
Heliyon 10 (2024) e24070

Available online 7 January 2024
2405-8440/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Research article 

Cobalt-nickel phosphide supported on reduced graphene oxide for 
sensitive electrochemical detection of bisphenol A 

Isilda Amorim a,b,*, Zhipeng Yu b, Lifeng Liu b, Fátima Bento a 

a Centre of Chemistry, University of Minho, Gualtar Campus, Braga, 4710-057, Portugal 
b Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330, Braga, Portugal   

A R T I C L E  I N F O   

Keywords: 
Transition metal phosphide 
Reduced graphene oxide 
Electrochemical sensor 
Water pollution 
Hydroquinone 
Bisphenol A 

A B S T R A C T   

Bisphenol A (BPA) is a commonly utilized phenolic contaminant in several manufacturing pro
cesses, contributing to environmental pollution. Therefore, the detection of BPA holds significant 
importance for monitoring water quality. In this work, we report a robust electrochemical 
detection method for BPA utilizing cobalt− nickel bimetal phosphide nanoparticles (CoNiP) 
supported on reduced graphene oxide (rGO). The CoNiP@rGO-modified glassy carbon electrode 
exhibits remarkable electrochemical activity in BPA detection. The detection mechanism is 
controlled by adsorption-mediated electron transfer, showcasing a low limit of detection (LOD) at 
0.38 nM and a high sensitivity of 96.4 A M− 1 cm− 2 within the linear range of 0.001–8 μM. 
Furthermore, our developed sensor demonstrates good reproducibility and successfully detected 
BPA in actual water samples. The electrochemical activity of CoNiP@rGO was also characterized 
for hydroquinone (HQ) detected through a diffusion-controlled mechanism, displaying an 
excellent sensitivity of 36.4 A M− 1 cm− 2 across a broad linear range. These findings underscore 
the promising potential of CoNiP@rGO as a candidate for electrochemical detection of phenolic 
contaminants, especially in the sensing of BPA in environmental water samples. This efficacy is 
attributed to the modulation of its electronic properties, combined with its large electroactive 
surface area and low electron-transfer resistance.   

1. Introduction 

The escalating challenges posed by rapid population growth and industrialization have significantly contributed to environmental 
pollution, jeopardizing ecosystems and inflicting toxic effects on various organisms, including humans. Phenolic compounds, exten
sively utilized in diverse industries, are of particular concern due to their enduring presence in the environment, owing to their non- 
degradable nature [1]. Moreover, their water solubility raises the risk of contaminating potable water sources [2]. Bisphenol A (BPA), 
among numerous phenolic compounds, has earned priority pollutant status from both the US Environmental Protection Agency (US 
EPA) and the European Commission (EC) due to its inherent toxicity [3]. BPA is prevalent in the manufacturing of various products 
(such as polycarbonate plastics, food packaging materials, epoxy resins, medical devices, thermal papers and dental sealants) [4] and 
can leach into the environment, potentially rising human exposure through dietary or water intake [4]. Functioning as an 
endocrine-disrupting chemical, even at minimal concentrations, it can mimic or block the endogenous hormones, contributing to 
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diverse health issues, including cancer, depression, obesity, and infertility [4,5]. Acknowledging the high risk and potential exposure 
to BPA, the European Parliament and the Council, through directive (EU) 2020/2184, stipulated that BPA must not exceed a para
metric value of 2.5 μg L− 1 (0.01 μM) in water intended for human consumption. Hence, achieving high-sensitivity at low concen
trations is paramount. 

Electrochemical sensing emerges as a cost-effective, highly selective, easily operable, and efficient solution, offering swift response 
times for target analyte detection. Various electrode materials have been explored for BPA detection, including transition metal oxides 
[6–8], sulfides [9,10] selenides [11,12], carbon materials [13–15], and noble metals [16–18], aiming to enhance the performance of 
electrocatalytic and analytical sensors. However, the existing sensors fall short of meeting the mandated parametric value. Conse
quently, there is a compelling need to explore new electrode materials for BPA electrochemical sensing with detection limits (LOD) and 
quantification limits (LOQ) aligned with the established parametric value. 

Transition metal phosphides (TMPs) emerged as promising electrode materials, detecting various molecules thanks to their 
metalloid properties, structural stability, natural abundance, and cost-effectiveness [19]. For instance, copper phosphide nanowire on 
copper foam (Cu3P NW/CF) demonstrated enzymless glucose detection with a LOD of 0.32 μM [20]. Similarly, Ni2P nanosheets array 
on Ti mesh (Ni2P NA/TM) showcased H2O2 sensing with a sensitivity of 0.6907 A M− 1 cm− 2 [21]. TMPs have also proven to be 
effective in detecting phenolic molecules withor great sensitivity, selectivity and low LOD, such as N and FeP co-doped carbon 
nanotube (N/FeP-CNT) for dihydroxybenzoic acid isomers [22] and N,P co-doped glucose-derived carbon coated CoP nanowires 
(G-CoP/N,P–C NWs) to simultaneously determine hydroquinone and catechol [23]. Similarly, MOF-derived nanoparticles embedded 
in N-doped porous carbon (CoPx@NCNTs) [24] and CoxP nanoparticles embedded in three-dimensional carbon microspheres 
(CoxP/NC) [25] have been employed for 4-nitrophenol detection. 

Graphene with its highly ordered structure, remarkable surface areas (up to 2630 m2 g− 1), and exceptional thermal conductivity 
(5000 W mK− 1), stands out as a leading candidate for the advancement of cutting-edge carbon-based materials [26]. However, the 
cost-effective and large-scale production of premium-grade graphene persists as a noteworthy challenge. To address this, graphene 
oxide (GO), a derivative of graphene, offers a more cost-efficient and rapid solution on an industrial scale. GO sharing a 2D structure 
with graphene, features carbon atoms functionalized with groups containing oxygen functionalities (e.g. hydroxyl, carbonyl) on the 
edges and basal plane [27]. Although GO exhibits lower conductivity than graphene, its properties can be substantially enhanced 
through reduction processes, leading to the formation of reduced graphene oxide (rGO) [28]. This creates a promising compromise, 
offering improved conductivity while retaining many advantageous properties of graphene. In comparison to other 2D materials like 
graphitic carbon nitride (g-C3N4), MXenes, and layered double hydroxides (LDHs), rGO holds several advantages. These alternative 
materials face challenges such as poor conductivity and dispersibility [29], low stability in colloidal solutions and stiffness [30,31], 
and low electronic conductivity and slow electron transfer rates [31], respectively. 

Furthermore, the presence of oxygen moieties on rGO and structural defects allows for surface functionalization with transition 
metals enhancing sensor performance [32,33]. In this sense, carbon-based materials, including carbon nanotubes (CNTs), GO and rGO, 
have been utilized to anchor TMPs. This approach improves stability by preventing dissolution and/or agglomeration of materials 
deposited at the electrode surface [34–36]. Additionally, the electrical conductivity can be enhanced, and the electronic state of TMPs 
modulated in the presence of carbonaceous supports. The strong metal-carbon support interactions contribute to improved electron 
transfer kinetics at the metal/graphene interface [37]. 

To the best of our knowledge, the utilization of TMPs for BPA detection has not been reported, despite their demonstrated enhanced 
sensitivity in detecting several biologically and environmentally relevant molecules, including phenolic compounds. The detection of 
BPA poses a significant challenge due to the stringent lower limits set by the European Parliament and the Council. Indeed, there is a 

Scheme 1. Schematic illustration for the synthesis of CoNiP@rGO.  
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scarcity of sensor devices with adequate detection thresholds low enough to meet the settled parametric values [6,38–41]. 
In previous work in the laboratory, we optimized a composite based on nanoparticles of cobalt and nickel phosphide anchored on 

rGO (CoNiP@rGO), demonstrating superior electrocatalytic performance for electrochemical sensing compared to other prepared 
materials (e.g. CoNiP; rGO; CoNi and CoNi@rGO) [42]. Building upon these findings, the present work reports CoNiP@rGO-modified 
glassy carbon electrodes, incorporating an enhanced measurement methodology involving analyte adsorption prior to electron 
transfer. This methodology proves the ability to detect BPA at concentrations below the established parametric values. The sensing 
capabilities of CoNiP@rGO are also illustrated for hydroquinone, a non-adsorbing polyphenol, which demonstrated excellent elec
trocatalytic activity with low LOD and high sensitivity. Moreover, the designed electrochemical sensor successfully detects BPA in real 
samples, including tap water and plastic bottled mineral water. 

2. Experimental section 

2.1. Synthesis of cobalt− nickel phosphide on rGO 

All chemicals employed in this study were of analytical grade and utilized in their original state. The synthesis of material involved 
a chemical reduction, in ethylene glycol (EG) solution, of the respective metal cations using sodium borohydride (NaBH4), as illus
trated in Scheme 1 [43]. Specifically, 25 mL of 4 mg mL− 1 solution of commercial graphene oxide (GO) in H2O (Sigma-Aldrich) was 
initially mixed with 12.5 mL of EG and subjected to sonication for 1 h at 25 ◦C. After the addition of EG solutions containing 0.05 M Co 
(NO3)2⋅6H2O (4.3 mL) and 0.05 M Ni(NO3)2⋅6H2O (4.3 mL) to the GO solution, the resultant mixture was stirred for 3 h at room 
temperature. The temperature of the solution was then raised to 60 ◦C in an oil bath and 12.5 mL of NaBH4 solution (30 mg mL− 1) was 
added dropwise under vigorous stirring. After reacting for 0.5 h, the mixture was cooled to 25 ◦C, subjected to centrifugation and 
washed repeatedly with ultrapure water with a resistivity of 18.2 MΩ cm, to obtain CoNi@rGO powders. The resulting powders were 
subsequently dried at 80 ◦C using a vacuum oven. The phosphorization process was carried out using NaH2PO2 as the phosphorus 
source. Usually, CoNi@rGO (0.1 g) was placed in a ceramic boat and positioned 2 cm away from NaH2PO2 (0.5 g) which was on the 
upstream side. The boat was then inserted into a tubular furnace, where N2 with high-purity (99.999 %) flowed at a rate of 800 SCCM 
for 1 h to remove oxygen. Subsequently, the temperature of the furnace was slowly increased to 300 ◦C (rate of 5 ◦C min− 1), maintained 
at this temperature for 2 h, and then naturally cooled to ambient temperature. A continuous flow of N2 was held throughout the entire 
reaction. 

2.2. Electrode preparation and electrochemical measurements 

The catalyst ink was prepared by dispersing 5 mg of CoNiP@rGO in 1 mL of ultrapure water using an Hielscher UP50H ultrasonic 
probe (50 W at 60 % of amplitude). In the sensor preparation, 5 μL of the CoNiP@rGO ink was drop-cast onto a glassy carbon electrode 
(GCE) (3 mm in diameter) with a polished surface, resulting in a mass loading density of approximately 0.3 mg cm− 2. Subsequently, the 
modified electrode surface was exposed to an incandescent lamp to evaporate the solvent. A three-electrode setup (at room tem
perature) was used in the electrochemical assays on a PGSTAT 30 Autolab from Ecochemie (The Netherlands) interfaced with a 
computer operating with a “General Purpose Electrochemical System’’ software (version 4.9). The working electrode was the GCE 
loaded with CoNiP@rGO, with a Pt wire serving as the counter electrode and an Ag/AgCl electrode (KCl saturated) as the reference 
electrode. The supporting electrolyte used was a solution of 0.1 M of phosphate buffer (PBS) at pH = 7.0. 

The electrochemical behaviour of both the GCE and CoNiP@rGO were characterized by cyclic voltammetry (CV) in the potential 
window of − 0.1 to 0.5 V vs Ag/AgCl, sat. using scan rates from 20 to 400 mV s− 1 in a 0.1 M KCl solution containing 3.0 mM K3[Fe 
(CN)6]. 

For BPA detection, CV measurements were performed in 250 or 500 μM of BPA solution containing 0.1 M PBS, at a scan rate (ʋ) of 
20 mV s− 1. Differential pulse voltammetry (DPV) was conducted from 0.1 to 0.7 V with a modulation amplitude of 100 mV and a step 
potential of 10 mV, with an interval time of 0.5 s and modulation time of 0.05 s, including an accumulation step at 0 V for 500 s before 
DPV measurements. 

For hydroquinone (HQ) detection, CV measurements were carried out using 500 μM HQ solution in 0.1 M PBS, at a scan rate (ʋ) of 
20 mV s− 1. DPV was performed from − 0.2 to 0.3 V with a modulation amplitude of 25 mV and a step potential of 5 mV, with an interval 
time of 0.5 s and modulation time of 0.05 s. Electrochemical impedance spectroscopy (EIS) was acquired at room temperature with a 
Biologic VMP-3 potentiostat/galvanostat, with a frequency range from 10 mHz to 100 kHz and a signal amplitude of 10 mV, all in a 
500 μM HQ solution. 

For the electrochemical measurements, solutions of HQ and BPA were prepared by diluting 0.1 M BPA (in ethanol) or 0.1 M HQ 
(aqueous) stock solutions, both stored at − 22 ◦C, with 0.1 M PBS (pH 7.0). 

2.3. Samples preparation 

Laboratory-collected tap water samples and mineral bottled water samples obtained from a local supermarket, were utilized 
without any pre-treatment. For the direct determination of BPA, 9 mL of water sample was directly diluted in 1 mL of 1 M PBS solution. 
Then, these solutions were spiked with known quantities of BPA (2 and 4 μM), and then analysed by DPV to determine the recovery 
rate. Each sample underwent three independent experiments for robust analysis. 
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3. Results and discussion 

3.1. Characterization of CoNiP@rGO 

The morphology, microstructure and chemical surface of CoNiP@rGO have been previously elucidated by our group [42]. In brief, 
transmission electron microscopy (TEM) characterization of CoNiP nanoparticles densely dispersed on rGO revealed an average size of 
6.4 nm. Distinct lattice fringes corresponding to the crystal planes of hexagonal CoNiP (ICDD no. 04-001-6153) were observed, 
emphasizing the well-defined structure. Elemental mapping confirmed the presence of Co, Ni and P elements evenly covering the rGO 
surface. X-ray diffraction (XRD) further affirmed that a CoNiP solid solution was obtained, with diffraction peaks aligning with 
hexagonal CoNiP (ICDD No. 04-001-6153). X-ray photoelectron spectroscopy provided additional evidence of phosphides formation, 
revealing binding energy peaks related to metal phosphides in the Co 2p, Ni 2p and P 2p spectra. The C 1s spectrum of CoNiP@rGO 
showcased a pronounced peak at 284.6 eV, indicating a high degree of graphitization with sp2-hybridized graphitic carbon (C–C bond). 
The positive shift in binding energies of Co 2p, Ni 2p and P 2p in CoNiP@rGO compared to unsupported CoNiP suggested a synergistic 
interaction between the rGO and the metal phosphide. 

The electrochemical behaviour of CoNiP@rGO as an electrode material was elucidated through cyclic voltammetry (CV) using the 
Fe(III)/Fe(II) system in 0.1 M KCl electrolyte. The obtained electrochemical response, from both bare GCE and CoNiP@rGO is 
characteristic of a one-electron reversible process (Fig. 1a), exhibited a unitary ratio of cathodic to anodic peak currents, Ipc/Ipa = 1.0, 
and a peak-to-peak separation (ΔEp) close to 60 mV (Fig. 1a). Additionally, the electroactive surface area (ESA), calculated from the 
representation of peak current against the square root of the scan rate (ʋ1/2) (Fig. 1b), increased from 4.4 mm2 to 6.2 mm2 upon GCE 
modification with CoNiP@rGO. The ESA was determined using the Randles-Sevcik equation (Ip = 2.69 × 105 × n3/2AD1/2 ʋ1/2C), 

Fig. 1. (a) Cyclic voltammograms of bare GCE and CoNiP@rGO/GCE recorded at 20 mV s− 1 in 3.0 mM K3[Fe(CN)6] with 0.1 M KCl. (b) Ipa vs ʋ1/2 

from a 3.0 mM K3[Fe(CN)6] solution. (c) Nyquist plots obtained in 0.1 M PBS containing 500 μM HQ. The inset represents the Nyquist plot of 
CoNiP@rGO/GCE. Scattered points correspond to experimental data and solid lines represent fitting curves. (d) Voltammetric response of bare GCE 
and CoNiP@rGO/GCE recorded at 20 mV s− 1 in 0.1 M PBS (dotted lines) and in the presence of 500 μM HQ (full lines). (e) Ip vs ʋ1/2 from CoN
iP@rGO/GCE in 500 μM HQ solution. 
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where n represents the number of electrons (n = 1 for a one-electron transfer reaction), A denoted the electroactive surface area (in 
cm2), D is the diffusion coefficient (D = 7.6 × 10− 6 cm2 s− 1 in 0.1 M KCl) [44], C stands to the bulk concentration of K3[Fe(CN)6] (in 
mol cm− 3), and ʋ is the scan rate (in V s− 1). 

The impact of the electrode modification on charge transfer kinetics was assessed through electrochemical impedance spectroscopy 
(EIS) of CoNiP@rGO and GCE, as depicted in Fig. 1c. The smaller semicircle domains observed for CoNiP@rGO signify a lower charge- 
transfer resistance. Fitting the data with a Randles equivalent circuit yielded a minimal resistance value of only 4.2 Ohm, underscoring 
the enhanced charge transfer facilitated by CoNiP@rGO. 

The analytical performance of the CoNiP@rGO/GCE sensor was evaluated using hydroquinone (HQ) as a model polyphenol 
molecule. Beyond its role as a model, the HQ detection holds environmental significance as it is a prevalent pollutant found in dyes, 
cosmetics, antioxidants, and secondary colouring agents [45]. 

Fig. 1d displays the CV voltammograms of GCE and CoNiP@rGO/GCE in the presence and absence of HQ in 0.1 M PBS. In the 
presence of HQ, distinct redox peaks associated with electrochemical reactions of HQ are evident in the CVs of both bare GCE and 
CoNiP@rGO/GCE. Surface modification significantly impacted both residual and faradaic currents. The residual current, represented 
as dotted lines, witnessed a substantial increase due to the augmented charge storage capacity at the interface, a consequence of the 
microstructure of the CoNiP@rGO/GCE sensor. Concurrently, electrode modification led to a noteworthy rise of the redox peak 
currents and a diminution in peaks separation, associated with the electrocatalytic activity of CoNiP@rGO in the oxidation of HQ. This 
enhancement resulted in more favourable electron transfer kinetics and a diminished charge-transfer resistance. The influence of scan 
rate on the HQ redox peak current was further investigated for CoNiP@rGO/GCE, ranging from 20 to 400 mV s− 1 (Fig. 1e). The peak 
current intensity (Ip) increase linearly with the square root of scan rate (ʋ1/2) which indicates that the HQ electrochemical reactions are 
controlled by diffusion, further emphasizing the sensor’s robust electrochemical performance. 

The analytical performance of the CoNiP@rGO/GCE sensor for the quantification of HQ was investigated through DPV. The 
recorded voltammograms for diverse standard concentrations of HQ are presented in Fig. 2a. The outcomes illustrate a linear increase 
in peak current with concentration (Fig. 2b), showcasing a substantial sensitivity of 36.4 A M− 1 cm− 2 in HQ detection. The limits of 
detection (LOD) and quantification (LOQ) were calculated using equations 1 and 2, respectively: 

LOD=
3σ
m

(1)  

LOQ=
10σ
m

(2)  

where σ is the standard deviation of Ip from the standard solution with the lowest HQ concentration (n = 4) and m represents the slope 
of the calibration plot. Calculated values for LOD and LOQ are 0.5 μM and 1.77 μM, respectively. 

The sensitivity of determination is remarkably high and the analytical thresholds are considerably lower compared to electrodes 
modified with other materials reported in literature, such as copper oxide and carbon nano-fragment modified glassy carbon electrode 
(CuO–CNF/GCE) [46], Au@Pd core-shell nanocomposites [47] and carbon nanocages (CNCs)-reduced graphene oxide (RGO) [48]. For 

Fig. 2. DPV results of CoNiP@rGO/GCE in 0.1 PBS solutions containing HQ: (a) Voltammograms obtained for standard solutions of different 
concentrations; (b) Peak currents as a function of HQ concentration; Peak currents registered from a 2 μM HQ solution for (c) five independent 
electrodes and for (d) six consecutive measurements at a single electrode. 
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these materials, sensitivities and LOD were reported as follows: 0.382 A M− 1 and 1 μM; 1.496 A M− 1 and 0.63 μM; 0.0726 A M− 1 and 
0.87 μM, respectively. 

Precision estimates for CoNiP@rGO/GCE were determined from reproducibility and repeatability data. A reproducibility of 4.8 % 
was obtained from the relative standard deviation (RSD) of five independently prepared CoNiP@rGO/GCE sensors (Fig. 2c). 
Repeatability, calculated as the RSD of six consecutive measurements using the same electrode, was 5.6 % (Fig. 2d). These precision 
results are comparable to, or even lower than those reported in the literature for other electrode materials, confirming the reliability of 
CoNiP@rGO for the quantification of HQ [49–51]. 

3.2. Electrochemical behaviour of CoNiP@rGO for BPA detection 

The electrochemical response to BPA was inspected through cyclic voltammetry (CV) for both bare glassy carbon electrode (GCE) 
and GCE modified with CoNiP@rGO (CoNiP@rGO/GCE) in 0.1 M PBS solution containing 500 μM and 250 μM of BPA, respectively. 
Background currents of the bare GCE and CoNiP@rGO/GCE are displayed in Fig. 3a, revealing the absence of faradaic process, except 
for the small peaks at around 0.35 V, characteristic of graphene oxidation/reduction [52,53]. The voltammetric curves for BPA 
oxidation at both electrodes exhibit a single peak in the anodic scan (Fig. 3b), indicating the irreversibility of BPA oxidation. In 
addition to the BPA oxidation peak, the CoNiP@rGO/GCE voltammogram displays two additional small peaks associated with gra
phene oxidation/reduction, akin to those observed in the blank solution. The anodic peak current (with an equivalent sensitivity of 
Ipa/C of 3.6 mA M− 1) at a high positive oxidation potential (Epa) around 0.55 V against Ag/AgCl, sat. recorded on the GCE suggests its 
unsuitability for the sensitive detection of BPA. In contrast, the modification of GCE with CoNiP@rGO results in a substantial increase 
in peak current (with an equivalent sensitivity of Ipa/C of 39 mA M− 1), approximately 10.8 times greater than that of GCE. Moreover, 
the peak potential shifts by about 80 mV towards lower potentials (0.47 V for CoNiP@rGO). These outcomes are attributed to the 
enhanced sensing properties of CoNiP@rGO, including efficient charge transfer, large surface area, and the synergistic interaction 
between CoNiP and rGO, contributing to the improved catalytic performance [42]. 

The electrocatalytic oxidation of BPA at CoNiP@rGO was further characterized by CV at different scan rates (10–100 mV s− 1) in a 
0.1 M PBS solution containing 250 μM of BPA. The results reveal a linear increase in peak current with the scan rate (Fig. 3c), 
accompanied by a displacement of the peak potential towards the positive side (Fig. 3d). The linear correlation of Ipa indicates that the 
electro-oxidation of BPA follows an adsorption-controlled process at CoNiP@rGO/GCE. Furthermore, the linear relationship of Epa vs 
ln ʋ (Fig. 3d) with a significant regression coefficient (r2 = 0.9965) validates the applicability of the Laviron equation, where the 
irreversible adsorption-controlled electrode processes can be described by equation (3) [54]: 

Epa = E0 +
RT
αnF

ln
RTk0

αnF
+

RT
αnF

ln ʋ (3)  

where E0 represents the formal redox potential, R denotes the molar gas constant (8.314 J K− 1 mol− 1), T refers to temperature (298 K), 

Fig. 3. Cyclic voltammograms recorded at 20 mV s− 1 (a, b) and cyclic voltammetric data recorded at different scan rates (c, d) of bare GCE and 
CoNiP@rGO/GCE: (a) from 0.1 M PBS in the absence of BPA; (b) from 0.1 M PBS containing 500 μM of BPA (GCE) or 250 μM of BPA (CoNiP@rGO/ 
GCE); (c) Plot of Ipa vs ʋ for CoNiP@rGO/GCE; (d) Plot of the anodic peak potential (Epa) vs ln ʋ. 
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α represents the electron transfer coefficient (for an irreversible process can be considered as 0.5), F stands for the Faraday’s constant 
(96 480C mol− 1), and k0 is the standard rate constant of the reaction. The calculated number of electron transfer (n) involved in the 
reaction was estimated to be 1.92, very close to 2, in accordance with the results of previous findings [5,55,56]. In conclusion, the 
electrochemical oxidation of BPA at CoNiP@rGO/GCE is an irreversible process controlled by adsorption, involving the transfer of two 
electrons. The observed increase in peak current is assigned to the decrease of charge transfer resistance and the accumulation of BPA 
at the electrode surface resulting from the adsorption process. 

3.3. Electrochemical sensing performance of CoNiP@rGO towards BPA 

Given that the electro-oxidation of BPA follows an adsorption-controlled process at the CoNiP@rGO/GCE electrode, the surface 
concentration of BPA can be enhanced by establishing favourable conditions of potential and time before its detection. As there was no 
observable variation in Ipa for different accumulation potentials, a value of 0 V vs Ag/AgCl, sat. was chosen for the following in
vestigations of the accumulation time effect. Results obtained for different accumulation times are summarized in Fig. 4, where the 
peak current from CV was recorded using a 20 μM BPA solution in 0.1 M PBS. The Ipa values increased with prolonged accumulation 
times from 100 to 500 s, but then exhibited a decline when the accumulation time was further extended to 600 s. This decrease can be 
explained by considering the adsorption of reaction by-products and solution impurities at the electrode surface creating a barrier that 
inhibits further adsorption of reactants, leading to a decrease in the measured oxidation currents. Based on these findings, an accu
mulation time of 500 s was deemed optimal for the quantitative determination of BPA. 

To assess the electrochemical sensing performance of CoNiP@rGO/GCE for different concentrations of BPA, differential pulse 
voltammetry was employed after an accumulation time of 500 s at 0 V (Fig. 5a). DPV was chosen for BPA determination due to its 
higher sensitivity and selectivity, with enhanced signal-to-noise ratio, enabling lower detection limits, compared to CV. Furthermore, 
the peak-shaped DPV signals offer enhanced effectiveness in complex samples, as they enable more efficient separation of the BPA 
signal from interference by other co-existing electroactive species. 

The peak currents from the DPV voltammograms recorded for different concentrations ranging from 1 nM to 8 μM were plotted 
against concentrations (Fig. 5b). The correlation coefficient for this set of 10 standard solutions was found to be 0.9992, confirming the 
suitability of the linear model to describe the calibration curve. Calculated values for the LOD and LOQ were 0.38 nM and 1.26 nM, 
respectively, applying equations 1 and 2 to the measurement replicates of the lowest concentration standard. These values fall below 
the parametric values set for BPA by the European Parliament and the Council (11 nM), indicating that the developed sensor and its 
operation are not only suitable for detection but also for the quantification of this contaminant in water intended for human con
sumption. Additionally, the sensitivity of the fabricated sensor is considerably high, with a value of 96.4 A M− 1 cm− 2. Reproducibility 
and repeatability were also evaluated to characterize the sensor’s performance. As illustrated in Fig. 5c, measurements from five 
independent CoNiP@rGO/GCE electrodes in a 1 μM BPA solution exhibited similar electrochemical signals, with a relative standard 
deviation (RSD) of only 3.3 %. Similarly, the RSD of seven consecutive measurements using the same electrode in a 1 μM BPA (Fig. 5d) 
was 3.9 %. These results indicate that the reproducibility and repeatability are quite good, establishing the precision of measurements 
with this sensor. 

The selectivity of the CoNiP@rGO/GCE electrode’s response was investigated by evaluating the current response of potential 
interference organic molecules namely, 4-nitrophenol, 4-aminophenol, and phenol with 10-fold concentrations via DPV, following a 
500 s accumulation at 0 V vs Ag/AgCl. Fig. 6 presents the current response normalized by the concentration of each species, 
demonstrating the electrode’s capability to selectively detect BPA. 

The results suggest that the CoNiP@rGO/GCE sensor exhibits significantly higher sensitivity to BPA compared to other phenolic 
compounds, indicating that the presence of these compounds would not introduce interference. This conclusion is supported by the 
substantial difference in the Ep of these potential interfering substances compared to that of BPA, except for phenol whose peak appears 

Fig. 4. Accumulation time effect on the anodic peak current of CoNiP@rGO/GCE in 0.1 M PBS containing 20 μM BPA using cyclic voltammetry at a 
scan rate of 20 mV s− 1. 

I. Amorim et al.                                                                                                                                                                                                        



Heliyon 10 (2024) e24070

8

60 mV after the BPA peak. 
Assessing the most common performance parameters, sensitivity, linear range, and LOD enables a comparison of the CoNiP@rGO/ 

GCE sensor with other electrochemical sensors for BPA, as summarized in Table 1. Among these sensors, only four (including the 
CoNiP@rGO/GCE sensor) are suitable for BPA quantification, boasting a LOQ below the parametric value. The CoNiP@rGO/GCE 
sensor distinguishes itself as one of the top three sensors in each performance parameter, demonstrating a combination of high 
sensitivity, a broad linear range, and a low LOD. 

The performance of the electrochemical sensor was assessed in the determination of BPA in real water samples, specifically bottled 
and tap water. The samples were spiked at two concentration levels and analysed using the optimized procedure, which involves 
acquiring DPV voltammogram after an accumulation period of 500 s at 0 V vs Ag/AgCl. The recoveries obtained from the spiked tap 
water and mineral bottled water samples, as well as their RSD are presented in Table 2. The percent recovery values fall within the 
range of 81–108 %, with RSD levels below 8.4 %. The satisfactory results of the recovery assays affirm the sensor’s capability to 
accurately determine BPA concentrations in both tap and bottled water. Combining these findings with earlier results, it can be 
concluded that the CoNiP@rGO/GCE sensor is well-suited for the efficient, reliable and accurate detection of BPA in real water 
samples. 

Fig. 5. (a) DPV results of CoNiP@rGO/GCE in 0.1 M PBS comprising distinct concentrations of BPA. (b) Linear calibration curve of the oxidation 
peak current response vs BPA concentrations with an accumulation time of 500 s at 0 V. Anodic peak currents of CoNiP@rGO/GCE in 0.1 M PBS 
containing 1 μM BPA from (c) five different electrodes and from (d) seven consecutive measurements at a single electrode. 

Fig. 6. DPV peak currents of CoNiP@rGO/GCE for different interference organic molecules. The Ipa/C values were obtained from a 2 μM solution of 
BPA and a 20 μM solution of potential interference molecules. The Ip values were determined for Epa of each substance: 4-AP (4-aminophenol, 0.169 
V, 12.1 μA); PH (Phenol, 0.487 V, 2.72 μA); 4-NP (4-nitrophenol, 0.239 V, 0.215 μA). 
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4. Conclusions 

Nanoparticles comprising bimetallic transition metal phosphide, CoNiP, anchored on reduced graphene oxide were synthesized 
through a solution-based chemical reduction followed by a phosphorization process. This nanocomposite, denoted as CoNiP@rGO, 
demonstrated remarkable electrochemical sensing capabilities for BPA. The electronic modulation between CoNiP and rGO contrib
uted to the exceptional properties of the CoNiP@rGO, including large surface area, lower charge transfer resistance, and the ability to 
adsorb BPA. These features collectively led to enhanced electrocatalytic activity for BPA detection when compared to bare GCE. The 
sensing performance of CoNiP@rGO/GCE was initially assessed using HQ, a model polyphenol, with diffusion-controlled oxidation. 
CoNiP@rGO/GCE exhibited a wide linear range (0.25− 25 μM) for HQ, with boasting a sensitivity of 36.4 A M− 1 cm− 2 and an 
impressive low limit of detection as low as 0.5 μM. Additionally, the sensor demonstrated good reproducibility and repeatability. For 
the detection of BPA, CoNiP@rGO/GCE exhibited a remarkable low LOD of 0.38 nM and a high sensitivity of 96.4 A M− 1 cm− 2. These 
values surpass or are comparable to those reported for previously developed sensors, showcasing superior figures of merit. Further 
validating its practical application, CoNiP@rGO/GCE was successfully employed to detect BPA in real water samples, demonstrating 
good recovery ranges and low relative standard deviation. This underscores the potential of CoNiP@rGO as an excellent sensing 
material for detecting phenolic compounds in water, in particularly for the practical application of BPA detection. 
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Table 1 
Performance comparison of CoNiP@rGO/GCE with other reported electrochemical sensors for BPA detection.  

Electrode material Method Linear range (μM) Sensitivity (A M− 1 cm− 2) LOD (nM) b)LOQ (nM) Ref. 

CoFe2O4/GCE DPV 0.05–10 0.815 3.6 12 [6] 
MAC-Co-SPE DPV 0.1–350 1.730 10 33.3 [57] 
Ni-MOF@CNTs/GCE DPV 0.001–1 284.6 0.35 *1.17 [58] 
Cu2O-rGO/GCE Amp 0.1–80 a)3.504 (A M− 1) 53 176.7 [41] 
NiNP/NCN/CS/GCE DPV 0.1–2.5 

2.5–15.0 
5.42 
1.85 

45 150 [38] 

NiFe2O4-rGO/SPE DPV 0.05–25 4.87 10 33.3 [39] 
NiS2/MoS2/rGO/GCE DPV 0.02–200 a)0.2646 (A M− 1) 2.1 *7 [55] 
FxGnP-Ni-MOF Amp 0.002–10 0.248 0.184 0.613 [56] 
MoS2–CoS2/rGO DPV 0.02–200 a)0.223 (A M− 1) 2.5 *8.33 [10] 
WO3-CNT/GCE DPV 0.03–3.0 11.54 16.3 54.3 [40] 
MWCNTs-βCD/SPCE LSV 0.125–2 

2–30 
101.4 
30.4 

13.7 45.7 [59] 

Ag2O NCs/Pt CV 0.08–4.8 95 20 66.7 [60] 
CoNiP@rGO/GCE DPV 0.001–8 6.75 

96.4 
0.38 *1.26 This work 

a) The area of the electrode was not mentioned; b) The LOQ was calculated from LOD values using equation (1) and 2; *Sensors that are fitted to the 
parametric value. 

Table 2 
BPA determination in real samples using the CoNiP@rGO/GCE (n = 3).  

Samples Spiked (μM) Detected concentration (μM) Recovery (%) RSD (%) 

Bottled water 2 2.16 108 6.5 
4 4.15 103 8.4 

Tap water 2 1.62 81 6.0 
4 3.97 99 8.0  
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