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Abstract

Bulk segregant analysis is a technique for identifying the genetic loci that underlie phenotypic trait differences. The basic approach is to
compare two pools of individuals from the opposing tails of the phenotypic distribution, sampled from an interbred population. Each pool
is sequenced and scanned for alleles that show divergent frequencies between the pools, indicating potential association with the ob-
served trait differences. Bulk segregant analysis has already been successfully applied to the mapping of various quantitative trait loci in
organisms ranging from yeast to maize. However, these studies have typically suffered from rather low mapping resolution, and we still
lack a detailed understanding of how this resolution is affected by experimental parameters. Here, we use coalescence theory to calculate
the expected genomic resolution of bulk segregant analysis for a simple monogenic trait. We first show that in an idealized interbreeding
population of infinite size, the expected length of the mapped region is inversely proportional to the recombination rate, the number of
generations of interbreeding, and the number of genomes sampled, as intuitively expected. In a finite population, coalescence events in
the genealogy of the sample reduce the number of potentially informative recombination events during interbreeding, thereby increasing
the length of the mapped region. This is incorporated into our model by an effective population size parameter that specifies the pairwise
coalescence rate of the interbreeding population. The mapping resolution predicted by our calculations closely matches numerical simula-
tions and is surprisingly robust to moderate levels of contamination of the segregant pools with alternative alleles. Furthermore, we show that
the approach can easily be extended to modifications of the crossing scheme. Our framework will allow researchers to predict the expected
power of their mapping experiments, and to evaluate how their experimental design could be tuned to optimize mapping resolution.
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Introduction
The advent of easy and affordable genome sequencing has en-
abled powerful genetic mapping approaches. In addition to ad-
vancing our understanding of the molecular basis of phenotypic
traits, such approaches can have important practical applica-
tions. For example, genetic mapping can help us identify variants
that underlie human diseases (Altshuler et al. 2008), localize
genes associated with favorable traits in plant or animal breeding
(Womack 1997; Goddard and Hayes 2009), and detect the loci re-
sponsible for drug or pesticide resistance (Ranson et al. 2000,
2004; Anderson et al. 2011).

Various techniques have been developed for this purpose,
ranging from classical linkage mapping to genome-wide associa-
tion studies (GWAS), with numerous extensions or combinations
of these approaches that are often tailored toward specific appli-
cations. Which particular technique is best suited for a given
problem can depend on a variety of factors, such as the genetic
architecture of the trait, the specific biology of the study system,
the resources available for experiments and sequencing, and the
mapping resolution desired.

In species that can be experimentally crossed, classical link-
age mapping has proven a powerful technique for detecting

quantitative trait loci (QTL) (Paterson et al. 1988; Lynch and

Walsh 1998; March 1999; Zeng 2001). One example of classical

linkage mapping is backcross mapping, which involves the gener-

ation of an F1 cross from two parental strains of contrasting phe-

notypes. The F1 offspring are then backcrossed to the parental

strains, and the resulting progeny are phenotyped for the trait of

interest and genotyped at a set of marker loci distributed across

the genome. By scanning for markers with an inheritance pattern

that correlates with the trait, one can localize the segments of

the genome on which causal variants could reside. This method

has long been the primary genetic mapping technique, yet it

tends to attain rather low genomic resolution (i.e. the length of

the identified genomic region in which the causal locus must be

contained but cannot be more precisely pinpointed). This is be-

cause the segments linked to the parental strains are typically

quite long due to the limited number of recombination events in

a single cross.
GWAS is an alternative approach for QTL mapping in which a

large number of individuals from a genetically diverse population

are genotyped at a dense set of SNP markers, or by whole genome

sequencing, and phenotyped for the trait of interest (Visscher

et al. 2017). The QTL responsible for trait variation can then be
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identified by regressing SNP genotypes against the phenotype.
The genomic resolution of this approach is limited in principle
only by the density of SNP markers and the genomic distance
over which linkage disequilibrium decays in the mapped popula-
tion. As a result, GWAS can sometimes detect even individual
causal SNPs. However, the trait of interest needs to exhibit suffi-
ciently high levels of additive genetic variation for GWAS to work,
and detection power tends to be limited for causal variants that
segregate at low population frequency. In addition, due to the
large number of SNPs tested, the thresholds for calling statistical
significance can be quite high.

Bulk segregant analysis (BSA) is a mapping approach that
combines ideas from linkage mapping and GWAS (Michelmore
et al. 1991). Like classical linkage mapping, a typical BSA design
starts from two parental strains of contrasting phenotypes.
These strains are then crossed to generate an F1 population that
is further interbred for several generations while maintaining a
sufficiently large population size to allow recombination to break
up linkage from the two parental strains. In the final generation,
two pools of individuals are selected from the tails of the pheno-
typic distribution, and each of these pools is sequenced. The
alleles responsible for trait differences (as well as any alleles
linked to them) should then exhibit significant frequency differ-
ences between the two pools, while alleles at other loci should be
present in both pools at similar frequencies.

In contrast to both GWAS and classical linkage mapping, BSA
does not require the sequencing of individual genomes, since
only the overall allele frequencies in the two pools are relevant.
This allows the use of more economic sequencing approaches
such as Pool-seq (Schlötterer et al. 2014). The resolution of BSA is
still expected to be considerably lower than GWAS because the
number of generations over which the population is interbred
will be limited. For longer experiments, the effects of drift could
also become problematic (Pool 2016). However, BSA can still be
used for detecting QTL where causal alleles are segregating at
low frequency in the population, as long as they are present in
one of the parental strains. This could be an important factor for
applications such as the mapping of drug or pesticide resistance
mutations.

Conceptually, BSA is similar to “introgression mapping”
(Severin et al. 2010; Earley and Jones 2011), where the population
is repeatedly selected for the phenotype of the first parental
strain in every even generation of the experiment. The surviving
individuals are then back-crossed to the second parental strain
and the resulting offspring are interbred without selection in ev-
ery odd generation. Under this approach, the population at the
end of the experiment should be genetically similar to the first
parental strain in the genomic regions that surround causal QTL,
while it should be similar to the second parental strain for the
rest of the genome. Note, however, that this approach can require
a considerably higher experimental effort than BSA.

BSA has already been successfully applied in various contexts.
For example, implementations of this approach have been used
to identify DNA markers linked to disease-resistant genes in let-
tuce (Michelmore et al. 1991) and pest-resistant genes in crops
(Snoeck et al. 2019), to study horizontal gene transfer in
Tetraychus urticea (Bryon et al. 2017), to locate QTLs associated
with drought resistance in maize (Quarrie et al. 1999), and to map
the genetic basis of various complex traits in yeast and Drosophila
(Lai et al. 2007; Ehrenreich et al. 2010; Magwene et al. 2011).

Despite these successful applications, one practical shortcom-
ing of BSA is that, depending on the experimental design, it tends
to produce very wide peaks of significance, which in previous

studies have sometimes extended over hundreds of kilobases
(Wybouw et al. 2019) or even several megabases (Song et al.
2017). This is particularly problematic because we do not cur-
rently have a good understanding of how the expected mapping
resolution is determined by biological and experimental parame-
ters. Simulation studies have shed some light on this issue and
demonstrated that more generations of interbreeding, a larger
population size during interbreeding, and deeper sequencing can
all improve mapping resolution, while the size of the selected
pools apparently has less of an impact (Pool 2016). Nevertheless,
it would still be desirable to have an analytical understanding of
exactly how all of these factors influence mapping resolution;
this would allow us to predict the expected resolution for a given
experiment, and to assess which factors one should tune to
optimize the mapping resolution most economically.

In this study, we employ coalescence theory to develop an
analytical framework for calculating the expected mapping
resolution of a BSA experiment. Our results reveal how the
recombination rate of the study organism, the effective popula-
tion size during interbreeding, the overall length of the experi-
ment, and the number of genotyped individuals combine to
determine the maximally achievable mapping resolution for a
trait with a simple genetic architecture.

Materials and methods
Simulations of BSA experiments
Simulations of BSA experiments were implemented in the SLiM
evolutionary simulation framework (version 3.5) (Haller and
Messer 2019). We modeled a single QTL located on a 100-Mb-long
chromosome. Each experiment was initialized with two homozy-
gous parental strains (denoted as AA and aa strains). The F1 was
always seeded with 1,000 males from the AA strain and 1,000
females from the aa strain. The population was then interbred
over t discrete, nonoverlapping generations, using SLiM’s default
Wright–Fisher model without selection. While the total number
of individuals was kept constant at 2,000 in each generation, only
Ne randomly chosen individuals were actually allowed to mate
and reproduce in each generation. Recombination occurred at a
uniform rate of r ¼ 1e� 8 per bp along the chromosome (corre-
sponding to 1 cM/Mb) in all simulations.

For the comparisons of analytical vs simulation results in the
standard BSA design (Fig. 5), as well as the heterozygote selection
(HS) scheme (Fig. 6), we used SLiM’s tree-sequence recording fea-
ture (Haller et al. 2019) to track the ancestry at each position in
each genome. This allowed us to directly identify ancestry break-
points (defined in Results) in the sampled chromosomes without
having to model any marker SNPs for such inference.

For the simulations of the introgression mapping (IM) scheme
(Fig. 6), we modeled SNPs placed at equidistant intervals of 10 kb
along the chromosome to differentiate ancestry from the two pa-
rental strains. While this approach only allows for indirect and
approximate inference of ancestral breakpoint locations, it
should not pose a limiting factor given that the mapping resolu-
tion was typically several orders of magnitude larger than the
distance between marker SNPs.

For the simulation of a short-read Pool-seq experiment (Fig. 7),
we used marker SNPs placed at equidistant intervals of 1 kb along
the chromosome. Here, we assumed that every SNP provided an
independent locus where a new set of C chromosomes was geno-
typed from the 2s chromosomes present in each sample. These
chromosomes were chosen randomly with replacement.
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The SLiM models for simulations, Python scripts for data
analysis, and all other relevant files are available at: https://
github.com/runxi-shen/Predict-Genomic-Resolution-of-BSA (last
accessed January 23, 2022). We also provide a simple python
script predict_bsa_resolution.py for calculating the expected geno-
mic resolution of a BSA experiment according to our equations,
given the experimental design and parameters. A detailed docu-
mentation of these scripts and instructions for how to use them
for different experimental designs are explained in the file
REAME.md, which is also provided on the Github repository.

Calculation of G0

We calculated G0 from SNPs placed at equidistant intervals of
10 kb (or 1 kb for the Pool-seq experiments) along the chromo-
some to differentiate ancestry from the two parental strains.
These calculations followed the procedure described in
(Magwene et al. 2011). Smoothed curves were obtained by a
weighted sum of all SNPs within the window bracketing the focal
SNP, where the weight of each SNP was obtained by a Nadaraya–
Watson kernel regression (Watson 1964). For peak calling in
Figs. 7 and 8, we used the 99.9th percentile of all G0 values along
the chromosome as the significance threshold (Zhang and
Panthee 2020). All SNPs with G0 values above this threshold were
considered part of the peak, with the size of the peak determined
by the distance between its leftmost and rightmost SNPs.

Results
To develop a theoretical understanding of the expected mapping
resolution of a BSA experiment, it will be instructive to first con-
sider a highly idealized model of a phenotypic trait determined
by a single QTL which we assume has two segregating alleles: A
and a. We further assume that recombination occurs at a uni-
form rate r per bp along the chromosome, which we model by a
Poisson process. We neglect gene conversion and assume that re-
combination events always result in crossover. Starting from the
two parental inbred strains (“blue” and “red”) which we assume
have genotypes AA and aa at the QTL, a BSA experiment is per-
formed for t generations of interbreeding, as outlined in Fig. 1a.

At the end of the experiment, we select two samples from the
interbred population, such that the first sample contains s chro-
mosomes of genotype A, while the second contains s chromo-
somes of genotype a. This could be achieved, for example, by
selecting s=2 individuals that are homozygous for A as the first
sample, and another s=2 individuals that are homozygous for a as
the second sample if we can accurately identify such homozy-
gotes based on their phenotype alone. Each of the two samples is
then sequenced individually. Note that this may require the phe-
notyping of many more than s individuals in an actual experi-
ment (thus, the size of the phenotyped population could be
substantially larger than the bulk size). Furthermore, there will
typically be some level of contamination of the segregant pools
with alternative alleles (e.g. due to phenotyping errors, incom-
plete heritability, or when heterozygotes cannot be reliably dis-
tinguished from the homozygotes by phenotype alone). However,
it will nonetheless be instructive to study an idealized model
with uncontaminated pools first. We will then investigate below
how results are affected by different levels of contamination.

As a consequence of recombination during interbreeding,
each of the chromosomes sampled at the end of the experi-
ment should be a mosaic of red and blue ancestry segments.
However, there should be a region surrounding the QTL where
all chromosomes in the AA-pool still have blue ancestry, while

all in the aa-pool still have red ancestry. The maximally achiev-
able mapping resolution is determined by the size of this region
(assuming that there is only one such region in the sample). Note
that in real-world experiments the ancestry breakpoints will not
be directly observable. Instead, their location can only be inferred
approximately through marker SNPs that allow one to distinguish
ancestry from the two founding strains. The genomic density of
such marker SNPs thus places a practical limit on the achievable
mapping resolution; however, this should not be problematic as
long as the average distance between differentiating sites
remains short compared to the mapping resolution predicted by
our calculations.

Several summary statistics have been developed to identify
these regions of contrasting ancestry between the segregant

Fig. 1. Illustration of a BSA experiment. a) Our model assumes a trait
determined by a single QTL with two different alleles (A, a). The starting
point of the experiment are two inbred parental strains, represented by
red and blue chromosomes. The blue strain carries the A allele and the
red carries the a allele. An F1 population is created and interbred for t
generations. At the end of the experiment, two pools of individuals are
selected such that the first comprises only AA individuals and the
second only aa individuals. The mapping resolution is determined by the
length of the region surrounding the QTL for which all chromosomes in
the AA-pool still have blue ancestry, while all in the aa-pool still have
red ancestry. b) Mapping resolution in a simulated BSA experiment for a
QTL located at the center (red line) of a 10-Mb-long chromosome (only
showing the genomic segment between 3.5 and 6.5 Mb in figure).
Interbreeding was modeled for 10 generations in a population of 100
individuals with a uniform recombination rate of 1.0 cM/Mb. Two pools
of 10 AA and 10 aa individuals were selected at the end of the
experiment. The blue curve shows the G0 statistic estimated from
marker SNPs. The peak in G0 around the QTL indicates the region where
all chromosomes in the AA/aa pools still have blue/red ancestry, which
extends for �0:5 Mb.
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pools, typically based on the detection of allele frequency differ-
ences at marker SNPs. Examples for such statistics include
ancestry difference (Ad) (Pool 2016), D(SNP-index) (Fekih et al.
2013), and a modified G-statistic (G0) (Magwene et al. 2011). An
illustration of this mapping problem is provided in Fig. 1b, where
we show G0 estimated along a chromosome in a simulated BSA
experiment.

The goal of our theoretical analysis will be to calculate the
expected length of the region where all chromosomes in the
AA-pool still have blue ancestry, while all in the aa-pool still have
red ancestry. For this purpose, let us define D as the distance to
the closest “ancestry breakpoint” (defining a point where ancestry
changes between blue and red in a chromosome) located down-
stream of the QTL among all chromosomes in the samples
(Fig. 2a). Due to symmetry, the expected length of the mapped re-
gion will then be simply 2E½D�, where E½D� denotes the expectation
value of D (we will neglect edge effects when a QTL is located
close to the start/end of the chromosome). This length deter-
mines the expected mapping resolution of the BSA experiment
(with “shorter” expected mapping tract lengths corresponding to
“higher” resolution). Note that the actually achievable resolution
will likely be lower in practice than predicted by our theory due
to the need to rely on marker SNPs as proxies for ancestry, as
well as other experimental factors such as sequencing errors.

Our general approach for the calculation of E½D� is to trace the
lineages of all sampled chromosomes back to the two parental
strains, and then study how ancestry breakpoints have been gen-
erated along this genealogy (Fig. 2b). Note that due to recombina-
tion events, local genealogies will vary as one moves along the
chromosomes of the samples, constituting the so-called “tree
sequence” (Kelleher et al. 2016). However, at any given position,
there will be exactly one genealogy. Thus, the lineage of any
given sampled chromosome at that position can be traced back

all the way to a single chromosome in the F0. If this happens to

be a red chromosome, the sampled chromosome will be assigned

red ancestry at this position, otherwise it will be assigned blue

ancestry.
Each ancestry breakpoint in a sampled chromosome stems

from a crossover event in one of its ancestors. Importantly, this

must have been an ancestor that carried a blue ancestry segment

around the crossover location in one of its chromosomes, and a

red one in the other (Fig. 2b). By contrast, crossover events at

positions where an individual carries either two blue or two red

ancestry segments around the crossover location will never cre-

ate new ancestry breakpoints.

Infinite population model
We initially want to assume an idealized model of an interbreed-

ing population of infinite size. This is for two reasons: first, we

want to be able to neglect coalescence events when tracing back

the lineages from the chromosomes in our sample to the chromo-

somes in parental strains. Second, we want to be able to neglect

any changes in allele frequencies over the course of the experi-

ment due to random genetic drift.
Let us first consider a short BSA experiment where the popula-

tion is already sampled in the F2. Since all individuals in the F1

carry one red and one blue chromosome, all recombination

events in this generation should create new ancestry breakpoints.

We model a uniform recombination rate (r) per base pair. In 2s

sampled chromosomes from the F2 (representing the combined

two pools), the overall rate (R) at which new ancestry breakpoints

have been created per bp in this generation is therefore simply

R ¼ r� 2s.
Assuming R� 1, we can model these events by a Poisson

process along the chromosome. The distance D to the closest

ancestry breakpoint downstream of the QTL in all sampled

chromosomes should then be an exponential random variable

with cumulative density function PðD � dÞ ¼ 1� e�Rd and

expectation value E½D� ¼ 1=R ¼ 1=ð2rsÞ.
We can directly extend this process to chromosomes sampled

from the F3, but here things become a bit more complicated. This

is because the parents of the sampled individuals are no longer

guaranteed to carry one red and one blue chromosome. Instead,

according to Hardy–Weinberg equilibrium, the probability that a

randomly picked individual from the F2 at any given genomic po-

sition will carry chromosomes with different ancestry is only 1/2.

Thus, only half of the crossover events during meiosis are actu-

ally expected to create new ancestry breakpoints in this genera-

tion, and the overall rate at which new ancestry breakpoints are

created per bp is therefore R ¼ rs. Since we neglect drift in the in-

finite population model, this should be the same fraction for all

future generations.
The infinite population model also ensures that no two sam-

pled chromosomes will ever share a parent or grandparent with

each other. Consequently, we can model individual ancestral lin-

eages completely independently of each other. In 2s chromo-

somes sampled from the F3, the overall rate (R) at which new

ancestry breakpoints have been generated per bp is therefore

simply the sum of the individual rates over the 2s lineages and

the two parental generations: R ¼ 2rsþ rs ¼ 3rs. Every additional

generation of crossing will further increment this rate by rs.

Thus, after t generations of interbreeding, the overall rate will be

R ¼ rst. Assuming R� 1, we can again model these events by a

Poisson process along the chromosome, yielding:

(a)

(b)

Fig. 2. Resolution of a BSA experiment. a) We define D as the distance
between the QTL and the first ancestry breakpoint downstream of the
QTL in all samples. b) Example of a full pedigree of an individual from
the F3. All crossover events that have occurred along its pedigree are also
shown. Only those crossover events occurring in individuals that carried
red and blue ancestry at the location of the crossover actually generated
new ancestry breakpoints, and every breakpoint observed in the
sampled chromosome can be traced back to such a specific crossover
event in the pedigree.
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E½D� ¼ 1
R
¼ 1

rst
: (1)

Because, the situation upstream and downstream of the QTL
is symmetric, the expected resolution of the BSA experiment in
this infinite population mode is then simply 2E½D� ¼ 2=ðrstÞ bp.
Thus, it is inversely proportional to the product of the recombina-
tion rate, sample size, and length of the experiment. This result is
very intuitive; all that matters is the overall rate at which new
ancestry breakpoints are generated along the lineages of the
sample.

Finite population model
In the infinite population model, every ancestry breakpoint
present in the sampled chromosomes traces back to a unique
crossover event along the genealogy of the sample. In a finite
population, different chromosomes can share a breakpoint that
traces back to the same crossover event in a common ancestor.
In that case, we can no longer describe the genealogy of the sam-
ples by 2s distinct lineages through the interbreeding phase, since
individual lineages could have merged (Fig. 3).

An important consequence of this is that the average “length”
of the sample’s genealogy will be shorter in a finite population
compared to our infinite population model, where it was simply
2st. In general, this should reduce the number of ancestry break-
points captured in the sample, thereby increasing the length of
the mapped region.

To derive an analytic expression for the mapping resolution in
a finite population, let us assume that we can model it as a
diploid Wright–Fisher population with coalescence effective

population size Ne. Let x(i) denote the number of ancestral line-
ages at a given genomic position in the genealogy of the sampled
chromosomes in generation i (Fig. 3). We can calculate how x(i) is
expected to change between consecutive generations, applying a
result from the theory of occupancy distributions (Johnson and
Kotz 1977):

E½xði� 1Þ� ¼ 2Ne 1� 1� 1
2Ne

� �xðiÞ
" #

: (2)

Evaluating this equation recursively, starting from xðtÞ ¼ 2s,
then allows us to calculate the expectation values of x(i) all the
way back to i¼ 2.

As in the infinite population model, every crossover event in
the F1 will create a new ancestry breakpoint, while this should be
true for only half of such events in subsequent generations.
Together with the above result for x(i), this allows us to calculate
the overall rate (R) at which new ancestry breakpoints are gener-
ated per bp along the genealogy of all sampled chromosomes:

R ¼ rxð2Þ þ r
2

Xt

i¼3

xðiÞ: (3)

Since E½xðiÞ� < 2s for all i< t, this rate will be smaller than the
corresponding rate R ¼ rst of the infinite population model.

One important assumption underlying Eq. (3) is that the popu-
lation frequencies of red and blue alleles still remain constant at
50% over the course of the experiment, so that from the F2 on-
ward, the probability that a randomly chosen individual carries
both a red and a blue ancestry segment at any given genomic po-
sition remains at 0.5. However, random genetic drift should lead
to a decay of heterozygosity (H) over time according to
H / expð�t=ð4NeÞ�, and the probability that an individual carries
ancestry segments from both parental strains at a given genomic
position is expected to decrease at a similar rate. Since we neglect
this effect, Eq. (3) should still overestimate R, although much less
so than in the infinite population model. This should primarily
be a problem for very long BSA experiments with small Ne where
t� 4Ne does not hold.

As long as R� 1, we can again model the creation of new an-
cestry breakpoints by a Poisson process along the chromosome.
The distance D to the closest ancestry breakpoint downstream
of the QTL captured in the sample will then be an exponential
random variable with expectation value:

E½D� ¼ 1
R
¼ 1

rxð2Þ þ r
2

Pt
i¼3

xðiÞ
: (4)

This result provides an analytic solution for the expected
mapping resolution of a BSA experiment with an interbreeding
population of effective size Ne. However, its calculation requires
iterative evaluation of Equation (2), and we are not aware of any
closed-form solution for this recursion. Even though all elements
of x(i) can be easily calculated with the help of a computer, this
may not be particularly helpful in allowing us to understand how
individual parameters are expected to affect the mapping resolu-
tion. To address this issue, we will make use of a previously sug-
gested deterministic approximation for x(i), which can be
obtained by mapping the recursion to a differential equation
(Griffiths 1984; Maruvka et al. 2011; Chen and Chen 2013; Jewett
and Rosenberg 2014):

(a)

(b)

Fig. 3. Infinite and finite population models. a) In the infinite population
model, all lineages descend independently and the overall length of the
genealogy of 2s sampled genomes is simply 2st. b) In the finite
population model, by contrast, lineages can coalesce in ancestors of the
sample, reducing the expected overall number of ancestors in previous
generations and thereby the expected length of the genealogy.
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xðiÞ � 2s

2s� ð2s� 1Þe� t�i
4Ne

: (5)

We will further replace the summation in Equation (3) by an
integral over the t generations of the experiment, yielding:

R � r
2

ðt

0
xðyÞdy ¼ 2Nerln 2s e

t
4Ne � 1

� �
þ 1

� �
: (6)

Note that this integration assumes that recombination
events along the genealogy create ancestry breakpoints with a
uniform probability of 1/2 in every generation (not just from
the F2 onward). This assumption is obviously incorrect for
individuals in the F1, where every recombination event will
generate a new ancestry breakpoint. However, by extending
our integration back to the F0, where recombination events
never generate new ancestry breakpoints, we effectively com-

pensate for this effect, at least as long as E½xð0Þ� � E½xð1Þ�. This
yields an expected mapping resolution of:

E½D� � 1

2Nerln 2s e
t

4Ne � 1
� �

þ 1
� � : (7)

In the following, we will refer to Equation (4) as the “recursion”
solution, while the approximation presented in Equation (7) will
be referred to as the “integration” solution.

Limiting cases
We now want to take a closer look at the expected mapping reso-
lution derived in Equation (7) and discuss how it relates to the re-
sult from the infinite population model. First, as we already
mentioned above, our approach relies on the assumption that
t� 4Ne, as drift would otherwise be strong and heterozygosity
would be expected to decay noticeably over the course of the
experiment. This assumption specifies a regime where the proba-

bility that a given pair of lineages coalesce over the course of the
experiment is still small (since the expected time to pairwise
coalescence should be 2Ne generations). Given t� 4Ne, we can
perform a Taylor series approximation to the exponential in
Equation (7):

ln 2 e
t

4Ne � 1
� �

þ 1
� �

� ln
st

2Ne
þ 1

� �

) E½D� � 1

2rNeln
st

2Ne
þ 1

� � : (8)

This approximation allows us to better understand how the
infinite and finite population models differ from each other. In
the infinite population model, mapping resolution was simply in-
versely proportional to the product of recombination rate (r),
sample size (s), and number of generations (t) of the experiment.
In the finite population model, mapping resolution is still in-
versely proportional to the recombination rate, but the effects of

sample size and experiment length are now attenuated by a loga-
rithm. Consequently, increasing those parameters is no longer
expected to improve mapping resolution as effectively as in the
infinite population model. We further note that sample size and
generations enter Equation (8) only in terms of the product s� t.
Varying each of these two parameters by the same factor is there-
fore expected to produce a similar impact on the expected map-

ping resolution (as long as t� 4Ne still holds). In practice, this

means that running an experiment twice as long, for instance,

should yield the same benefit as doubling the sample size.
Equation (8) also reveals where the effects of a finite popula-

tion start to become substantial. When st� 2Ne, we can further

approximate

ln
st

2Ne
þ 1

� �
� st

2Ne
) E½D� � 1

rst
: (9)

Thus, the infinite and finite population models converge in
this regime. The two models will increasingly diverge from each

other as st becomes of the same magnitude as 2Ne. The condition

st� 2Ne should typically be much stricter than t� 4Ne, our es-
sential assumption for the finite population model, unless sam-

ple size is very small. The former effectively assumes that there

are only very few coalescence events among the genealogy of all
sampled chromosomes, whereas the latter only assumed that co-

alescence was unlikely between any two sampled chromosomes.
Figure 4 illustrates the behavior of our analytical solutions for

the finite and infinite population models as a function of the
product st, and, in the finite population model, for different val-

ues of Ne. As predicted, both models converge when st� 4Ne.
Compared to the infinite population model, increasing st provides

only diminishing returns for improving mapping resolution in the

finite population model. Lower Ne values generally decrease map-
ping resolution.

Numerical validation
To evaluate the accuracy of our mathematical results, we con-

ducted individual-based simulations of a BSA experiment (see
Materials and methods). Specifically, we modeled an experimental

setup as described in Fig. 1a, assuming a trait that is determined

by a single QTL located on a 100-Mb-long chromosome. We as-
sumed a uniform recombination rate of r ¼ 1e� 8 per bp and gen-

eration (i.e. 1 cM/Mb), which we did not vary in our simulations

because mapping resolution should always be inversely propor-
tional to r. The parameters we did vary were the sample size (s),

the effective population size (Ne), and the number of generations

of interbreeding (t).

Fig. 4. Mathematical predictions for the infinite and finite population
models. Blue dots show the prediction by the infinite population model
according to Equation (1); red dots show the prediction by the finite
population model according to Equation (6) for three different values of
Ne. Recombination rate was set to r ¼ 1e� 8 per bp. To vary st in these
equations, we fixed t¼ 2 and then varied s from 2 to 1,024. The infinite
and finite population models converge as st becomes much larger than
2Ne, as predicted by our theory.
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Figure 5 shows the comparisons between these simulations

and our analytical results given by Equations (1), (4), and (7) over

a broad range of parameter values (Ne varying between 10 and

1000, s varying between 2 and 1024, and t varying between 2 and

20). For each parameter setting, we estimated D over 5,000 simu-

lations. The resulting distributions are shown by Box and

Whisker plots. Note that these distributions tend to have rather

pronounced positive skews, such that their means tend to be

much larger than their medians. Our mathematical predictions

are given in the form of expectation values for D, and thus need

to be compared to the mean values of the simulation data, not

the medians.
The simulation results show excellent agreement with our re-

cursion solution for the finite population model provided in

Equation (4). As already discussed above, the solution from the

infinite population model provided in Equation (1) constitutes an

upper bound for the maximally achievable mapping resolution.

Consistent with analytical predictions, the finite and infinite

models converge when st� 4Ne, and the infinite population

model increasingly overestimates mapping resolution as the con-

dition st� 4Ne becomes violated.
The integration approximation of the finite population model

we derived in Equation (7) generally works well for small and

moderate sample sizes, but tends to underestimate mapping res-

olution when s approaches Ne in magnitude. It also breaks down

when t is very small (as can be seen in the lower left panel for

t¼ 2, where the integration approximation actually becomes less

accurate than the infinite population model). This is a conse-

quence of the use of a continuous integration in Equation (6),

which underestimates the total tree length when the number of

discrete generations is small. However, in this small t regime, the

Fig. 6. Extension of our theory to two different crossing schemes. In the
IM scheme shown in the left panels, AA homozygotes are selected in
even generations and then backcrossed to the aa founding strain. The
resulting offspring are interbred without selection in odd generations. At
the end of the experiment, AA homozygotes are sequenced. The bottom-
left panel shows that the distributions of D values in simulated IM
experiments conform well to our analytical predictions (see Materials and
methods). The HS scheme shown in the right panels is similar to the
standard BSA design, except that only Aa heterozygotes are allowed to
reproduce in every generation. Our theory again accurately predicts the
expected mapping resolution under this design (bottom-right panel).

Fig. 5. Comparison between mathematical results and simulations. A single QTL located on a 100-Mb-long chromosome with a uniform recombination
rate of 1 cM/Mb was modeled. Box plots show the distribution (quartiles) of D estimated over 5,000 simulation runs for each given parameter setting.
The top/bottom whiskers represent the highest/lowest datum within the 1.5 interquartile range of the upper/lower quartile. Blue lines show the means
of the data, which tend to be much larger than the medians. Symbols show the expected resolutions for the infinite (green) and finite (red/orange)
population models according to Equations (1), (4) and (7), respectively. Green dots are difficult to see in the lower left panel because they are almost
completely overlaid by the red dots. Note that these mathematical predictions should be compared to the means of the simulations (blue lines), not the
medians. In the top row, we varied Ne while keeping t¼ 10 constant. In the bottom row, we varied t while keeping Ne ¼ 100 constant.

R. Shen and P. W. Messer | 7



recursion solution, which is most accurate, can also be easily

evaluated due to the need for only few recursion steps.

Extension to alternative crossing schemes
Our analytical approach for calculating E½D� is straightforward

to extend to variations of the experimental design, such as al-

ternative crossing schemes. The key parameters that need to

be ascertained for a given design are the rate qðiÞ at which new

ancestry breakpoints are generated per bp in the gametes that

will make up the individuals in generation i, together with

E½xðiÞ�, the expected number of ancestral lineages present in

the sample’s genealogy in that generation. The expected map-

ping resolution is then given by a direct generalization of

Equation (3):

E½D� ¼ 1Pt
i¼2

qðiÞE½xðiÞ�
: (10)

In the standard BSA design, we had qð2Þ ¼ r and qði > 2Þ ¼ r=2,
with E½xðiÞ� calculated recursively by Equation (2) using the coa-
lescence effective size Ne of the interbreeding population. In the
following, we will illustrate how this approach can be applied to
two modifications of the standard BSA design.

The first approach is IM for a monogenic trait, illustrated in
Fig. 6 (left). Here, AA homozygotes are selected in every even gen-
eration of the experiment (the approach thus relies on our ability
to do so effectively). These individuals are then backcrossed to
the aa parental strain. The resulting offspring are interbred with-
out selection in every odd generation, after which the cycle starts

Fig. 8. The impact of heterozygote contamination on BSA experiments. a) Box plots show the distributions of G0 peak lengths as a function of the
heterozygote contamination rate in the segregant pools, estimated from 1,000 simulation runs for each rate. We assumed equal percentages of
heterozygotes in both pools, with no contamination by homozygotes of the alternative allele. Mean G0 peak lengths are surprisingly robust to
contamination levels as high as 60%. Note that simulation means are systematically higher than medians, especially for the highest tested
contamination level of 80%, indicating that mean values are likely driven by long tails of the distributions. As in Fig. 7b, the lower whiskers always
extend to the maximally achievable resolution of approximately 100 kb given our smoothing procedure and distance between marker SNPs. b) The
curves show tricube weighted G0 values for 10 simulation runs each for a scenario without heterozygote contamination and a scenario with a
heterozygote contamination rate of 40%. Bold segments of the curves specify the identified peaks. Contamination lowers the average height of the G0

peaks but their average length is much less affected. For the 0% scenario, peak lengths ranged from 0.10 to 0.83 Mb in our simulations, as compared to
0.12–1.02 Mb for the 40% scenario.

Fig. 7. Full genome sequencing vs Pool-seq. a) G0 statistics estimated in two simulated BSA experiments that modeled a single QTL at the center of a
100-Mb-long chromosome, with Ne ¼ 100, t¼ 10, and r ¼ 1e� 8. The left plot shows full genome sequencing of a sample of size 2s ¼ 40. The right plot
shows Pool-seq with 40� coverage of a sample of size 2s ¼ 400. The peak lengths of G0 were 2.56 Mb (left) and 0.35 Mb (right) in these two simulations,
respectively. b) The box plots show the distributions of G0 peak lengths estimated across 1,000 simulation runs under each of three experimental
setups: full-genome sequencing of samples of size 2s ¼ 40 (left), Pool-seq with 40� coverage of samples of size 2s ¼ 400 (center), and full-genome
sequencing of samples of size 2s ¼ 400 (right). Remarkably, the Pool-seq experiment with C ¼ 40x and 2s ¼ 400 yields a resolutions that is almost as
good as the full-sequencing experiment with 2s ¼ 400, despite having less than 10% of chromosomes actually genotyped at each locus, on average.
Note that the lower whiskers of the three box plots are all at approximately 100 kb, specifying the maximally achievable resolution in our simulations
given the smoothing procedure together with the fact that G0 was estimated from marker SNP placed at equidistant intervals of 10 kb along the
chromosome.
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anew. At the end of the experiment, s individuals of genotype AA
are selected and sequenced. Their genomes should then resem-
ble the AA strain across a genomic region that surrounds the
causal QTL, while resembling the aa strain throughout the rest of
the genome.

During the odd generations of an IM experiment, all individu-
als should be Aa heterozygotes at the QTL, and thus carry one
red and one blue ancestry segment across some region surround-
ing it. These segments will become shorter and shorter due to re-
combination events as the experiment progresses. The rate at
which new ancestry breakpoints are created close to the QTL,
during the odd generations, should therefore be twice that of a
standard BSA experiment, while it will be zero in all even genera-
tions (when all surviving individuals will be AA homozygotes at
the QTL). When averaged over the whole experiment, new ances-
try breakpoints in the vicinity of the QTL should hence arise at a
rate of r=2, similar to the BSA design.

However, due to the selection step for AA homozygotes in the
even generations, the coalescence rate in the IM design should be
higher as compared to a standard BSA design with an interbreed-
ing population of comparable size, given that only 1/4 of the pop-
ulation should be AA homozygotes. Thus, the value of Ne will
need to be adjusted in Equation (2). A reasonable approximation
would be to use the harmonic mean between odd and even gen-
erations, yielding Ne ¼ 0:4N0, where N0 is the coalescence effective
population size of the interbreeding population in a scenario
where no selection and introgression would be performed.
Figure 6 confirms that this approach produces an accurate ana-
lytical prediction for the expected mapping resolution in an IM
experiment.

This example illustrates how our theory can help evaluate the
expected performance of alterations to an experimental design.
For the IM design in particular, the fact that qðiÞ should be com-
parable to a standard BSA design when averaged over the entire
experiment, while Ne should be smaller, suggests that an IM de-
sign for a monogenic trait should generally have lower resolution
than BSA, confirming previous simulation results (Pool 2016).
Yet, there may be other advantages of IM. For example, this de-
sign ensures that A and a alleles are kept at 50% frequency
throughout the experiment, thereby eliminating any potential
effects of drift or selection at the QTL that could exist in a stan-
dard BSA design.

The second alternative design we want to discuss is HS for a
monogenic trait, illustrated in Fig. 6 (right). In this approach, only
Aa heterozygotes are selected for reproduction in every genera-
tion (again assuming that we can do so effectively). This should
double the rate of ancestry breakpoint generation in the vicinity
of the QTL as compared to a standard BSA design, so that qðiÞ ¼ r
for all generations i 	 2. However, the effective population size
will again be reduced due to the selection step. Here, a reasonable
approximation should be that Ne is about 1/2 of that in a standard
BSA design with an interbreeding population of comparable size,
given that about half of the population are expected to be Aa het-
erozygotes at any point. Our simulations confirm that this ap-
proach again produces an accurate analytical prediction for the
expected mapping resolution in an HS experiment (Fig. 6).

In principle, due to the higher rate of ancestry breakpoint gen-
eration, the HS design could therefore yield a mapping resolution
for a monogenic trait that is up to two times better than a stan-
dard BSA design, as long as this is not outweighed by the concom-
itant reduction in Ne. Note that, as with IM, the HS design
maintains the frequency of A and a alleles at 50%.

Pooled sequencing data
Our calculations have so far assumed full sequence information
for all sampled chromosomes. The sequencing data in an actual
BSA experiment, however, will often be comprised of short reads
from pooled samples (Schlötterer et al. 2014). For such “Pool-seq”
data, the specific set of chromosomes sequenced at any given po-
sition will thus vary along the genome, unless the sequencing
coverage level is so high that each chromosome is covered by at
least one read at most positions. This raises an important practi-
cal question: for a BSA experiment with Pool-seq data, is the
number of sampled chromosomes (2s) or the sequencing cover-
age level (C) the more critical factor in determining mapping reso-
lution?

Our calculations make a clear prediction. Since mapping reso-
lution is ultimately limited by the ancestry breakpoints present
in the sampled chromosomes, sample size will be the key limiting
factor. In larger samples, there is simply a better chance to cap-
ture more breakpoints that are closer to the QTL. In fact, even
when coverage is low compared to sample size, it may still be
possible to achieve a mapping resolution close to what would be
predicted by our equations for the given sample size. Consider,
for example, two SNPs that are both close to the QTL yet sepa-
rated from each other by a distance larger than the typical read
length. In the Pool-seq data, we will then likely find different sets
of chromosomes being captured by reads at each SNP. Each such
SNP can therefore provide another chance to observe a read with
ancestry from the opposite strain. As long as the read length is
much shorter than the expected mapping resolution, this pro-
vides a large number of trials to detect alternative ancestries as
we move away from the QTL, which could make up for the
limited number of chromosomes sequenced at each individual
locus.

To test this prediction, we simulated BSA experiments with ei-
ther full sequencing data of a sample of size 2s ¼ 40, or Pool-seq
data of C¼ 40� coverage from a much larger sample of size
2s ¼ 400. We denote sample size here by 2s instead of s, since we
want to compare a coverage equivalent to the number of chro-
mosomes sequenced at each position in the full sequencing ap-
proach. Note, however, that generating full sequencing data for a
sample of 40 chromosomes would actually require an overall se-
quencing coverage substantially higher than 40� with current se-
quencing technologies.

Figure 7a shows that the Pool-seq approach can indeed
achieve a much higher resolution than the full sequencing ap-
proach, despite a comparable number of chromosomes se-
quenced per site. One can also see how this is a result of the
stochastic nature in which Pool-seq captures reads from different
chromosomes as one moves along the sequence, which generates
noise in the G0 curve. The QTL can be more precisely localized in
the Pool-seq approach because due to the much larger sample
size, the region around the QTL in which one never observes
reads from both parental strains in the same pool is much
shorter as compared to the G0 peak in the full sequencing ap-
proach with the smaller sample size.

This result is not just observed in one specific simulation run,
but holds more generally for the distribution of peak lengths for
the G0 statistic, estimated over 1,000 simulations (Fig. 7b). We
find that the average peak length for the Pool-seq approach with
2s ¼ 400 and 40� is almost 10 times shorter than for the full se-
quencing approach with 2s ¼ 40. In fact, the Pool-seq approach
yields a resolution that is just slightly worse than that of a full se-
quencing approach of the whole sample of size 2s ¼ 400, which
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would require substantially more sequencing effort.
Interestingly, our results suggest that longer reads in a Pool-seq
approach would actually perform worse in such situations, as
this would increase the distance over which the set of sequenced
chromosomes would remain correlated.

Impact of phenotyping inaccuracy
The arguably most unrealistic assumptions made in our calcula-
tions is the lack of contamination of the segregant pools by alter-
native alleles, which would require a perfect ability to assess QTL
genotype by phenotype. In practice, factors such as incomplete
heritability or heterozygotes showing a similar phenotype as one
of the homozygotes will likely result in some level of contamina-
tion in most experiments. We would expect that such contami-
nation can decrease the actual mapping resolution as compared
to an experiment with perfect phenotyping.

To examine the magnitude of this effect, we compared the dis-
tributions of G0 peak lengths in simulated BSA experiments with
different levels of contamination by alternative alleles (Fig. 8a).
Intriguingly, even when 40% of individuals in each pool were het-
erozygotes, this still increased the mean peak length only mar-
ginally (by just a few percent). Thus, the results we derived for
the expected mapping resolution under the assumption of no
contamination should still be reasonably accurate in these sce-
narios.

The reason for this apparent robustness to contamination by
alternative alleles can be seen in Fig. 8b, where G0 curves are
shown for individual simulation runs with 0% vs 40% contamina-
tion by heterozygotes in each pool. While higher contamination
rate clearly decreases the height of the G0 peaks around the QTL,
peak widths are much less affected. This makes sense given the
definition of G0, which essentially measures allele-frequency dif-
ferences between the segregant pools. Even with 40% contamina-
tion in each pool, allele frequencies at the causal locus should
still segregate at a ratio of 20:80 between the two pools, as com-
pared to a ratio of 0:100 with no contamination, and a ratio of
50:50 for the genomic background. As one moves away from the
QTL, this signal will decay at a similar rate as for the scenario
without contamination. Thus, as long as contamination is not yet
so high that it becomes difficult to discern the peak from back-
ground noise, the expected peak size will remain similar. Note
that the same line of reasoning, in principle, should also hold for
the presence of heterozygous SNPs in the two founding strains.

Comparison with experiments
To further validate the accuracy of our mathematical predic-
tions, we compared the mapping resolution predicted by
Equation (10) with the empirical resolution achieved in two re-
cent BSA experiments. The first experiment was a mapping study
of the genetic markers for intramuscular fat in Wagyu cattle
(Zhu et al. 2021), which identified a genomic candidate region of
length �5 Mb (between positions 24.8 and 29.6 Mb on chromo-
some 23). In this modified IM experiment, female Chinese Waygu
beef cattle were hybridized with sperm from a single male
Japanese Wagyu bull, and the progeny population was repeatedly
back-crossed with sperm from the same bull until the F3. A sam-
ple of s¼ 13 cattle were collected from the F3 and their genomes
were sequenced at an average of 10� coverage per individual.

The average recombination rate across 29 bovine chromo-
somes in beef cattle has been estimated at 1.23 cM/Mb (i.e.
r ¼ 1:23e� 8) (Weng et al. 2014). The effective population size of
the experiment is unknown but can be roughly calculated as
Ne ¼ 4Nf Nm=ðNf þ NmÞ, where Nm ¼ 1 is the number of male

individuals throughout the whole experiment and Nf is the num-
ber of female individuals randomly selected in each generation.
Since Nf 
 Nm, a reasonable approximation would be Ne � 4.
Besides, under the given parameters, even when Ne is varied over
a broad range it will only have a minor impact on the predicted
mapping resolution. In particular, for the given experimental de-
sign with t¼ 3, s¼ 13, and r ¼ 1:23e� 8, Equation (10) predicts
that the expected peak size should be E½D� ¼ 3:9 Mb for Ne ¼ 4,
2.2 Mb for Ne ¼ 100, and 2.1 Mb for Ne ¼ 1,500. Thus, the average
overall peak length 2E½D� should be roughly 4� 8 Mb even across
this wide range of Ne values. Given the generally high variance in
peak lengths, this is in good agreement with the observation of a
5-Mb-long genomic region detected in the experiment.

The second experiment was a mapping study for pyrethroid
resistance in the house fly Musca domestica (Freeman 2020). In
this experiment, flies from a susceptible male strain and a resis-
tant female strain were crossed and the progeny interbred until
the F6, with the interbreeding population ranging in size from
�5; 000 flies in the F2 to �9; 000 flies from the F3 on. The effective
population size is again unknown, but should presumably be
somewhere within the range of 1; 000� 5; 000. At the end of the
experiment, two pools of 100 completely resistant and 100
completely susceptible flies were selected, and each pool was se-
quenced with 30� 40x coverage using a Pool-seq approach.
Assuming a standard BSA design with an average recombination
rate for house flies of r ¼ 0:74e� 8 (Feldmeyer et al. 2010), a sam-
ple size of s¼ 200, and t¼ 6 generations of interbreeding, our cal-
culations predict an expected genomic resolution between
E½D� ¼ 0:14 Mb for Ne ¼ 1,000, and E½D� ¼ 0:12 Mb for Ne ¼ 5; 000.

The highest peak in this study was located on chromosome 3,
with the maximum G0 value observed at position 4,459,036 bp.
This falls inside the Vssc gene, which harbors both the kdr and
skdr mutations that have previously been identified to confer re-
sistance to pyrethroids. In particular, the position of the maxi-
mum G0 value was 87 kb from the kdr mutation and 82 kb from
the skdr mutation. Both mutations were present in 100% of the
reads for the resistant pool, yet observed at only low frequency in
the susceptible pool. Again, these numbers are in good agree-
ment with our mathematical prediction of an expected mapping
resolution of roughly 100� 150 kb for the given experimental
parameters.

Discussion
BSA has become an increasingly popular technique for mapping
the genetic basis of phenotypic traits. Previous studies have used
simulations to study how the genomic resolution of BSA is af-
fected by key experimental parameters such as sample size and
number of generations of interbreeding (Pool 2016). However, a
truly quantitative understanding has so far remained elusive. In
this study, we were able to derive a mathematical prediction for
the expected mapping resolution of a BSA experiment. We have
further demonstrated how our framework can be extended to
modifications of the experimental design, such as IM or selection
for heterozygotes.

Our approach is based on the insight that the mapping resolu-
tion of a BSA experiment is ultimately limited by the length of
the genomic region surrounding the QTL in which all sequences
in each sampled pool still share the ancestry of the respective pa-
rental strain. This region is delimited by the two closest ancestry
breakpoints observed upstream and downstream of the QTL. We
modeled the occurrence of such breakpoints by a Poisson process
along the chromosome, with its rate determined by two factors:
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the expected length of the sample’s genealogy at any given geno-
mic position, and the expected rate at which new ancestry break-
points were generated along this genealogy from the ancestors to
the sample. Both factors combine to determine the expected
mapping resolution according to Equation (10).

Our solution sheds light on the possible avenues for improving
mapping resolution. First, the rate of ancestry breakpoint genera-
tion could be increased. While this rate is obviously bounded by
the recombination rate of the organism, only recombination
events in individuals that carry ancestry segments from both pa-
rental strains at the crossover location actually generate new an-
cestry breakpoints. Thus, one could seek to increase the
frequency of such individuals; this is the rationale behind the
“heterozyogte selection” strategy we discussed above. Second, the
length of the sample’s genealogy could be increased. In principle,
this could be achieved by including more generations of inbreed-
ing, using a larger sample size (and thus a larger number of phe-
notyped individuals), or achieving a lower coalescence rate
during the experiment (which would typically require a larger
population size during interbreeding). Exactly how these parame-
ters play out will depend on the specific experimental setup.

In Equation (7), we provided an approximate solution for the
maximal mapping resolution of a standard BSA experiment. This
solution requires specification of the coalescence effective popu-
lation size (Ne) of the interbreeding population that determines
the pairwise coalescence rate in the genealogy of the sample. In
practice, the value of Ne will typically be smaller than the actual
number of individuals present in the interbreeding population,
especially when there is high variance in offspring number
among individuals (Charlesworth 2009). While various methods
have been developed for inferring Ne of experimental populations
(Williamson and Slatkin 1999; Anderson 2005; Jónás et al. 2016;
Liu et al. 2019), such inference may be nontrivial, and it may thus
be unclear how to choose the appropriate value for this parame-
ter; at a minimum, however, the population size of the inter-
breeding population constitutes an upper bound for Ne. Our
analysis suggests that Ne should generally be kept as large as pos-
sible throughout the experiment to optimize mapping resolution.

For the sake of mathematical tractability, we have focused on
a rather simplistic model of a trait controlled by a single QTL. For
traits determined by multiple loci, overlap between signals could
become a problem (Pool 2016), and it may no longer be possible
to select for individuals that are homozygous at all QTLs. In such
cases, we expect that our results can only provide a lower bound
to the achievable mapping resolution.

Our approach further assumed that recombination rate is uni-
form along the chromosome, but it would be rather straightfor-
ward to incorporate nonuniform recombination rates. In
particular, recombination events would then need to be modeled
by an inhomogeneous Poisson process in Eq. (3), so that R, and
thus also E½D�, would become a function of genomic position.
Intuitively, one would expect higher mapping resolution in
regions of higher recombination rate, and vice versa.

Another simplification of our modeling is perfect sequencing
data, while any real-world experiment will likely suffer from
some level of imperfect estimation of pool allele frequencies due
to sequencing errors or low coverage. This should increase
“noise” in summary statistics such as G0, possibly making it more
difficult to delimit or even identify individual peaks when they no
longer stand out against the fluctuations observed along the ge-
nomic background. Such noise could be particularly problematic
when the segregant pools also have high levels of contamination

by alternative alleles, as we have shown that this can lower the
expected height of the peaks (Fig. 8).

In the early days of molecular genetics, the precision one
could hope to achieve in a mapping experiment was typically
limited by the ability to genotype a sufficient number of individu-
als at a sufficiently dense set of marker loci. With the sequencing
revolution, this constraint has fundamentally shifted. Today, it is
often feasible to obtain whole-genome sequencing data for sam-
ples of several hundreds or even thousands of individuals.
Consequently, it is becoming more relevant to understand
which other factors fundamentally limit mapping resolution un-
der a given experimental design. By providing a mathematical
prediction for the expected mapping resolution of a BSA exper-
iment, based on coalescence theory, we were able to shed light
on how individual parameters combine, qualitatively and
quantitatively, to place a fundamental limit on mapping reso-
lution. From an experimentalists’ perspective, another advan-
tage of our mathematical approach over existing simulation-
based alternatives is not needing to run large computationally
intensive simulations for predicting the expected mapping res-
olution. We hope that these results can not only help scientists
to set realistic expectations for the power of their planned
experiments, but also to identify which strategies would allow
them to optimize their study design most efficiently and
economically. Finally, we hope that the conceptual approach
that underlies our calculations can be extended to other ge-
netic mapping strategies.

Data availability
The code used to generate the simulated data and analyze the
simulation results can be found at https://github.com/runxi-
shen/Predict-Genomic-Resolution-of-BSA.
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