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Abstract

Consumption of processed foods—which are generally composed of nutritionally starved refined ingredients—has in-
creased exponentially worldwide. A rise in public health awareness that low fiber intake is strongly linked to new-age disor-
ders has spurred food manufacturers to fortify processed foods with refined dietary fibers (RDFs). Consumption of whole
foods rich in natural fibers undoubtedly confers an array of health benefits. However, it is not clear whether RDFs extracted
from the whole plant, kernel, and fruit peels exert similar physiological effects to their naturally occurring counterparts.
Recent studies caution that RDFs are not universally beneficial and that inappropriate consumption of RDFs may risk both
gastrointestinal and liver health. Herein, we briefly summarize the beneficial and detrimental effects of RDFs on digestive
health and discuss the contribution of metabolites derived from microbial fermentation of RDFs in driving such positive or
negative health outcomes.
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Introduction

Dietary fibers (DFs) are plant-derived complex carbohydrates
(aka polysaccharides). The monosaccharides in these polymers
are linked via b (1!4) glycosidic bonds that cannot be broken by
host enzymes but digested by the gut microbes present in the
distal gut [1]. Based on their solubility, the DFs are categorized
into two types: soluble and insoluble. Soluble DFs are easily ac-
cessible for microbial fermentation, whereas gut microbes
barely degrade insoluble DFs. Relative to humans, ruminant gut
bacteria are more effective in digesting these complex

carbohydrates, as they express a myriad of carbohydrate-active
enzymes (CAZymes). Through fermentation of DFs, gut
microbes extract essential nutrients, including carbon and en-
ergy and the host gets to expose to an array of fermentation-
derived metabolites, which fine-tune both metabolic and im-
mune health [2]. The most abundant metabolites derived from
microbial fermentation of soluble DFs are short-chain fatty
acids (SCFAs). These SCFAs, namely acetate (C2), propionate
(C3), and butyrate (C4), are generated at millimolar levels—in an
approximate 60:20:20 millimolar ratio, respectively—in the
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distal gut [3]. It is not surprising that their dysregulated produc-
tion can precipitate chronic illnesses such as metabolic syn-
drome [4], liver cancer [5], hydronephrosis [6], and
inflammatory bowel disease (IBD) [7].

The spectrum of nutritious compounds in whole grain is di-
verse. However, ultra-processing (aka refining) of whole grains
primarily removes the outer layer that is rich in essential micro-
and macronutrients, including fiber. As a corollary, the refined
wheat flour contains mainly starchy endosperm but lacks fiber,
trace minerals, and vitamin-rich germ and bran. In our modern
food practices, a significant portion of our daily diet is occupied
by refined components, which are increasingly considered to be
detrimental to health [8]. The effect of ultra-processed food on
human health has been elegantly reviewed elsewhere [9]. Both
soluble and insoluble DFs provide many health benefits.
Despite such endorsed health claims, the data from national
consumption surveys indicate that <10% of the American popu-
lation meet the recommended intake of DFs [10]. Many types of
structurally distinct refined dietary fibers (RDFs)—such as inulin
(a polymer of fructose) and pectin (a polymer of galacturonic
acid)—are being incorporated by food manufacturers in a vari-
ety of processed foods with the intent to enhance their health
benefits and narrow the fiber-intake gap.

Gut microbes inhabiting the gastrointestinal tract live in har-
mony with the host in a symbiotic relationship. The gut micro-
biota (GM) help in the proper development of gut-associated
lymphoid system, protect against enteropathogens via coloni-
zation resistance, and also provide a source for vitamin K and
biotin. Specifically, the major metabolites SCFAs can serve as
fuel for colonocytes. Recent research indicates that GM is funda-
mentally involved in our gastrointestinal and metabolic health.
The composition of healthy gut microbiome is not precisely de-
fined [11]; however, having greater species diversity and rich-
ness is largely considered beneficial for human health. High
microbial diversity not only protects against pathogenic
microbes, including viruses, but also serves as a major source of
diverse enzymes to degrade the complex carbohydrates and
maintain a rich chemical library of metabolites in the gut micro-
environment. Three main classes of enzymes—(i) glycoside
hydrolases (GHs), (ii) carbohydrate esterases (CEs), and (iii) poly-
saccharide lyases (PLs), which are commonly referred to as
CAZymes [12]—are involved in degrading the complex carbohy-
drate in the gut. While the host (human) expresses approxi-
mately 17 CAZymes, the repertoire of CAZymes expressed by
GM is far larger [12, 13]. The updated comprehensive details on
enzymes belonging to the CAZymes group are available in the
Carbohydrate-Active Enzymes database (http://www.cazy.org).
Between the two dominant phyla of GM, i.e. Firmicutes and
Bacteroidetes, Bacteroidetes express relatively more
carbohydrate-processing GH and PL enzymes than Firmicutes
[14].

DFs are among the primary source of nutrition and energy
for most of the gut bacteria; therefore, they influence the rich-
ness of the bacterial species and their proliferation in the gut.
Adequate consumption of fermentable DFs stimulates the ex-
pansion of under-represented but beneficial gut bacteria such
as Bifidobacterium and Akkermansia muciniphila. Recent research
has explicitly shown that a shift in the microbial community
and metabolites derived from the fermentation of DFs execute
DF-induced effects on gastrointestinal and metabolic health.
Herein, we summarize the beneficial and detrimental effects of
RDFs on intestinal and liver health.

RDFs: what are they?

DFs are naturally rich in fruits, vegetables, whole grains,
legumes, and nuts. Given that low fiber intake—in part due to
regular consumption of processed foods—can affect digestive,
cardiovascular, and overall health adversely over time, food
companies incorporate RDFs into food products during
manufacturing. The added fiber could be: (i) extracted (e.g. inu-
lin, which is mainly extracted from chicory root through hot-
water extraction), (ii) enzymatically modified (e.g. oligofructose,
derived through partial enzymatic hydrolysis), or (iii) semi-syn-
thetic (e.g. methylcellulose, derived from chemically treated
wood pulp) [15–17]. Based on the food application, manufac-
turers employ different methods to isolate DFs, such as blanch-
ing, milling, dry or wet processing, and enzymatic or microbial
treatment. For example, enzymatic treatment in combination
with micronization of rice bran produces fine fiber powder with
enhanced solubility, low water- and oil-holding capacity [18],
and increased absorption of bile acids and lipids in the gut. All
methods used in the isolation and processing of DFs are di-
rected towards improving its stability, enhancing the applica-
tion in functional food development, and health benefits.
However, whether such fiber-enriched food products deliver the
expected health benefits is severely under-studied, specifically
during GM dysbiosis.

DFs in modulating intestinal and metabolic health:
beyond SCFAs

DF-rich food sources such as fruits, vegetables, and whole
grains contain both insoluble and soluble types of DFs. Not only
the metabolites derived from bacterial fermentation of DFs, but
also the physico-chemical properties of DFs are beneficial for
overall health. For example, insoluble DFs such as cellulose and
hemicellulose benefit metabolic and intestinal health by pro-
moting satiety, accelerating the gastric transit—which in turn
influences the absorption of macronutrients present in the diet
[19]—and increasing the fecal bulk. Highly viscous DFs such as
b-glucan and pectin lower blood cholesterol by limiting the
reabsorption of bile acids.

Bacterial fermentation of soluble DFs leads to the production
of bioactive metabolites such as SCFAs, which are considered to
be one of the potential mediators of beneficial effects associated
with soluble DFs [20]. Our recent study demonstrated that the
beneficial effects of DFs could be independent of SCFAs.
Specifically, we found that dietary inulin-induced protection
against diet-induced obesity was dependent on interleukin (IL)-
22-mediated restoration of colonic health [21]. Collectively, con-
suming DF-rich foods can improve health in many ways, such
as limiting bile reabsorption, providing advantageous bioactive
metabolites—via microbial fermentation—and strengthening
the intestinal barrier, which in turn protects against an array of
microbiota-mediated inflammatory challenges.

DFs: a key determinant of gut-microbiome composition
and metabolic activity

Although many environmental factors, including dietary pro-
tein, fat, and host immune and metabolic health status, impact
the composition of GM, the influence of DFs is very profound.
Soluble DFs (aka fermentable dietary fibers, FDFs) such as inulin
and pectin are readily accessible for microbial fermentation,
whereas insoluble DFs like cellulose resist bacterial fermenta-
tion. FDFs are akin to staple food for the GM and, by fermenting
FDFs, gut microbes acquire their carbon source and energy for
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their survival and proliferation. Therefore, FDFs are considered
to be a bifidogenic factor and a critical modulator of microbial
communities and their metabolic activity. The shift in GM com-
position due to diets low in FDFs is linked to poor intestinal and
metabolic health [21, 22].

A plethora of studies have demonstrated that GM dysbiosis
negatively influences overall health. Dysbiosis is a relative and
vaguely defined term. A reduced alpha diversity, which repre-
sents a loss in bacterial-species richness within an organism, is
considered as dysbiosis [23]. Our recent study broadens this cri-
terion by incorporating the following key signatures of GM dys-
biosis: (i) increase in total bacterial load, (ii) overrepresentation
of Proteobacteria, (iii) selective shift in microbial species, (iv) en-
richment of under-represented bacterial species (e.g. Clostridia
spp.), and (v) atypical elevation of microbial-derived metabolites
[5, 7]. With the knowledge that the gut harbors a complex com-
munity of trillions of microbes and FDFs are a fundamental en-
ergy source for those microbes, current research aims to exploit
such a dependence of GM on FDFs to correct dysbiosis and asso-
ciated health complications. In this effort, many prebiotics have
been commercially developed as nutritional supplements to
promote the growth of specific groups of bacteria, which are be-
lieved to be beneficial for human health. However, recent re-
search cautions that prebiotic fibers might not be universally
beneficial for health [5, 7].

Microbial-derived metabolites dictate the effect of DFs
on host health

Though the association of disrupted GM composition with hu-
man health and disease has been explored extensively, very
few studies have gone beyond their ‘strong association’ to pro-
vide proof-of-concept on how a shift in microbial communities
impacts chronic health conditions. We [5, 7] and others [8, 24]
have found that the host health is adversely impacted by the in-
appropriate type and quantity of metabolites, which are pro-
duced by dysbiotic gut bacteria. For example, elevated levels of
SCFAs have been shown to fuel the metabolic syndrome in dys-
biotic mice [4] and induce inflammation in the renal system [6].
Moreover, we found that elevated levels of caecal butyrate exac-
erbated chronic colitis in mice [7]. Likewise, a study that exam-
ined the effect of butyrate on barrier dysfunction by using
epithelial monolayers from patients with ulcerative colitis dem-
onstrated that butyrate worsens inflammation-induced barrier
dysfunction in primary epithelial monolayers [24].

With few exceptions, all FDFs feed gut bacteria and then the
host via gut metabolites derived from fermentation. The princi-
pal products of gut microbial fermentation are SCFAs, namely ac-
etate (C2), propionate (C3), and butyrate (C4). Among all three
SCFAs, butyrate, which is the main source of energy for colono-
cytes, is being considered as a potential therapeutic molecule to
attenuate intestinal inflammation. While there is a wealth of sci-
entific data demonstrating multiple benefits of SCFAs on intesti-
nal health [25–28], several studies, including ours, show that
persistent elevation of SCFAs in the distal gut lumen could do
more harm than good to both colonic and metabolic health [4, 5,
7, 24, 29–33]. On a similar note, an FDF-induced shift in GM com-
position is not universally beneficial. Inulin, a commonly used
prebiotic fiber to demonstrate the beneficial effects of FDFs on
health, stimulates the growth of Bifidobacterium, which possesses
notable bile-salt hydrolase (BSH) activity. Relative to other bacte-
rial genera, Bifidobacterium and Lactobacillus are the most efficient
in generating secondary bile acids due to a higher expression of
genes encoding for BSH enzymes [34, 35]. Secondary bile acids,

such as deoxycholate and lithocholate, are toxic to host cells and
have been reported to promote cancer [36].

Refined fermentable fibers, commonly present in
processed food, induce hepatocellular carcinoma in
dysbiotic mice

Though the mammalian genome does not encode most of the
enzymes required to digest complex carbohydrates, we receive
many fermentation-derived metabolites with the help of symbi-
otic bacteria residing in the gut. Between the two most abun-
dant bacterial phyla, the bacterial species from the
Bacteroidetes express a large repertoire of FDF-degrading
enzymes [13]. Accordingly, Bacteroides species can digest di-
verse DFs, including pectin, galactomannan, laminarin, xylan,
arabinogalactan, b-glucans, alginate, and xyloglucan [37–40].
However, a few Bacteroides species, e.g. B. vulgatus, are unable
to digest inulin-like fructans [41]. Inulin-type fructans are
mainly fermented by the Bifidobacterium [42].

The beneficial effects of the prebiotic fiber inulin on meta-
bolic health are well documented. However, we did not observe
such inulin-induced beneficial effects in a subset of toll-like re-
ceptor five deficient mice (Tlr5KO), which display spontaneous
metabolic syndrome in a microbiota-dependent fashion.
Surprisingly, a subset of Tlr5KO mice developed hepatocellular
carcinoma (HCC) upon being fed an inulin-containing diet for 6
months [5]. No incidence of HCC was found in mice receiving a
diet containing cellulose, which is largely not accessible to GM
in both rodents and humans due to the absence of cellulolytic
bacteria. Lack of HCC in mice fed with a similar amounts of inu-
lin incorporated in a grain-based chow diet—which represents
minimally processed whole foods—emphasizes that the con-
sumption of RDFs fortified in processed foods could be detri-
mental to human health.

Structurally distinct DFs differentially modulate
intestinal health

FDFs are well tolerated by healthy individuals and consuming
an adequate amount of FDFs can provide numerous health ben-
efits. Contrarily, a subset of IBD patients experience poor toler-
ance to certain types of fiber, including inulin-type fructans
commonly present in the FODMAPs (fermentable oligosacchar-
ides, disaccharides, monosaccharides, and polyols) [43, 44]. In
our recent study [7], we showed that two structurally distinct
FDFs (inulin and pectin) behave oppositely in the inflamed gut
(Fig. 1), which emphasizes the complexity of fiber intolerance in
IBD patients. To understand the fundamental mechanisms of
why inulin aggravated intestinal inflammation, we analysed
both the composition and the metabolic products of the GM in
cecal contents, which revealed that inulin specifically promoted
the expansion of c-Proteobacteria, a well-known opportunistic
pathogen, and an abundance of butyrate when compared to
mice fed pectin and cellulose as a DF source. Further, oral feed-
ing of tributyrin, the triglyceride form of butyrate, exacerbating
colonic inflammation affirmed that elevated butyrate could be
detrimental during heightened colonic inflammation triggered
via loss of IL-10 function. Exacerbated colitis in the inulin-fed
group was also associated with augmented IL-1b activity, where
inhibition of the nucleotide-binding oligomerization domain
(NOD)-like receptor protein 3 (NLRP3) by genetic, pharmacologic,
or dietary means diminished colitis. Collectively, our study
partly explains why limiting or avoiding foods that contain high
FDFs—or consuming a low-FODMAP diet—improves clinical
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complications in IBD patients. Remarkably, pectin used in this
study improved colonic inflammation. Collectively, accumu-
lated data suggest that not all DFs are created equally or fer-
ment uniformly, and do not provide similar effects on host
gastrointestinal health.

Conclusion

The vital role of the GM in maintaining overall metabolic and
immune health urges research to constitute a strategy to main-
tain a healthy GM composition. The phrase ‘dietary fiber’ adds
many values to packaged food. Without exception, consuming
DFs naturally present in whole foods is beneficial for overall
health, but whether RDFs are equally beneficial for health is
largely unexplored. The notion of eating more fiber has spurred
food manufacturers to fortify nutritionally deprived processed
food with RDFs. This approach certainly narrows the gap of ade-
quate fiber intake that is commonly found in the Western
world, but it can have negative consequences on gastrointesti-
nal and liver health.
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