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Chromatin interaction networks 
revealed unique connectivity 
patterns of broad H3K4me3 
domains and super enhancers in 3D 
chromatin
Asa Thibodeau1, Eladio J. Márquez2, Dong-Guk Shin1, Paola Vera-Licona3,4,5 & Duygu Ucar2,5

Broad domain promoters and super enhancers are regulatory elements that govern cell-specific 
functions and harbor disease-associated sequence variants. These elements are characterized by 
distinct epigenomic profiles, such as expanded deposition of histone marks H3K27ac for super 
enhancers and H3K4me3 for broad domains, however little is known about how they interact with 
each other and the rest of the genome in three-dimensional chromatin space. Using network theory 
methods, we studied chromatin interactions between broad domains and super enhancers in three 
ENCODE cell lines (K562, MCF7, GM12878) obtained via ChIA-PET, Hi-C, and Hi-CHIP assays. In these 
networks, broad domains and super enhancers interact more frequently with each other compared to 
their typical counterparts. Network measures and graphlets revealed distinct connectivity patterns 
associated with these regulatory elements that are robust across cell types and alternative assays. 
Machine learning models showed that these connectivity patterns could effectively discriminate broad 
domains from typical promoters and super enhancers from typical enhancers. Finally, targets of broad 
domains in these networks were enriched in disease-causing SNPs of cognate cell types. Taken together 
these results suggest a robust and unique organization of the chromatin around broad domains and 
super enhancers: loci critical for pathologies and cell-specific functions.

Cell-type-specific functions of super enhancers and broad domains have been extensively studied and well estab-
lished across diverse cell types and organisms1–4, where their distinct epigenomic profiles were instrumental 
in their discovery. Super enhancers are demarcated by high levels of enhancer-associated histone modification 
mark H3 lysine 27 acetylation (H3K27ac) and are catalogued in 86 human cell and tissue types using this mark2. 
Moreover, super enhancers have been shown to harbor Single Nucleotide Polymorphisms (SNPs) associated with 
the diseases of the cognate cell type, including cancer2,4. Pharmacological molecules have been used to effectively 
and specifically target super enhancer domains at oncogenes5, further reinforcing their significance for disease 
biology. Similarly, cell type-specific promoters (i.e., broad domains) are associated with expanded deposition of 
histone H3 lysine 4 tri-methylation (H3K4me3) mark - a signature conserved across diverse cell types (>99 in 
human cells) and organisms3. Shortening of broad domains has been observed in cancer cells at tumor suppres-
sor genes, enabling the discovery of novel tumor suppressors4. Recently, super enhancers and broad domains 
overlapping super enhancers were shown to be more associated with chromatin interactions than their typical 
counterparts6 suggesting a unique organization of chromatin around cell-specific loci.

Chromatin structure plays a major role in governing cellular functions in a cell type- and condition-specific 
manner7. Advances in genomewide chromatin interaction profiling have shown that many regulatory elements 
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(i.e., enhancers and promoters) that are distal on the linear genome map are actually in close physical prox-
imity with each other as a result of the 3D chromatin structure8–10. Among these technologies, the Chromatin 
Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET) combines chromatin immunoprecipitation with 
chromatin conformation capture to identify chromatin interactions that are mediated by a protein8, such as RNA 
Polymerase II (Pol2) which mediates interactions between promoters and enhancers11. More recently, an alterna-
tive method has been developed, HiChIP12, to detect protein-centric chromatin interactions12 using 100-fold less 
input material, providing an opportunity to generate such maps in primary human cells and tissues. These data-
sets, particularly the ones capturing protein-mediated promoter and enhancer interactions enable genomewide 
study of chromatin interactions between broad domains and super enhancers.

This study utilizes advanced computational methods to uncover how broad domains and super enhancers 
interact in the 3D chromatin space, in particular, whether they are associated with distinct connectivity pat-
terns, whether these patterns are conserved across cell types and assays, and whether they are predictive of 
the cell-specific nature of promoters and enhancers. For this, we built chromatin interaction networks using 
diverse assays (i.e., ChIA-PET, Hi-C, HiChIP) in three ENCODE cell lines: MCF-7 (breast adenocarcinoma), 
K562 (chronic myeloid leukemia), and GM12878 (lymphoblastoid cell line). These networks were annotated 
using ChromHMM states13,14, super enhancer2, and broad domain3 definitions in the corresponding cell types 
(Fig. 1). We studied interaction frequencies, network centrality measures and graphlets (i.e., small connected 

Figure 1.  Our data analysis framework. Our three-step data analyses framework is composed of (1) network 
building; (2) network annotation using ChromHMM states, broad domain, and super enhancer definitions; and 
(3) network mining using network measures, graphlets, and machine-learning models.
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non-isomorphic induced subnetworks)15 to uncover distinct connectivity patterns associated with broad domains 
and super enhancers. Using machine learning models based on support vector machines (SVM)16,17, we showed 
that these chromatin connectivity patterns can effectively discriminate broad domains from regular promoters 
and super enhancers from regular enhancers. Our results suggest a unique and conserved chromatin organiza-
tion around critical regulatory elements. Finally, we studied the clinical relevance of these annotated chromatin 
interaction networks by demonstrating that enhancers targeting broad domains harbor more SNPs associated to 
diseases of the cognate cell type.

Results
Chromatin interaction networks capture interactions among diverse regulatory elements.  We 
built chromatin interaction networks using Pol2 ChIA-PET data in three ENCODE cell lines: MCF-7 (derived 
from metastatic mammary grand epithelium), K562 (derived from chronic myelogenous leukemia cells), and 
GM12878 (lymphoblastoid cell line) and using Hi-C18 and HiChIP12 (targeting cohesion subunit Smc1a) data 
in GM12878. These networks consisted of 20–50 thousand network nodes/edges and thousands of connected 
components (Fig. 2a, Table S1). Next, nodes in these networks were annotated using ChromHMM states13,14 
in conjunction with broad domain3 and super enhancer2 definitions in corresponding cell types (Methods). In 
Pol2 ChIA-PET networks, a majority of nodes (68–80%) overlapped promoters and enhancers, showing the 
utility of Pol2-mediated ChIA-PET interactions to capture interactions between regulatory elements7 (Fig. 2b, 
Supplementary Figure 1a). Majority of super enhancers and broad domains (> ~70%) were represented in these 
networks (Fig. 2c), in agreement with recent reports on super enhancers being more involved in chromatin inter-
actions6. In comparison we also built chromatin interaction networks using CTCF-mediated ChIA-PET interac-
tions. As expected these networks captured far fewer promoters, enhancers, broad domain and super enhancers 
(Supplementary Figure 2a-b, Table S1) and more insulator regions, suggesting that Pol2 ChIA-PET data is more 
suitable to study interactions between promoter and enhancer elements. Therefore, the rest of the ChIA-PET data 
analyses are conducted in Pol2 datasets. We noted that Hi-C networks include less number (~25–39% fewer) of 
promoters, broad domains and super enhancers compared to Pol2-associated assays (Supplementary Figure 3a-b),  
since Hi-C captures all DNA-DNA contacts. As previously noted3 genes associated with broad domains were 
expressed in a more cell-specific manner than genes that are active yet not associated with broad domains in the 
same cell type (Fig. 2d, left panel). Similarly, gene targets of super enhancers were expressed in a more cell-specific 
manner than the gene targets of regular enhancers in the same cell type (Fig. 2d, right panel).

Increased interaction frequency among broad domains and super enhancers.  We calculated the 
frequencies of interactions between all pairs of annotations (i.e., broad domains, typical promoters, super enhanc-
ers, typical enhancers, and other annotations) and compared against theoretical expectations (Methods). These 
analyses showed that in Pol2 ChIA-PET networks, broad domains were more connected to all other nodes than 
theoretically expected (2.9 times more than expected) in all three cell lines (Fig. 3a, Supplementary Figure 1b).  

Figure 2.  Regulatory elements in chromatin interaction networks. (a) Network statistics for chromatin 
interaction networks built from ChIA-PET, HiChIP, and Hi-C interactions in three ENCODE cell lines. (b) 
Regulatory annotations of Pol2 ChIA-PET network nodes. Note the enrichment of promoter and enhancer 
nodes in these networks. (c) Number of broad domains (inner chart) and super enhancers (outer chart) 
represented in ChIA-PET networks. Note that most broad domains and super enhancers in these cell lines are 
represented in the networks. (d) (Left) Cell-specific expression of genes associated to broad domains (dark red) 
and regular (red) promoters. Broad domain promoters are more cell-specific than regular promoters. (Right) 
Cell specific expression of genes associated to super enhancers (green) and regular enhancers (yellow). Super 
enhancer targets are more cell-specific than targets of regular enhancers.
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Furthermore, super enhancers interacted more frequently with broad domains (2.7–5.5 times more than 
expected) across the three cell types (Fig. 3a, Supplementary Figure 1b). Interestingly, super enhancer nodes 
also interacted more frequently among themselves (2.7–5 times more than expected), raising the possibility that 
distinct enhancer elements within a super enhancer region form highly interacting enhancer clusters in the 3D 
space. Indeed, further investigation of super enhancer-super enhancer interactions revealed that most of these 
(60–90%) take place within the same super enhancer region (Fig. 3b). We repeated these analyses after accounting 
for interactions within a single super enhancer region by representing the multiple nodes that belong to the same 
super enhancer domain as a single node (Methods). After this adjustment enrichment of interactions among 
super enhancer nodes were mostly lost (Supplementary Figure 4). Our analyses suggest that constituent enhanc-
ers within a super enhancer domain are in close proximity in the 3D chromatin space, however, these interactions 
do not typically span multiple distinct super enhancer domains. Finally, we noted an enrichment of interactions 
among promoter elements (both cell-specific and non-specific) (1.9–5.0 fold over expected, Fig. 3a). HiChIP, 
Hi-C, and CTCF ChIA-PET assays revealed similar interaction frequency patterns: i) high interactions between 
broad domains and super enhancers, ii) high interactions among constituent enhancers of super enhancer regions 
(Supplementary Figures 2c and 3c). Robustness of our results across assays and across cell types suggests a strong 
link between 3D configuration of the genome and distinct characteristics of regulatory elements. We summarized 
the characteristics of networks generated different assays in Table S1.

Broad domains and super enhancers are hubs in chromatin interaction networks.  Network cen-
trality measures suggest that cell-specific regulatory elements are more connected and exhibit hub-like connectiv-
ity in these networks in comparison to their typical counterparts (Fig. 3c, Supplementary Figure 5). On average, 
promoters were connected to 2.63, 4.21, and 3.56 other nodes in MCF-7, K562, and GM12878 Pol2 ChIA-PET 
networks respectively, whereas the corresponding values for broad domains were 5.03, 5.83, and 4.49 (one-sided 
Wilcoxon test p-values < 4.4.e-32 for all three cell lines). The increased connectivity of broad domain promoters 
taken together with their frequent interactions with super enhancers might be essential in maintaining their 
robust and increased gene expression patterns. On the other hand, enhancer nodes were connected to an aver-
age of 1.81, 1.90, 2.25 other nodes respectively in MCF-7, K562 and GM12878, whereas super enhancer nodes 
averaged 4.61, 3.27, and 4.22 connections respectively (one-sided Wilcoxon test p-values < 5.1e-114 for all com-
parisons). Our results also revealed a higher betweenness score for broad domains relative to non-specific pro-
moters (Supplementary Figure 5) suggesting that broad domains act as connectors in the networks. For example, 
Fig. 3d shows Pol2 ChIA-PET network involving the EMP2 oncogene that is upregulated in invasive breast cancer 
patients19. In the breast cancer cell line MCF-7, EMP2 maps to a broad domain node and is connected to multiple 
super enhancers (Fig. 3d, left panel), which are also connected to each other. In contrast, in K562 where EMP2 is 
an active yet non-specific promoter, this locus is connected differently and less densely (Fig. 3d, right panel). On 
the other hand, this locus was repressed in GM12878, and was not represented in the corresponding networks. 

Figure 3.  Interactions between regulatory elements in Pol2 ChIA-PET Networks. (a) Enrichment of 
interactions between pairs of annotation classes in ChIA-PET networks. Colors represent log2 ratio of observed 
over expected number of edges, where red represents enrichment of interactions and blue represents depletion 
of interactions. (b) (Top) Distribution of interactions within (turquoise) and across distinct (orange) super 
enhancer regions. (Bottom) Illustration of super enhancer nodes as defined by DNase-seq peaks within original 
super enhancer calls and the two different types of super enhancer interactions. (c) Connectivity degree 
distribution for different annotation classes. M, K, G represents MCF-7, K562, and GM12878, respectively. 
Broad domains and super enhancers are more connected on average than regular promoters and enhancers. (d) 
Example chromatin interaction networks around oncogene EMP2. (Left) Broad domain node associated with 
EMP2 in MCF-7 is highly connected with super enhancers. (Right) Regular promoter node associated with 
EMP2 is loosely connected in K562, with a single interaction with another promoter.
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This example illustrates that connectivity of a locus in the 3D chromatin reflects the functional importance of that 
region in the cognate cell type. Our analyses revealed that cell-specific regulatory elements are connected more 
frequently in the 3D genome in comparison to their non-specific counterparts.

Broad domains and super enhancers have unique connectivity patterns.  Chromatin interaction 
networks offer the opportunity to explore higher-level chromatin connectivity patterns (i.e., network motifs) 
beyond immediate interactions. However, enumerating all possible configurations in a large network is com-
putationally intractable (subgraph isomorphism problem). To effectively and systematically uncover chromatin 
interaction patterns associated with cell-specific regulatory elements, we utilized graphlets15. Graphlets are small, 
connected, and non-isomorphic (i.e., topologically different) subnetworks within a large network that enables sys-
tematically studying and quantifying the local network structure around a node of interest. Topologically distinct 
nodes within a graphlet are referred to as orbits. We studied the local structure of chromatin interaction networks 
using all possible graphlets composed of two to five nodes, which encompasses 73 orbits (Fig. 4a). For each node 
an orbit signature vector is compiled by counting the number of times each node possessed the local structure of 
the 73 orbits. Orbits were then clustered to account for their topological similarities (Methods) revealing seven 
major orbit clusters that represent topologically distinct types of orbits (hierarchical clustering, Spearman coeffi-
cient cutoff = 0.3) (Fig. 4b). For example, Cluster 1, C1, is composed of orbits occupying a central position across 
various graphlets (red nodes in Fig. 4a). Therefore, a node that has a high C1 score occupies a central position in 
its chromatin interaction network. For each network node we calculated their orbit cluster scores (n = 7 scores), 
which allowed us to systematically assess recurrent chromatin interaction patterns associated with specific regula-
tory elements. Promoters (regular and broad domain promoters) in general had higher C1 scores than enhancers, 
indicating that they are more likely to be at the center of chromatin interaction networks (Fig. 4c). Broad domains 
held the most central positions in these networks, in agreement with their high connectivity degree (Fig. 3c). On 
the other hand, among the enhancer elements, super enhancers were more centrally located (i.e., higher C1 score) 
than regular enhancers (Fig. 4c). Furthermore, super enhancer nodes exhibited more clique-like structures (e.g. 
triangle, cycle, and mesh patterns) than typical enhancers as evident from their higher C2, C3, and C4 scores 
(Supplementary Figure 6). Strikingly, orbit cluster scores of different functional elements showed very consistent 
patterns across cell types and across different assays (Fig. 4d), suggesting that these connectivity patterns are not 
stochastic and have functional relevance. These results suggest that cell type-specific regulatory elements have 
unique connectivity patterns and they tend to be central and tend to form tightly connected subnetworks in the 
3D chromatin space.

Network connectivity patterns are predictive of cell-specific activity.  To determine whether 
chromatin connectivity patterns of regulatory elements can be predictive of their cell-specific activity, we used 
machine-learning models based on support vector machines (SVM) (Fig. 5a). Each network node was represented 
using two types of data features: (1) network related and (2) genomic-data related and we built SVM-based16,17 
classification models to discriminate i) broad domains from regular promoters and ii) super enhancers from reg-
ular enhancers. The discriminative power of these models was quantified using receiver operating characteristic 
(ROC) curves and area under these curves (AUC), where a perfect predictor (i.e., one that only identifies a ‘real’ 
broad domain as a broad domain) has an AUC score of 1.

SVM models efficiently discriminated super enhancers from regular enhancers with high accuracy 
(Accuracy = 0.91, 0.74, 0.84 at 0.2 probability threshold, AUC = 0.84, 0.72, 0.81 in MCF-7, K562, and GM12878 
Pol2 ChIA-PET networks respectively) (Fig. 5b-c, Supplementary Figure 7). Similarly, these models were also 
effective in discriminating broad domain promoters from regular promoters (AUC scores = 0.77, 0.70, 0.71 
for MCF-7, K562, and GM12878 respectively) (Fig. 5d-e, Supplementary Figure 8). Furthermore, both analy-
ses revealed that integration of network related features (e.g., orbit cluster scores) with other genomic features 
improved the predictive ability of these models, suggesting that chromatin interaction networks and connectivity 
patterns harbor functional and non-redundant information. Prediction of super enhancers in HiChIP and Hi-C 
was as effective (AUC = 0.81 and 0.76 respectively) (Supplementary Figure 9). Similar results for broad domain 
classification models were achieved from Hi-C and HiChIP data (Supplementary Figure 10), although the rel-
atively smaller impact of network features in these analyses suggests that Pol2-mediated interactions may be 
better suited for capturing network patterns associated with promoters. Precision-recall curves (Supplementary 
Figures 7–10) further emphasized the value of integrating network and genomic data features and the ability of 
these datasets to predict cell-specific regulatory elements.

The most predictive data features in these models were obtained using forward selection (Supplementary 
Figures 11 and 12), which uncovered consistent ranking of discriminatory features. For broad domain predictions, 
the two most predictive features were node size and network features related to their centrality (Supplementary 
Figure 11). Further investigation revealed that indeed broad domains are associated with expanded chromatin 
accessibility around their promoters (Supplementary Figure 13), in agreement with the expanded H3K4me3 dep-
osition observed at these loci3. On the other hand, the most predictive features for super enhancers were related 
to their clique-like connectivity (i.e., mesh) and high degree, reinforcing the importance of tight connectivity 
around super enhancers (Supplementary Figure 12). In summary, results from these analyses showed that net-
work connectivity patterns of a regulatory element is predictive of its importance for regulating critical cellular 
functions in that cell type. Prediction results from our models can be found in Table S2.

Enhancers targeting broad domains in interaction networks are enriched in disease-causing SNPs.  
Previous studies have established that disruption of enhancer activity is associated with pathologies, particu-
larly at cell-specific enhancers4,14. Here we investigate whether chromatin interaction networks can be utilized 
in further prioritizing loci associated to disease-causing genetic variants and in identifying their gene targets. To 
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Figure 4.  Cell-specific regulatory elements are associated with distinct network patterns. (a) Representation 
of 73 orbits used to drive orbit cluster signatures. Orbit nodes are color-coded with respect to their cluster 
assignments from (b). For example red nodes represent central nodes that are in cluster 1. (b) Hierarchical 
clustering of 73 orbits after pooling data from all Pol2 ChIA-PET networks. Seven distinct clusters are identified 
based on the topology of network graphlets. (c) Trimmed mean Cluster-1 score (central nodes) for different 
annotations in ChIA-PET, Hi-ChIP, and Hi-C networks. Broad domain nodes have the highest C1 score in these 
networks. (d) Pairwise correlations (Pearson’s coefficient) of 7 cluster scores computed over each annotation 
between all network pairs. Note the high correlation across different assays and cell types (except for Hi-C), 
suggesting that network connectivity patterns are non-stochastic.
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test this, we calculated the enrichment of NHGRI GWAS SNPs20 in enhancers targeting regular promoters and 
enhancers targeting broad domains. Our analyses revealed that in MCF-7, enhancers (regular and super) target-
ing broad domains were significantly enriched in breast-cancer associated SNPs (Fig. 6a, Benjamini-Hochberg 
adjusted p-value = 0.012). This includes 7 out of 1757 enhancer/super enhancer nodes harboring breast cancer 

Figure 5.  Network connectivity patterns are predictive of cell-specific activity. (a) Summary of our machine-
learning framework. (b) Receiver Operating Characteristic (ROC) curves for SVM models discriminating 
enhancers from super enhancers in MCF-7. (c) Receiver Operating Characteristic (ROC) area under the curve 
(AUC) values for enhancer vs. super enhancer predictions over all networks. (d) ROC curves for SVM models 
separating promoters from broad domains in MCF-7. (e) Receiver Operating Characteristic (ROC) area under 
the curve (AUC) values for promoter vs. broad domain prediction over all networks.
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SNPs (Table S3), one of which is a super enhancer and targets the promoter of the MYC oncogene (Fig. 6b-c) 
that is constitutively expressed in many cancers, including breast and blood cancers21. In breast cancers, MYC 
de-regulation is associated with breast cancer development and poor prognosis22. The locus around MYC is active 
and represented in the chromatin interaction networks in all three cell types, however connectivity around this 
locus was different in these cells. In the MCF-7 network, MYC is a broad domain node and connected to multiple 
enhancer and super enhancer nodes, one of which harbors rs1121946 SNP that is in high linkage disequilibrium 
(LD) with index SNP rs11780156 (r2 > 0.7), a known breast-cancer associated variant (Fig. 6b-c). Our network 
representation revealed that although this SNP is within an enhancer domain that is 414 kb away from the MYC 
promoter, it is directly connected to MYC’s promoter in MCF-7 networks, emphasizing the importance of study-
ing disease-associated SNPs using 3D chromatin interaction networks. Similar to the enrichment of breast cancer 
associated SNPs in MCF-7, we observed that in GM12878, enhancers targeting broad domains were enriched in 
SNPs associated with immune-related disorders, such as Systemic Lupus and Crohn’s disease in comparison to 
enhancers targeting regular promoters (Table S4). This analysis revealed the utility of chromatin interaction net-
works to uncover and prioritize non-coding loci associated with pathologies as well as their gene targets.

Discussion
In this study, we showed that broad domains and super enhancers have distinct connectivity patterns in chro-
matin interaction networks that are conserved across cell types and can be captured using diverse assays. Broad 
domains tend to be central nodes in these networks and are frequently targeted by multiple constituent enhancers 
that belong to a super enhancer domain. A recent study employed CRISPR/Cas9 to delete enhancers and super 
enhancers in mouse embryonic stem cells (mESCs) and suggested that super enhancer clusters act in a redundant 
manner to fine tune the expression of their target genes23. Our observations from chromatin interaction networks 
provide an explanation for this redundancy. We observed high connectivity among super enhancer elements and 
high connectivity between broad domains and constituent super enhancers. This tightened connectivity among 
cell-specific regulatory elements ensures that the activity of super enhancer target genes (likely to be a broad 
domain) is robust to the disruption of any single enhancer element within the enhancer cluster. Such a tightened 
connectivity pattern might also be critical in establishing and maintaining robust (i.e., low variation) expression 
patterns associated with broad domain genes3. Our machine learning models showed that connectivity patterns 
of super enhancers and broad domains are predictive of their cell-specific nature.

Recent studies revealed that regulatory elements with frequent chromatin interactions (i.e., hubs) are enriched 
in super enhancers and harbor more GWAS SNPs6,24,25. Our study is in alignment with these findings where 
we observed increased connectivity for super enhancer nodes in comparison to regular enhancers using three 
different assays (ChIA-PET, Hi-C, and HiChIP) and in three different cell types (K562, MCF-7, GM12878). Our 
study furthered our knowledge on how super enhancers are connected in these networks and revealed that super 

Figure 6.  Enhancers targeting broad domains are enriched in variants associated to the diseases of the 
cognate cell type. (a) Enrichment p-values for breast-cancer SNPs at enhancers targeting promoters (E-P) and 
enhancers targeting broad domain promoters (E-BD) in different cell types. Breast-cancer associated SNPs 
are significantly enriched in enhancers targeting BDs in MCF-7 breast cancer cell line. (b) Example MCF-7 
network representing breast-cancer associated SNP rs1121946 in a super enhancer node targeting the MYC 
broad domain promoter. (c) Genome browser representation of the locus around MYC. Note that network 
representation is effective in detecting connectivity patterns.
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enhancers form clique-like structures and typically connect to broad domains and other super enhancer elements 
within the same domain. Broad domains were associated with more chromatin interactions compared to typical 
H3K4me3 domains6. Our study established that in comparison to regular promoters, broad domains had more 
interactions overall. Moreover, these interactions were especially connecting them to super enhancers. Increased 
targeting of broad domains by super enhancers likely ensures robust and increased expression of these important 
genes in cognate cells. Furthermore, we showed that enhancers targeting broad domains in chromatin interaction 
networks harbor disease-associated SNPs, further reinforcing the importance of studying these genes and their 
regulators in the context of human diseases.

A challenge we faced in our analyses was the difficulty of representing super enhancers that span long genomic 
regions (10–20 kb) in our networks, which would harbor more interactions merely due to their genomic coverage. 
We overcame this challenge by defining the network nodes using open chromatin regions (i.e., DHS sites), which 
represent putative active regulatory elements. This methodology also enabled the study of individual enhancer 
elements within a super enhancer domain. We observed that a super enhancer element typically is not a single 
and expanded regulatory element but a combination of constituent active enhancers that are in close proximity to 
each other in both linear and 3D space, and they frequently interact with one another and with their target gene to 
regulate that gene’s expression levels (see examples of such networks in Figs 3d, and 6b). Our analyses also showed 
that although members of a super enhancer domain heavily interact among themselves, these enhancers typically 
do not interact with other super enhancer domains.

In conclusion, our study uncovered the unique chromatin interaction patterns around loci that are critical for 
cellular functions and disease etiology by taking advantage of network theory and machine learning models. By 
building interaction networks we were able to study complex network patterns (such as graphlets) and to system-
atically quantify differences in the connectivity of different regulatory elements. Our findings revealed that chro-
matin connectivity patterns around super enhancers and broad domains are non-stochastic and conserved across 
cell types and can be captured via different assays. However, we acknowledge the caveat that genome-wide chro-
matin interaction maps analyzed here are generated from millions of cells. Therefore it is not possible to dissect 
whether the connectivity patterns observed for super enhancers and broad domains take place in individual cells. 
Advances in single-cell chromatin interaction profiling techniques will be essential in studying these patterns at 
the single cell level. As a step towards this direction, Hi-ChIP12 a recent technique significantly reduced the input 
material required to profile protein-mediated chromatin interactions: a 100 fold decrease from 100 million cells 
to 1 million cells. Similarly, recent developments in single-cell Hi-C profiling techniques open the doors to stud-
ying cell-to-cell-heterogeneity for DNA-DNA interactions26. With these technological advances, we expect more 
chromatin interaction data to be generated from human cells in healthy and disease states at the single-cell reso-
lution in the near future. Advanced computational methods we present in our study will be critical in furthering 
our understanding on how chromatin interactions might relate to establishing and maintaining critical cellular 
functions and how changes in these interactions might be associated with pathologies.

Methods
ChIA-PET data analyses and network construction.  Pol2 and CTCF ChIA-PET chromatin interac-
tions called using ChIA-PET Tool27 were obtained from28,29. Accession numbers for these datasets are as follows: 
MCF-7 (GSE39495), K562 (GSE39495), and GM12878 (GSE72816). ChIA-PET Tool27 interactions were preferred 
over the alternative Mango30, since calls obtained via Mango were sparse and did not include as many broad 
domain or super enhancer interactions (Table S1). To minimize the number of false positive interactions, we 
instead filtered interaction calls using QuIN31, by selecting only those having both anchors overlapping DNase 
I hypersensitive sites (DHS) defined from DNAse-seq open chromatin peaks, which reduces false positive calls 
and likely captures active regulatory loci. These peaks where then used to define the nodes of the interaction net-
works, which were constructed using QuIN31. MCF-7, K562, and GM12878 open chromatin peaks were called 
using MACS2 software32 (version 2.1) after pooling replicates (GSE32970 and GSE2969228). For network build-
ing, we used 250 bp extension and removed inter-chromosome interactions and edges spanning distances greater 
than 1 Mb. Network nodes were first annotated using ChromHMM states13,14. If a node overlapped with multiple 
ChromHMM annotations, we applied the following priority schema to dissolve ambiguities in annotations due to 
the genomic segmentation framework in ChromHMM: 1) enhancers/promoters 2) insulators 3) poised promot-
ers 4) repressed elements 5) transcribed elements 6) low signal. If a node was annotated both as a promoter and an 
enhancer, known transcription start site (TSS) definitions were used to define promoter nodes found within 2 kb 
of a known TSS. Broad domains and super enhancers annotations were then assigned respectively to promoter 
and enhancer nodes using the previously defined broad domain3 and super enhancer2 regions in corresponding 
cells. If a broad domain was found to overlap multiple promoter nodes, the promoter node with the largest over-
lap with the broad domain in terms of base pairs (bps) was assigned as the broad domain node. In the case of ties, 
both promoters were labeled as broad domain nodes.

Processing and analyses of Hi-C and HiChIP data.  We called interaction pairs from HiChIP12 
(GSE80820) (targeting cohesion subunit Smc1a) and Hi-C18 (GSE63525) data in GM12878 cell line. Valid 
interaction pairs from HiChIP biological and technical replicates were pooled and filtered by extending 250 bp 
in both directions, keeping only the pairs with both ends overlapping a DNase-seq peak. Significant HiChIP 
interactions between peaks were called based on the hyper-geometric distribution as described in27 and filtered 
using the Benjamini-Hochberg procedure (FDR < 0.05). Significant Hi-C intra-chromosomal interactions at 
1 kb resolution were identified using in-house software implemented based on the HiCCUPS method18. For 
each contact, expected values based on donut, vertical, horizontal and lower left filters were calculated using 
parameters P = 20 and W = 40 to calculate a P-value based on the Poisson distribution and filtered based on the 
Benjamini-Hochberg procedure (FDR < 0.025). A more stringent FDR cutoff is used for Hi-C data to make it 
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more comparable with other assays, since Hi-C data were more deeply sequenced than the others. The intersec-
tion of these four filters was used to identify the final set of contacts. Network construction was performed similar 
to ChIA-PET data using 0 bp and 1,250 bp extension parameters for HiChIP and Hi-C networks, respectively. 
These values where chosen to account for differences in read extension introduced in interaction calling steps. 
HiChIP edges were further filtered to remove edges with less than 4 supporting valid pairs.

Processing and analyses of RNA-seq data for cell-type specificity.  RNA-seq data was obtained 
from the ENCODE project repository for all available cell lines and adult tissues28,33. These data were filtered 
to exclude samples that were generated under an experimental treatment or audited for quality concerns. This 
resulted in 23 cell and tissues types (including GM12878, K562, and MCF-7) that were used to quantify the degree 
of cell-specificity of gene expression levels. For this, we calculated the cell-type specificity measure (SPM)34 for 
each gene in the three cell types. SPM was used to quantify cell-specificity of genes associated to regular and broad 
domain promoters, as well as target genes of regular and super enhancers. For super enhancers and enhancers, we 
considered both nearest TSS definitions (up to 10 kb) as well as promoter targets identified from ChIA-PET net-
works. Network targets were chosen by selecting promoter/broad domain targets of up to 4 edges using breadth 
first search between the enhancer and promoter node, stopping at the first promoter node found. If a network 
node was associated with multiple genes, the average SPM measure of all associated genes was used.

Interaction frequency between functional annotations.  We calculated the enrichment of interac-
tions between every pair of annotations (e.g., promoter versus enhancer nodes) by calculating a theoretical expec-
tation of interaction frequency and by comparing against the observed interaction frequency for this annotation 
pair. More formally, expected interaction frequency between all nodes annotated as “A” and all nodes annotated 
as “B” is calculated as:

∑= | |
∑ ∑

∑ ∑
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∈ ∈ <
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where Ci represents the set of all nodes in chromosome i, |ECi| represent the number of observed edges within 
the node subset Ci and gd(x, y) is the genomic distance from node x to node y. The expected frequency obtained 
corrects for both analyzing only intra-chromosomal interactions as well as the limitation that connected nodes 
within the network are within 1 Mb. For nodes with the same annotation, the expected value was adjusted accord-
ingly to account for two nodes being selected from the same set.

To study whether super enhancer interactions are restricted within a domain, we generated interactions net-
works again by merging super enhancer nodes that belong to the same super enhancer domain and representing 
the whole domain as a single node in the network. Then we counted the number of edges that are connecting 
these merged nodes with the rest of the nodes in the network and repeated the interaction enrichment analyses.

Centrality measures.  Network metrics were calculated using QuIN31. Connectivity degree refers to the 
number of edges connected to a node. Closeness centrality was computed as:

∑
=

∈

v
u v

Closeness( ) 1
nd( , ) (2)u Nc

where nd is the network distance (i.e., number of edges) between nodes u and v, and Nc represents the set of nodes 
within the connected component containing v. A connected component is defined as a collection of nodes where 
every node pair is connected to each other through some path (i.e., a sequence of adjacent edges) such that nodes 
are not connected to other nodes outside this collection. Harmonic centrality was computed as follows:

∑=
∈ ≠

v
u v
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nd( , ) (3)u N u v,c

Finally, betweenness centrality was calculated as:

∑=
≠ ≠ ∈
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u x x

Betweenness( ) sp( , , )
sp( , , ) (4)u v x Nc

where sp(u, x, v) denotes all shortest paths between nodes u and x that include node v. Normalized centrality 
measures of a node were calculated with respect to the size of the network component |Nc|.

Comparisons of connectivity degree measures of promoters to broad domains and super enhancer to enhanc-
ers were performed using the Wilcoxon rank sum test. The Wilcoxon rank sum test is a non-parametric test that 
does not assume normally distributed measurements. Corresponding n-values for each annotation subset and 
network are reported in Table S1.

Graphlet and orbit scores.  Graphlets are small, connected, and non-isomorphic (i.e., topologically dis-
tinct) subnetworks components that can be used to decompose and describe a large network15. Topologically 
distinct nodes of a graphlet are referred to as orbits. There exist 73 possible orbits for all graphlets of size 2–5, 
which were counted using the Cytoscape plugin GraphletCounter35. For each ChIA-PET network node, a vector 
of 73 orbit counts was obtained. The proportion of each orbit with respect to all 73 orbits counted was calculated 

http://S1


www.nature.com/scientificreports/

1 1SCIEnTIFIC REPOrTS | 7: 14466  | DOI:10.1038/s41598-017-14389-7

to normalize each vector. To identify orbits that are topologically similar, we performed hierarchical clustering 
based on Spearman rank correlation coefficient on orbit scores of ChIA-PET network nodes. Seven orbit clusters 
were obtained at a Spearman cutoff of 0.3 (Fig. 4b) and visually interpreted and labeled based on their connectiv-
ity patterns after excluding orbits 0 and 1, which were present and have similar scores for all nodes. Finally, scores 
for each orbit clusters is calculated as follows:

μ

σ
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





− 


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∈CS
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where CSki denotes the score of node i for cluster k, Oij denotes the orbit score for node i and orbit j, Ck denotes the 
set of orbits in cluster k, and μj and σj represent the mean and standard deviation of orbit j’s score over all nodes.

Support Vector Machine models.  We used support vector machines (SVMs) due to their efficacy in 
handling high dimensional and noisy data36, which is the case in genomics data. SVMs are supervised learn-
ing algorithms that effectively handle classification problems37 by mapping each example as a point in a higher 
dimensional data space and identifying a hyperplane that separates classes by the widest margin. To build SVM 
models, we extracted two types of data features we extracted for each network node: (1) network related and (2) 
genomic-data related. We extracted sixteen network related features, which included network measures (both 
raw and normalized by component size) (n = 8), connected component size, and graphlet cluster scores (n = 7). 
For genomic-data related features, we extracted and used seven features: open chromatin peak length in bps 
(equivalent to node size in our networks), the ratio of a node’s size to the average size of all nodes connected to it, 
the average PET of a node’s edges, and gene definition-related features (n = 4), which include the distance to the 
closest upstream and downstream TSS and the direction of transcription for these two genes. SVM16,17 models 
were trained with a radial basis function (RBF) kernel using scikit-learn Python libraries38. Grid search was used 
to tune hyper-parameters of the SVM models (C and gamma). For feature ranking, we implemented forward 
feature selection using a greedy algorithm that implemented a stepwise addition of features to the model, keeping 
the best-performing feature in the model for each round until all features were included. Matthews correlation 
coefficient (MCC) was used as a performance measure both during hyper-parameter tuning and feature selection 
analyses, since this measure is effective for unbalanced class sizes (i.e., 500–1400 super enhancer nodes compared 
to 7000–13000 enhancer nodes).

GWAS SNP enrichments.  We tested for enrichment of GWAS SNPs in enhancer loci targeting regular and 
broad domain promoters using GREGOR39. Index SNPs from the GWAS catalogue20 were used for enrichment 
analyses (n = 657 phenotypes) along with the SNPs that are in high linkage disequilibrium (LD) with the index 
SNPs (R2 > = 0.7). Benjamini-Hochberg FDR method was used for multiple hypothesis correction of enrichment 
p-values.

Availability of data and methods.  Datasets and scripts are available on the Ucar Lab github website: 
https://github.com/UcarLab/CellSpecificNetworks.
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