4 (p = 26 + 267 [eye-IDs encoded using a one-hot encoding scheme]): test-results from every 4° (7 

test-points) were added for the model fitting (temporal(T)-14°, T-10°, T-6°, T-2°, nasal(N)-2°, N-6°, N-10°) 
and the eye-IDs were added to allow the model to consider eye-specific characteristics for the predictions.

•	 Feature-set 5 (p = 26 + 267 [eye-IDs encoded using a one-hot encoding scheme]): test-results from every 2° 
(13 test-points) were added for the model fitting (T-14°, T-12°, T-10°, T-8°, T-6°, T-4°, T-2°, 0°, N-2°, N-4°, 
N-6°, N-8°, N-10°) and the eye-IDs were added to allow the model to consider eye-specific characteristics 
for the predictions.

The candidate predictors are described in more detail in Supplementary Table S1.
Further, we provided the MAE estimates for null-models for the feature-sets 1, 2 and 3. These produce the 

mean sensitivity loss from the respective training-set as “prediction” for the respective test-set. For feature sets 
4 and 5, the comparable null-models are based on mean value of the per-eye-specific 13 test-points (cf. above 
feature set 5), which were then applied as “prediction” to the remaining test-points.

The permutation feature importance values in terms of the percentage of increase in mean squared error 
(%IncMSE) were used to assess the relative importance of the candidate predictors. The median across all random 
seed and outer resampling folds was used as permutation accuracy estimates. Feature contribution plots were 
generated to visualize mapping structures of the random forest model25.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

Received: 9 June 2020; Accepted: 21 December 2020

References
	 1.	 Hamel, C. P. Cone rod dystrophies. Orphanet J. Rare Dis. 2, 1–7 (2007).
	 2.	 Birtel, J. et al. Clinical and genetic characteristics of 251 consecutive patients with macular and cone/cone-rod dystrophy. Sci. Rep. 

8, 4824 (2018).
	 3.	 Koenekoop, R. K. The gene for stargardt disease, ABCA4, is a major retinal gene: a mini-review. Ophthalmic Genet. 24, 75–80 

(2003).
	 4.	 Mata, N. L., Weng, J. & Travis, G. H. Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated 

retinal and macular degeneration. Proc. Natl. Acad. Sci. U.S.A. 97, 7154–7159 (2000).
	 5.	 Müller, P. L. et al. Monoallelic ABCA4 mutations appear insufficient to cause retinopathy: a quantitative autofluorescence study. 

Investig. Ophthalmol. Vis. Sci. 56, 8179–8186 (2015).
	 6.	 Burke, T. R. et al. Quantitative fundus autofluorescence in recessive stargardt disease. Investig. Ophthalmol. Vis. Sci. 55, 2841–2852 

(2014).



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1466  | https://doi.org/10.1038/s41598-020-80766-4

www.nature.com/scientificreports/

	 7.	 Dysli, C., Müller, P. L., Birtel, J., Holz, F. G. & Herrmann, P. Spectrally resolved fundus autofluorescence in ABCA4-related retin-
opathy. Investig. Ophthalmol. Vis. Sci. 60, 274 (2019).

	 8.	 Müller, P. L., Dysli, C., Hess, K., Holz, F. G. & Herrmann, P. Spectral fundus autofluorescence excitation and emission in ABCA4-
related retinopathy. Retina https​://doi.org/10.1097/IAE.00000​00000​00272​6 (2019).

	 9.	 Müller, P. L. et al. Functional relevance and structural correlates of near infrared and short wavelength fundus autofluorescence 
imaging in ABCA4-related retinopathy. Transl. Vis. Sci. Technol. 8, 46 (2019).

	10.	 Müller, P. L., Fimmers, R., Gliem, M., Holz, F. G. & Charbel Issa, P. Choroidal alterations in ABCA4-related retinopathy. Retina 
37, 359–367 (2017).

	11.	 Sparrow, J. R. et al. Flecks in recessive stargardt disease: short-wavelength autofluorescence, near-infrared autofluorescence, and 
optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 56, 5029–5039 (2015).

	12.	 Duncker, T. et al. Quantitative fundus autofluorescence and optical coherence tomography in best vitelliform macular dystrophy. 
Investig. Ophthalmol. Vis. Sci. 55, 1471–1482 (2014).

	13.	 Walia, S. & Fishman, G. A. Natural history of phenotypic changes in Stargardt macular dystrophy. Ophthalmic Genet. 30, 63–68 
(2009).

	14.	 Müller, P. L. et al. Progression of ABCA4-related retinopathy—prognostic value of demographic, functional, genetic and imaging 
parameters. Retina https​://doi.org/10.1097/IAE.00000​00000​00274​7 (2020).

	15.	 Csaky, K. et al. Report from the NEI/FDA endpoints workshop on age-related macular degeneration and inherited retinal diseases. 
Investig. Ophthalmol. Vis. Sci. 58, 3456–3463 (2017).

	16.	 Rotenstreich, Y., Fishman, G. A. & Anderson, R. J. Visual acuity loss and clinical observations in a large series of patients with 
Stargardt disease. Ophthalmology 110, 1151–1158 (2003).

	17.	 Kong, X. et al. Visual acuity change over 24 months and its association with foveal phenotype and genotype in individuals with 
Stargardt disease: ProgStar study report no. 10. JAMA Ophthalmol. 136, 920–928 (2018).

	18.	 Rohrschneider, K., Bültmann, S. & Springer, C. Use of fundus perimetry (microperimetry) to quantify macular sensitivity. Prog. 
Retin. Eye Res. 27, 536–548 (2008).

	19.	 Pfau, M. et al. Effective dynamic range and retest reliability of dark-adapted two-color fundus-controlled perimetry in patients 
with macular diseases. Investig. Ophthalmol. Vis. Sci. 58, BIO158–BIO167 (2017).

	20.	 Müller, P. L. et al. Ophthalmic diagnostic imaging: retina. In High Resolution Imaging in Microscopy and Ophthalmology: New 
Frontiers in Biomedical Optics (ed. Bille, J. F.) 87–106 (Springer, Berlin, 2019). https​://doi.org/10.1007/978-3-030-16638​-0.

	21.	 Fujimoto, J. & Swanson, E. The development, commercialization, and impact of optical coherence tomography. Investig. Ophthalmol. 
Vis. Sci. 57, OCT1 (2016).

	22.	 von der Emde, L. et al. Artificial intelligence for morphology-based function prediction in neovascular age-related macular 
degeneration. Sci. Rep. 9, 11132 (2019).

	23.	 Pfau, M. et al. Determinants of cone- and rod-function in geographic atrophy: AI-based structure-function correlation. Am. J. 
Ophthalmol. 217, 162–173 (2020).

	24.	 Sears, A. E. et al. Towards treatment of stargardt disease: workshop organized and sponsored by the foundation fighting blindness. 
Transl. Vis. Sci. Technol. 6, 6 (2017).

	25.	 Welling, S. H., Refsgaard, H. H. F., Brockhoff, P. B. & Clemmensen, L. H. Forest floor visualizations of random forests. https​://arxiv​
.org/abs/1605.09196​ (2016).

	26.	 Samuel, A. L. Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 3, 210–229 (1959).
	27.	 Caixinha, M. & Nunes, S. Machine learning techniques in clinical vision sciences. Curr. Eye Res. 42, 1–15 (2017).
	28.	 De Fauw, J. et al. Automated analysis of retinal imaging using machine learning techniques for computer vision. F1000Research 

5, 1573 (2016).
	29.	 Rohm, M. et al. Predicting visual acuity by using machine learning in patients treated for neovascular age-related macular degen-

eration. Ophthalmology 125, 1028–1036 (2018).
	30.	 Müller, P. L. et al. Prediction of function in ABCA4-related retinopathy using ensemble machine learning. J. Clin. Med. 9, 2428 

(2020).
	31.	 Pfau, M., Holz, F. G. & Müller, P. L. Retinal light sensitivity as outcome measure in recessive Stargardt disease. Br. J. Ophthalmol. 

4, bjophthalmol-2020-316201 (2020).
	32.	 Schönbach, E. M. et al. Faster sensitivity loss around dense scotomas than for overall macular sensitivity in Stargardt disease: 

ProgStar report no. 14. Am. J. Ophthalmol. https​://doi.org/10.1016/j.ajo.2020.03.020 (2020).
	33.	 Müller, P. L. et al. Comparison of green versus blue fundus autofluorescence in ABCA4-related retinopathy. Transl. Vis. Sci. Technol. 

7, 13 (2018).
	34.	 Verdina, T. et al. Functional analysis of retinal flecks in Stargardt disease. J. Clin. Exp. Ophthalmol. 3, 1–13 (2012).
	35.	 Parodi, M. B. et al. Morpho-functional correlation of fundus autofluorescence in Stargardt disease. Br. J. Ophthalmol. 99, 1354–1359 

(2015).
	36.	 Gomes, N. L. et al. A comparison of fundus autofluorescence and retinal structure in patients with Stargardt disease. Investig. 

Ophthalmol. Vis. Sci. 50, 3953–3959 (2009).
	37.	 Burke, T. R. et al. Quantification of peripapillary sparing and macular involvement in Stargardt disease (STGD1). Investig. Oph-

thalmol. Vis. Sci. 52, 8006–8015 (2011).
	38.	 Testa, F. et al. Macular function and morphologic features in juvenile Stargardt disease. Ophthalmology 121, 2399–2405 (2014).
	39.	 Chun, R. et al. The value of retinal imaging with infrared scanning laser ophthalmoscopy in patients with stargardt disease. Retina 

34, 1391–1399 (2014).
	40.	 Testa, F. et al. Correlation between photoreceptor layer integrity and visual function in patients with Stargardt disease: implications 

for gene therapy. Investig. Ophthalmol. Vis. Sci. 53, 4409–2215 (2012).
	41.	 International Conference on Harmonisation E9 Expert Working Group. ICH harmonised tripartite guideline. Statistical principles 

for clinical trials. Stat. Med. 18, 1905–1942 (1999).
	42.	 Kihara, Y. et al. Estimating retinal sensitivity using optical coherence tomography with deep-learning algorithms in macular 

telangiectasia type 2. JAMA Netw. Open 2, e188029 (2019).
	43.	 De Fauw, J. et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24, 1342–1350 (2018).
	44.	 Pfau, M. et al. Fundus-controlled perimetry (microperimetry): application as outcome measure in clinical trials. Prog. Retin. Eye 

Res. https​://doi.org/10.1016/j.prete​yeres​.2020.10090​7 (2020).
	45.	 Müller, P. L. et al. Quantitative autofluorescence and visual function in ABCA4-associated retinopathy. Investig. Ophthalmol. Vis. 

Sci. 58, 4655 (2017).
	46.	 Cideciyan, A. V. et al. ABCA4-associated retinal degenerations spare structure and function of the human parapapillary retina. 

Investig. Ophthalmol. Vis. Sci. 46, 4739–4746 (2005).
	47.	 Müller, P. L. et al. Quantitative fundus autofluorescence in ABCA4-related retinopathy—functional relevance and genotype-

phenotype correlation. Am. J. Ophthalmol. https​://doi.org/10.1016/j.ajo.2020.08.042 (2020).
	48.	 Strauss, R. W. et al. Progression of Stargardt disease as determined by fundus autofluorescence in the retrospective progression of 

Stargardt Disease study (ProgStar report no. 9). JAMA Ophthalmol. 135, 1232–1241 (2017).
	49.	 Cideciyan, A. V. et al. Macular function in macular degenerations: repeatability of microperimetry as a potential outcome measure 

for ABCA4-associated retinopathy trials. Investig. Ophthalmol. Vis. Sci. 53, 841–852 (2012).

https://doi.org/10.1097/IAE.0000000000002726
https://doi.org/10.1097/IAE.0000000000002747
https://doi.org/10.1007/978-3-030-16638-0
https://arxiv.org/abs/1605.09196
https://arxiv.org/abs/1605.09196
https://doi.org/10.1016/j.ajo.2020.03.020
https://doi.org/10.1016/j.preteyeres.2020.100907
https://doi.org/10.1016/j.ajo.2020.08.042


11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:1466  | https://doi.org/10.1038/s41598-020-80766-4

www.nature.com/scientificreports/

	50.	 Sergouniotis, P. I. et al. Disease expression in autosomal recessive retinal dystrophy associated with mutations in the DRAM2 gene. 
Investig. Ophthalmol. Vis. Sci. 56, 8083–8090 (2015).

	51.	 Lois, N., Holder, G. E., Bunce, C., Fitzke, F. W. & Bird, A. C. Phenotypic subtypes of Stargardt macular dystrophy-fundus flavi-
maculatus. Arch. Ophthalmol. (Chicago, Ill. 1960) 119, 359–369 (2001).

	52.	 Staurenghi, G., Sadda, S., Chakravarthy, U., Spaide, R. F. & International Nomenclature for Optical Coherence Tomography 
(IN•OCT) Panel. Proposed Lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence 
tomography. Ophthalmology 121, 1572–1578 (2014).

	53.	 Sadigh, S. et al. Abnormal thickening as well as thinning of the photoreceptor layer in intermediate age-related macular degenera-
tion. Investig. Ophthalmol. Vis. Sci. 54, 1603–1612 (2013).

	54.	 Liaw, A. & Wiener, M. Classification and regression by randomforest. R News 2, 18–22 (2002).
	55.	 Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, 

Berlin, 2009).
	56.	 Pfau, M. et al. Artificial intelligence in ophthalmology: Guidelines for physicians for the critical evaluation of studies. Ophthalmo-

loge https​://doi.org/10.1007/s0034​7-020-01209​-z (2020).

Acknowledgements
This work was supported by the German Research Foundation (DFG, grant # MU4279/2-1 to PLM and PF950/1-1 
to MP), and the Department of Health’s NIHR Biomedical Research Centre for Ophthalmology at Moorfields 
Eye Hospital and UCL Institute of Ophthalmology (funding to AT). CenterVue SpA, Padova, Italy has provided 
research material (MAIA) for the conduct of this study. The views expressed are those of the authors. The funder 
had no role in study design, data collection, analysis, or interpretation, or the writing of the report.

Author contributions
P.L.M. and M.P. contributed to the conception or design of the work and drafting of the work. All authors con-
tributed to the acquisition and analysis of data, substantively revising the work for important intellectual content, 
and gave final approval for the version to be published. All authors are personally accountable for the author’s 
own contributions and ensure that questions related to the accuracy or integrity of any part of the work, even 
ones in which the author was not personally involved, are appropriately investigated, resolved, and the resolu-
tion documented in the literature.

Funding
Open Access funding enabled and organized by Projekt DEAL. 

Competing interests 
PLM: No financial disclosures. AO: No financial disclosures. TT: No financial disclosures. PH: Heidelberg Engi-
neering: non financial support, Carl Zeiss MedicTec AG: non financial support, Optos: non-financial support. 
AT: Heidelberg Engineering: Personal fees, Novartis: Grant, personal fees, Bayer: Grant, personal fees, Genetech/
Roche: Grant, personal fees, Acucela: Grant, personal fees, Allergan: personal fees. FGH: Heidelberg Engineering: 
Grant, Personal fees, non financial support, Novartis: Grant, personal fees, Bayer: Grant, personal fees, Genetech: 
Grant, personal fees, Acucela: Grant, personal fees, Boehringer Ingelheim: Personal fees, Alcon: Grant, personal 
fees, Allergan: Grant, personal fees, Optos: Grant, personal fees, non financial support, Carl Zeiss MediTec AG: 
non financial support. MP: No financial disclosures.

Additional information
Supplementary Information The online version contains supplementary material available at https​://doi.
org/10.1038/s4159​8-020-80766​-4.

Correspondence and requests for materials should be addressed to P.L.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

https://doi.org/10.1007/s00347-020-01209-z
https://doi.org/10.1038/s41598-020-80766-4
https://doi.org/10.1038/s41598-020-80766-4
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Inferred retinal sensitivity in recessive Stargardt disease using machine learning
	Results
	Demographic characteristics. 
	Accuracy of light sensitivity predictions in patients with STGD1. 
	Comparison of predictions and perimetry test–retest-reliability. 
	Importance of imaging biomarkers for retinal sensitivity. 

	Discussion
	Methods
	Subjects. 
	Imaging and functional testing. 
	Disease classification. 
	Image processing and analysis. 
	Preprocessing. 
	Predictive modeling. 

	References
	Acknowledgements


