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Abstract

Background

The variable course of autosomal dominant polycystic kidney disease (ADPKD), and the

advent of renoprotective treatment require early risk stratification. We applied urinary meta-

bolomics to explore differences associated with estimated glomerular filtration rate (eGFR;

CKD-EPI equation) and future eGFR decline.

Methods

Targeted, quantitative metabolic profiling (1H NMR-spectroscopy) was performed on base-

line spot urine samples obtained from 501 patients with ADPKD. The discovery cohort con-

sisted of 338 patients (56% female, median values for age 46 [IQR 38 to 52] years, eGFR

62 [IQR 45 to 85] ml/min/1.73m2, follow-up time 2.5 [range 1 to 3] years, and annual eGFR

slope –3.3 [IQR –5.3 to –1.3] ml/min/1.73m2/year). An independent cohort (n = 163) was

used for validation. Multivariate modelling and linear regression were used to analyze the

associations between urinary metabolites and eGFR, and eGFR decline over time.

Results

Twenty-nine known urinary metabolites were quantified from the spectra using a semi-auto-

matic quantification routine. The model optimization routine resulted in four metabolites that

most strongly associated with actual eGFR in the discovery cohort (F = 128.9, P = 7×10−54,

R2 = 0.724). A model using the ratio of two other metabolites, urinary alanine/citrate, showed

the best association with future annual change in eGFR (F = 51.07, P = 7.26×10−12, R2 =

0.150). This association remained significant after adjustment for clinical risk markers
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including height-adjusted total kidney volume (htTKV). Results were confirmed in the valida-

tion cohort.

Conclusions

Quantitative NMR profiling identified urinary metabolic markers that associated with actual

eGFR and future rate of eGFR decline. The urinary alanine/citrate ratio showed additional

value beyond conventional risk markers.

Introduction

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary

renal disease with a prevalence of about 4:10.000, accounting for approximately 10% of

patients on renal replacement therapy [1, 2]. The disease is caused by mutations in the PKD1
or PKD2 genes which accounts for 85% and 15% of cases, respectively. Progressive growth of

cysts results in loss of functioning nephrons and progressive deterioration of renal function

with approximately 50% of patients reaching end-stage renal failure by the age of 60 years.

Patients and physicians need to know the prognosis regarding renal function to allow for fam-

ily and career planning, and to decide who is eligible for renoprotective treatment and for par-

ticipation in trials of novel therapies [3, 4]. Since the disease course of ADPKD is highly

variable, it is important to identify the patients at high-risk of rapid disease progression. Con-

ventional markers to predict disease progression, such as height-adjusted total kidney volume

(htTKV) and a genotype assessment are time consuming and expensive. Several alternative

serum and urinary biomarkers including neutrophil gelatinase-associated lipocalin, monocyte

chemoattractant protein-1, beta-2 microglobulin, and soluble urokinase plasminogen activator

receptor have been reported to have (at best) moderate predictive value [5, 6]. None of these

markers are used in clinical care. Therefore, identification of new markers which reliably and

robustly associate with disease severity and progression is relevant to patients with ADPKD.

Metabolomics is a post-genomic discipline, which offers an analytical framework for the

discovery of novel diagnostic and predictive markers and may also provide insight into patho-

physiological mechanisms in the study of renal diseases [7–9]. Metabolites, the intermediates

and end-products of metabolism, measured in body fluids represent the physiological pheno-

type of an organism and its dynamic response to environmental influences, pathophysiological

stimuli as well as biochemical adaptations of the biological systems [10, 11]. Nuclear magnetic

resonance (NMR) spectroscopy and mass spectrometry are the main analytical technologies

utilized in metabolomic strategies [7]. Compared to mass spectrometry, NMR may not appear

as a very sensitive method, but this methodology offers unsurpassed analytical reproducibility,

which often is a more valuable trait in clinical research [10, 12].

Analysis of the urine metabolome has been widely applied in chronic renal diseases [8], but

data in patients with ADPKD are scarce. Urinary metabolic profiling in experimental models

of polycystic kidney disease (PKD) have indicated that several metabolic pathways related to

energy metabolism and cell proliferation were altered in affected animals [13–16]. Only one

small cross-sectional study has investigated urinary metabolic profiles in patients with

ADPKD. Urinary metabolic profiling by NMR differentiated ADPKD patients with well-pre-

served renal function from those on hemodialysis as well as type-2 diabetics with chronic kid-

ney disease and healthy volunteers [17]. The alterations in NMR profiles or specific

metabolites were, however, not quantified and not studied in relation to disease progression.
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We applied a quantitative NMR-based metabolomics strategy for urinary metabolic profiling

in a large cohort of patients with ADPKD. The aim was twofold; first to explore changes in the

urinary metabolome that associate with the actual eGFR and second to explore which baseline

urinary metabolites associate with future progressive renal disease as assessed by annual eGFR

decline over time. This is a first step towards identifying urinary markers for early risk

stratification.

Material and methods

Study population and endpoints

Discovery cohort. This cohort consisted of ADPKD patients (n = 382) participating in

the national DIPAK consortium (DIPAK1 trial: age 18–60 years, eGFR 30–60 ml/min/1.73m2,

included from 2012–2015, n = 137; DIPAK observational study: age�18 years, eGFR�15 ml/

min/1.73m2, included from 2013–2015, n = 189), and the Dutch Parelsnoer Institute/CuraRata

biobank initiative (2010, n = 56). All samples from the DIPAK 1 trial were collected at baseline

before lanreotide treatment [18]. The first 137 patients enrolled in the DIPAK 1 trial were

included in the discovery phase in addition to patients from the two observational studies. Val-
idation cohort: The ADPKD patients that were subsequently enrolled in the DIPAK 1 trial

(n = 172) were included as validation cohort in the second phase of our study. None of the

patients used tolvaptan. The use of other concomitant treatment was not restricted in any of

the cohorts.

The diagnosis ADPKD was based upon the modified Ravine criteria [19] and/or genetic

mutation analysis. The DIPAK 1 trial (ClinicalTrials.gov identifier: NCT01616927) and the

DIPAK observational study were centrally approved by the Medical Ethics Committee of the

University Medical Center Groningen, and additionally by the institutional review boards of

all study centers participating in the national DIPAK consortium (Leiden University Medical

Center, Leiden; Radboud University Medical Center, Nijmegen; Erasmus Medical Center, Rot-

terdam). Analysis of the cohort of the Dutch Parelsnoer Institute/CuraRata initiative did not

require additional ethics committee board approval since these samples were obtained from a

biobank. Subjects from all studies provided written informed consent. Consent included stor-

age of data and samples and use of samples in future biomedical research such as ours. Patients

provided written informed consent to have data from their medical records used in research.

All data/samples in the clinical databases and biobank were fully anonymized before we

accessed them.

We analyzed the association between metabolic profiles in baseline urine samples and

actual eGFR using the CKD-EPI equation [20]. Furthermore, we analyzed the association

between metabolic profiles in these samples and the subsequent annual change in eGFR over

time. In the DIPAK 1 trial, eGFR measurements were performed at baseline, week 12, and

every 12 weeks thereafter until week 132, whereas in the observational study and Parelsnoer

biobank initiative, annual eGFR measurements were available. The annual change in eGFR

during follow-up was calculated using linear regression slopes through serial eGFR measure-

ments and was expressed as the change in ml per year. Patients with a follow-up time <1 year

were excluded from the eGFR slope analyses.

Urine samples collection and preparation

Standard methods were used to collect, process and store the early morning void urine sam-

ples. These urine samples were collected under overnight-fasting conditions. They were col-

lected in sterile containers and centrifuged at 1000g for 10 minutes. The supernatant was

processed into aliquots of 2ml and stored at -80˚C until analysis. Sampling of fresh urine to
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measure pH was not part of the protocol. All samples were stored for two to eight years and

underwent one to two freeze-thaw cycles. For sample preparation, samples were thawed, trans-

ferred into 96 deep-well plates and centrifuged at 1550 g for 5 minutes. Using a Gilson 215 liq-

uid handler, 630μl of urine was mixed with 70μl of pH 7.4 phosphate buffer (1.5 M) in 100%

D2O containing 4mM TSP and 2mM NaN3. A customized Gilson 215 liquid handler was used

to transfer the samples to a 5.0mm Bruker NMR tube rack.

NMR spectroscopy
1H NMR data were collected using a Bruker 600MHz AVANCE II spectrometer equipped

with a 5mm TCI cryogenic probe head and a z-gradient system. A Bruker SampleJet was used

for sample insertion and removal. All experiments were recorded at 300K. A fresh sample of

99.8% methanol-d4 was used for temperature calibration [21] before each batch of measure-

ments. Duration of 90˚ pulses were automatically calibrated for each individual sample using a

homonuclear-gated mutation experiment [22] on the locked and shimmed samples after auto-

matic tuning and matching of the probe head. One-dimensional (1D) 1H NMR spectra were

recorded using the first increment of a NOESY pulse sequence [23] with presaturation (γB1 =

50Hz) during a relaxation delay of 4s and a mixing time of 10ms for efficient water suppression

[24]. Initial shimming was performed using the TopShim (Bruker Corporation, 2011) tool on

a random mix of urine samples from the study, and subsequently the axial shims were opti-

mized automatically before every measurement. Sixteen scans of 65,536 points covering

12,335Hz were recorded. J-resolved (JRES) spectra were recorded with a relaxation delay of 2s

and two scans for each increment in the indirect dimension. A data matrix of 40×12,288 data

points was collected covering a sweep width of 78×10,000 Hz.

Identification and quantification of metabolites

Peaks were assigned to specific metabolites using a variety of techniques. Abundant metabo-

lites were identified using the list presented in the human urine metabolome database and by

comparing the chemical shift with the one listed in the HMDB [25], BMRB [26] or Chenomx

software (Chenomx Inc., 4232–10230 Jasper Ave, Edmonton, Alberta, Canada). Different

peaks that originate from the same metabolite have a perfect correlation, which also helps with

peak identification. TOCSY, edited HSQC and HMBC two-dimensional (2D) NMR spectra of

a mixed sample provided additional information for metabolite quantification. When the tech-

niques above were not sufficient to narrow the peak assignment down to a single metabolite,

spiking of pure compound into a urine sample was used to determine which metabolite

matched the peak. Metabolomic analysis of body fluids offers two strategies: untargeted where

all acquired data is used for the analysis, and the targeted where the analysis is based on a sub-

set of the annotated structures. The first approach appears to be an attractive discovery tool,

but its practical value is often strongly reduced by difficulties during the annotation of the dis-

covered spectral regions. The targeted approach limits the analysis to a predefined set of struc-

tures, but simplifies the interpretation and increases the translational value of findings. The

urinary metabolic profiles of patients were extracted using a targeted semi-automatic NMR

quantification workflow (KIMBLE) [27]. The selection of metabolites that were quantified was

data driven and based on the well-defined HMDB list of urinary metabolites [12]. In total, 31

urinary metabolites were identified and quantified. Leaving out ethanol because of its dietary

origin and fumarate because of its relatively low quantification quality, analyses were per-

formed with 29 metabolites. To compensate for urine dilution differences, the data were nor-

malized using probabilistic quotient normalization (PQN), a normalization routine
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specifically developed for complex NMR data. The data is scaled on the basis of the most prob-

able dilution, which is estimated from the analysis of the reference spectra [28].

Statistical analysis

The data analysis and visualization were performed with R versions 3.51 and 3.2.3, and Python

version 2.7.12. Regarding the descriptive statistics, non-normally distributed data were

expressed as median with interquartile range (IQR). Categorical data were given as propor-

tions. Differences between variables were tested using a Mann-Whitney U test when not nor-

mally distributed. A chi-square test was used in case of categorical data. Data was not

corrected for treatment with lanreotide, since all samples were collected at baseline before lan-

reotide was started, and lanreotide did not affect the rate of eGFR decline over time [29]. Mul-

tivariate linear regression analyses were used to explore associations between urinary

metabolites and eGFR progression. Parameters which were associated with annual eGFR slope

in univariate regression analyses (age, sex, baseline eGFR and baseline htTKV) were included

as independent variables in the multifactorial model, resulting in exclusion of albuminuria.

The following metrics were reported for these models: standardized β coefficients (showing

how many SD a dependent variable will change, per SD increase in the predictor variable), the

result of the F-test of the overall significance (describing a difference between a model with no

predictors and the tested model), its P-value, and R2 (showing the percentage of the variance

in the dependent variable that the independent variables explain). For the linear modeling and

linear model diagnostics, the basic lm function, the caret package and the car package were

used. Model optimization and variable selection was performed using the best subset selection

approach, an exploratory model building regression analysis which compares all possible mod-

els that can be created based upon an available set of the variables. The regsubset function of

the leaps package was used for the selection. It tested all possible combinations of the metabo-

lites and all their respective ratios to find the best-performing linear model. A combination of

four variables was sought as a good compromise between model simplicity and performance.

All visualizations were made with help of the ggplot2 package, the predictor effect plot was gen-

erated using effects package [30], while the correlation heatmap was generated by the corrplot
package.

Results

Discovery cohort

Patient characteristics. After NMR quality control of the spot urine samples, 338 patients

were included in the discovery cohort. The characteristics of this cohort are summarized in

Table 1. Patients had a median age of 46 (IQR 38–52) years and median eGFR of 62 (IQR 45–

85) ml/min/1.73m2. Height-adjusted total kidney volume (htTKV) was available for 224

patients (median 935 [IQR 575–1398] ml/m). Out of the 338 patients, 309 patients had a fol-

low-up of�1 year, and were included in the eGFR slope analysis (median age 46 [IQR 39–52]

years, median eGFR 62 [IQR 45–85] ml/min per 1.73m2, median follow-up time of 2.5 [range

1–3] years, and median annual change in eGFR -3.3 [IQR -5.3 –-1.3] ml/min/1.73m2).

Twenty-nine urinary metabolites were quantified using a targeted semi-automatic NMR

quantification workflow and were used for analyses. Probabilistic quotient normalization

(PQN) was used to correct for differences in urine dilution. PQN values showed a strong cor-

relation with both urinary osmolality (r = 0.86, S1A Fig) and urinary creatinine (r = 0.84, S1B

Fig). Concentrations of all quantified metabolites within the different CKD stages are reported

in S1 Table. The principal component analysis model showed that urinary metabolic profiles
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did not differ between urine samples obtained under fasting or non-fasting conditions (S2

Fig).

Association of urine metabolites with baseline eGFR. The first step of our analysis was

to evaluate whether urinary metabolites associate with renal function. The correlation map

shows that several metabolites correlated with baseline eGFR (S3 Fig). To overcome potential

issues of multiple regression such as multicollinearity which leads to a strong overestimation

of the model quality, we applied a model optimization procedure. The aim of such an explor-

atory algorithm is to evaluate all possible combinations of the 29 quantified urinary metabo-

lites (predictors) and find an optimal combination for prediction of the baseline eGFR. The

automatic optimization procedure selects the statistically best combination of metabolites for

the model, considering the interaction between metabolites. The most optimal model, there-

fore, does not necessarily include the individually most significantly associated metabolites (S1

Table). The optimal model that was obtained, was based on a subset of four urinary metabo-

lites: myo-inositol, asymmetric dimethylarginine (ADMA), 3-hydroxyisovalerate and creati-

nine. This model served as a good predictor for eGFR (F = 128.9, P = 7×10−54, R2 = 0.724). Fig

1A represents a plot showing that the predicted eGFR values based on the model consisting of

four urinary metabolites correctly defined the actual CKD stage. Fig 1B represents a plot of the

calculated versus the predicted eGFR. It shows that the predicted eGFR values strongly associ-

ated with the calculated eGFR values (blue dots, r = 0.85).

Association of urine metabolites with eGFR slope. To predict disease progression, we

evaluated whether baseline concentrations of the 29 urinary metabolites associate with the

future rate of annual decline in eGFR. We used the annual change in eGFR as a response vari-

able and the quantified metabolites plus all their binary ratios as the predictors (449 features in

total). Using the same model optimization routine as for baseline eGFR, we found that the ala-

nine/citrate ratio was most strongly associated with the future annual change in eGFR. Patients

with a more rapid decline in renal function had a higher baseline alanine/citrate ratio as com-

pared with those with a slower decline in eGFR (Fig 2A). Fig 2B shows that the calculated

annual eGFR slope associated with the eGFR slope that was predicted based on the alanine/

Table 1. Baseline characteristics of ADPKD patients in the discovery and validation cohort.

Variable Discovery cohort Validation cohort P value�

n 338 163

Female sex, n (%) 190 (56) 87 (53) 0.55

Age, years 46 (38–52) 49 (44–55) <0.001

Height, m 1.75 (1.68–1.84) 1.77 (1.70–1.84) 0.18

BMI, kg/m2 26 (23–28) 26 (24–29) 0.60

eGFR, ml/min per 1.73m2 62 (45–85) 50 (41–58) <0.001

HtTKV, ml/m 935 (575–1398) 1142 (775–1778) 0.001

Urine ACR, mg/mmol 2.8 (1.1–6.4) 4.2 (2.3–9.6) <0.001

Gene type mutation, n 287 158

PKD1, n (%) 222 (77) 116 (73) 0.06

PKD2, n (%) 50 (18) 39 (25)

None, n (%) 15 (5) 3 (2)

Data in median and interquartile ranges. ACR, albumin-to-creatinine ratio; ADPKD, autosomal dominant polycystic

kidney disease; eGFR, estimated glomerular filtration rate; htTKV, height-adjusted total kidney volume.

�P values were calculated using a Mann-Whitney U test in case of non-normally distributed data, and a chi-square

test in case of categorical data.

https://doi.org/10.1371/journal.pone.0233213.t001
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citrate ratio. Tables 2 and 3 summarize the statistical metrics of the different regression models

with and without the alanine/citrate ratio, showing that the models with the ratio remained

significant after correction for clinical characteristics that are conventionally used for risk pre-

diction (sex, age, and/or baseline eGFR, and/or htTKV). These tables also include the metrics

of the models built only on the conventional clinical risk markers including baseline eGFR

(Table 2) and baseline htTKV (Table 3). The model built on the alanine/citrate ratio is the

most optimal one (F = 51.07, P = 7.26×10−12, R2 = 0.150). Also after adjustment for all conven-

tional risk markers, it outperformed the model built only on age, sex and baseline eGFR

(F = 7.31, P = 9.75×10−5, R2 = 0.071 versus including the alanine/citrate ratio: F = 14.61,

P = 6.97×10−11, R2 = 0.169) or on baseline htTKV (F = 9.00, P = 1.03×10−5, R2 = 0.087 versus

including the alanine/citrate ratio: F = 16.50, P = 3.66×10−11, R2 = 0.190). However, even the

strongest model explains only a fraction of the variation in the data (about 15%). Analysis after

random partitioning of a training cohort showed similar results for the performance of the

model (S2 Table) as compared with the method that was applied in this study. We also

repeated model derivation on a restricted cohort including only patients with at least two years

of follow-up and/or four eGFR measurements for calculation of the eGFR slope. Using the

same model optimization routine, the alanine/citrate ratio is still on top of the list candidate

predictors, confirming that this ratio was most strongly association with annual eGFR decline

(S4 Fig). A model with strongly significant predictors, but low R2 is evidently sub-optimal for

prediction in clinical practice. Nonetheless, it shows a clear dependency between a given meta-

bolic ratio and annual change in eGFR, which outperformed conventional clinical risk mark-

ers. Of note, using log2 transformed htTKV like in a previous study [31], the model including

log2htTKV and the alanine/citrate ratio explained 21% of the variation in the data.

Fig 1. A. Swarm plot showing a distribution of the predicted estimated glomerular filtration rate (eGFR) versus the different stages of chronic kidney disease (CKD).

The nuclear magnetic resonance (NMR)-derived eGFR model for prediction based on four urinary metabolites (myo-inositol, asymmetric dimethylarginine (ADMA),

3-hydroxyisovalerate, creatinine) reliably explained the different stages of CKD. B. The model including four urinary metabolites associated with actual estimated

glomerular filtration rate (eGFR). A linear model (transformed to log2 eGFR) based on four urinary metabolites (myo-inositol, asymmetric dimethylarginine (ADMA),

3-hydroxyisovalerate, creatinine) served as a good predictor for eGFR (F = 128.9, P = 7×10−54, R2 = 0.724) in the discovery cohort (blue dots), and could be validated in

an independent cohort (orange dots). The Pearson correlations between measured and predicted eGFR values are r = 0.85 and r = 0.65 in the discovery and validation

cohort, respectively).

https://doi.org/10.1371/journal.pone.0233213.g001
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Validation cohort

Patient characteristics. Of the patients that were selected for the independent validation

phase, nine were excluded after NMR quality control, leaving 163 ADPKD patients (median

age 49 [IQR 44–55] years, median eGFR 50 [IQR 41–58] ml/min/1.73m2, median htTKV 1142

[IQR 775–1778] ml/m) for analyses (Table 1). For 150 patients, a follow-up of at least one year

was available. Median age was 49 [IQR 44–55] years, eGFR 50 [IQR 41–58] ml/min/1.73m2),

follow-up time 2.5 (range 1.2–2.5) years, and annual change in eGFR -3.3 (IQR -5.3 –-1.6) ml/

min/1.73m2. Patients in the validation cohort were relatively older and on average had a lower

eGFR than the patients in the discovery cohort. For the discovery phase, we included a diverse

cohort of ADPKD patients with a wide variety in age and stage of disease for identifying

metabolites associated with eGFR. The independent cohort was included in our study to vali-

date the results. Based on availability, this group consisted of a subset from the DIPAK 1 trial.

Fig 2. A. Swarm plot showing the differences between the urinary alanine/citrate ratio within quartiles of the annual eGFR slope. Patients

with more rapidly progressive renal function decline (green dots) showed a higher urinary alanine/citrate ratio. Upper part of the figure:

mean±SD; lower part of the figure: the effect size and 95% CI’s. Quartiles of annual change in eGFR (ml/min/1.73m2), expressed in slope

ranges: Q1 = [-11.7, -5.14), Q2 = [-5.14, -3.28), Q3 = [-3.28, -1.41), Q4 = [-1.41,4.34]. B. The model including the urinary alanine/citrate

ratio associated with annual change in estimated glomerular filtration rate (eGFR). The values for eGFR slope based on a model including

the urinary alanine/citrate ratio associated with the measured annual change in eGFR (F = 51.07, P = 7.26×10−12, R2 = 0.150) in the

discovery cohort (blue dots), and could be validated in an independent cohort (orange dots). The Pearson correlations between the

measured and predicted eGFR slope values are r = 0.39 and r = 0.35 for the discovery and validation cohort, respectively).

https://doi.org/10.1371/journal.pone.0233213.g002

Table 2. Associations between annual change in eGFR and demographic variables and baseline eGFR with and without the alanine/citrate ratio.

Variable St. β F P R2

Alanine/citrate ratio - 0.3869 51.07 7.26×10−12 0.150

+ age -0.3858 26.90 1.93×10−11 0.157

0.0851

+ baseline eGFR -0.3829 25.51 6.28×10−11 0.150

0.0183

+ age + baseline eGFR -0.3598 18.94 3.09×10−11 0.165

0.1533

0.1144

Alanine/citrate ratioa - 0.3695 26.19 3.52×10−11 0.153

+ age -0.3669 18.46 5.56×10−11 0.161

0.0887

+ baseline eGFR -0.3658 17.44 1.98×10−10 0.154

0.0172

+ age + baseline eGFR - 0.3400 14.62 6.97×10−11 0.169

0.1580

0.1160

Baseline eGFR 0.1022 3.06 0.081 0.010

+ age 0.2331 6.91 0.001 0.046

0.2406

Baseline eGFRa 0.0899 5.29 0.005 0.035

+ age 0.2338 7.31 9.75×10−5 0.071

0.2286

a model corrected for sex. eGFR, estimated GFR; st β, standardized β. St β, F and P values were calculated using multivariable linear regression. Dependent variable:

annual change in eGFR, independent variables: alanine/citrate ratio, sex, age and baseline eGFR.

https://doi.org/10.1371/journal.pone.0233213.t002
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The validation cohort is therefore characterized by a narrower distribution of baseline charac-

teristics including age and renal function.

Association of urine metabolites with baseline eGFR. The model to predict baseline

eGFR, based on the combination of four urinary metabolites, was validated in an independent

cohort. Fig 1B shows that the calculated eGFR values strongly correlated with the predicted

values in the validation cohort (orange dots; F = 31.10, P = 3.55×10−19, Pearson correlation

coefficient r = 0.65), confirming the results found in the discovery cohort (r = 0.85; blue dots).

Association of urine metabolites with eGFR slope. The model including the urinary ala-

nine/citrate ratio was validated in the independent cohort. Fig 2B shows that the calculated

eGFR slope values correlated with the predicted eGFR slope in the validation cohort (orange

dots; F = 20.71, P = 1.08×10−5, Pearson correlation coefficient r = 0.35), confirming the results

found in the discovery cohort (r = 0.39; blue dots).

Table 3. Association between annual change in eGFR and demographic variables and baseline htTKV with and without the alanine/citrate ratio.

Variable St. β F P R2

Alanine/citrate ratio - 0.3869 51.07 7.26×10−12 0.150

+ age -0.3858 26.90 1.93×10−11 0.157

0.0851

+ baseline htTKV -0.3477 33.26 1.00×10−13 0.187

-0.1973

+ age + baseline htTKV -0.3412 21.98 7.99×10−13 0.189

-0.1964

0.1054

+ baseline log2(htTKV)/age˟ -0.3613 27.75 9.83×10−12 0.163

-0.1414

Alanine/citrate ratioa - 0.3695 26.19 3.52×10−11 0.153

+ age -0.3669 18.46 5.56×10−11 0.161

0.0887

+ baseline htTKV -0.3400 20.50 4.76×10−12 0.179

-0.1826

+ age + baseline htTKV -0.3348 16.50 3.66×10−12 0.190

0.1061

-0.1906

Baseline htTKV -0.2495 18.09 1.90×10−5 0.062

+ age -0.2584 11.75 1.25×10−5 0.076

0.1194

+ baseline eGFR -0.2481 9.43 0.0001 0.062

0.0004

Baseline htTKVa -0.2238 11.10 2.28×10−5 0.073

+ age -0.2451 9.00 1.03×10−5 0.087

0.1121

Baseline log2(htTKV)/age˟ -0.1871 10.34 0.0014 0.035

a model corrected for sex.

˟model related to the Mayo classification. eGFR, estimated GFR; htTKV, height-adjusted total kidney volume; st β, standardized β. St β, F and P values were calculated

using multivariable linear regression. Dependent variable: annual change in eGFR, independent variables: alanine/citrate ratio, sex, age and htTKV.

https://doi.org/10.1371/journal.pone.0233213.t003
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Discussion

Our study provides the first systematic evaluation of the association between the urinary meta-

bolome and severity and progression of disease in patients with ADPKD. Using targeted,

quantitative 1H NMR based metabolic profiling in a large cohort of patients with different

stages of CKD, we identified an optimal subset of four urinary metabolites (myo-inositol,

3-hydroxyisovalerate, ADMA and creatinine) that strongly associated with the actual eGFR.

Furthermore, we showed that the ratio of baseline urinary alanine over citrate was the stron-

gest combination of urinary metabolites associated with the subsequent rate of eGFR decline

over time. These results were validated in a separate cohort of patients with ADPKD.

There is a need to identify biomarkers to predict the rate of eGFR decline, and to improve

the current risk assessment strategies. Patients want to know their prognosis, and it is impor-

tant to tailor treatments to individual patients since those at high-risk of rapidly progressing

disease are most likely to benefit from treatment. Multiple studies have evaluated the use of

biomarkers and clinical variables for predicting disease progression. The current gold-stan-

dard is a prognostic model based on htTKV and age (Mayo classification) [31]. In our study,

the model including the urinary alanine/citrate ratio showed additional value beyond that of a

model based on htTKV and age.

Data on urinary metabolic profiling in patients with ADPKD are still scarce. The only pub-

lished report by Gronwald and colleagues described urinary profiles measured with 1H NMR

in 54 patients with ADPKD with relatively preserved renal function, other patients with

chronic kidney disease including 52 type 2 diabetics and 46 healthy volunteers. Their study

focused on differences in the urinary metabolic profiles between the study groups. The associa-

tion between the metabolic profile and ADPKD progression over time was not evaluated [17].

They also recorded 1D 1H and 2D 1H-13C HSQC NMR spectra for metabolite quantification.

The 2D 1H-13C HSQC spectrum provides excellent resolution, but low signal-to-noise, and

takes long to record. Our method is based on 1D NOESY and 2D JRES experiments, both

purely 1H, which are quicker to record and allowed us to measure a greater number of samples.

Because of the use of different NMR experiments, our selection of metabolites is not identical

to the list provided by Gronwald et al. [17], although there is considerable overlap. Our report

extends the limited pool of data on the urinary metabolome in ADPKD. Our study design is

not suitable for an unequivocal causal or mechanistic interpretation of the findings. Under-

standing the functional and causal relationships between the set of predictors and renal func-

tion would require a different study design ideally in a large patient cohort with different

stages of CKD, including patients with ADPKD. Having said that, the metabolites we discuss

here in association with eGFR and eGFR loss have been mentioned in a context of a renal

(patho)physiology more than once. The bulk of myo-inositol is produced by the kidneys [32].

In CKD, urinary levels of myo-inositol increase due to reduced tubular reabsorption [33].

ADMA is implicated with chronic kidney disease [34, 35]. An impaired renal glomerular filtra-

tion rate results in increased urine levels. Citrate is frequently mentioned as a “window to the

renal metabolism” and its role in renal (dys)function is well documented [36]. Multiple studies

have shown that citrate levels in plasma and urine decrease as CKD and ADPKD progress [17,

37–39]. Alanine, on the other hand, is not frequently mentioned in the context of renal physi-

ology. A change in urinary alanine excretion following damage to the proximal tubule has

been previously reported in a mercury-induced nephrotoxicity model [40]. Alanine amino-

peptidase, a proximal tubule brush border enzyme, may be a marker of kidney damage. Inter-

estingly, Gronwald et al. [17] reported reduced urinary levels of alanine in early stage ADPKD

(mean eGFR 95.5±27.7 ml/min/1.73m2). In contrast, in the current study including predomi-

nately later-stage patients, we found increased levels, suggesting impaired reabsorption.

PLOS ONE Urinary metabolic profiling in ADPKD

PLOS ONE | https://doi.org/10.1371/journal.pone.0233213 May 22, 2020 11 / 16

https://doi.org/10.1371/journal.pone.0233213


Alternatively, the altered urinary alanine excretion in our study could be explained by a reduc-

tion in alanine aminopeptidase secreting cells due to progressive tubular damage. Based on the

literature, we think that the metabolites that were identified play a role in chronic renal dys-

function in general, and may not be specific to ADPKD. A model including all quantified

metabolites reliably distinguished ADPKD and other chronic, renal disease patients (CKD

stage 1–2, mainly chronic glomerulonephritis) from healthy controls (data not shown). An

association was found between the actual and predicted eGFR in both ADPKD (blue dots) and

non-ADPKD (orange dots) patients (S5 Fig). Although this association was more scattered in

non-ADPKD patients (between the cohorts; r = 0.289, P = 0.03), a definitive conclusion

whether the identified model is ADPKD-specific could not be drawn because of the limited

number of patients and eGFR range in the non-ADPKD cohort.

This study has a number of strengths. First, this is a large and phenotypically well-defined

cohort of patients with ADPKD, including data on genetic mutation and total kidney volume

for most participants. Second, most samples were collected and stored in a uniform way, limit-

ing potential bias. Third, we used NMR as the methodology for the measurement of urinary

metabolites, which is a robust and reproducible analytical method [10]. Our NMR work-flow

has been specified and largely automated, making it possible to reliably and accurately measure

and quantify a large group of urine metabolites in a large group of patients [27]. Finally, the

results were confirmed in a validation cohort of patients with ADPKD.

This study also has limitations. The eGFR slopes were based on a median follow-up time of

2.5 years, which is relatively short compared with studies that were used for validation of

htTKV to predict renal disease progression [31, 41]. This limited follow-up period may reduce

the reliability of the eGFR slope to predict long-term disease progression and kidney failure. A

shorter follow-up period may also make the eGFR slope more susceptible to random variance

in eGFR at the time of sampling. Nevertheless, despite this, the association between the ala-

nine/citrate ratio and eGFR slope could be validated in a separate cohort. Additionally, the val-

idation cohort only consisted of patients with later-stage CKD. Future validation of our

findings in patients with CKD stages 1–2 with a longer follow-up period is required to further

establish the value of the selected ratio to predict the rate of renal function decline. Of note, in

the discovery cohort, in a sub-selection of patients with CKD stages 1 and 2 (n = 185), the ala-

nine/citrate ratio had a stronger association with annual change in eGFR (F = 29.06,

P = 2.67×10−7, R2 = 0.16) than htTKV (F = 17.55, P = 4.80×10−5, R2 = 0.10). In this sub-analy-

sis, a combined model with both the alanine/citrate ratio and htTKV performed best

(F = 24.86, P = 5.11×10−10, R2 = 0.25).

In conclusion, this study shows the potential of urinary metabolic profiling in chronic kid-

ney disease patients. Using quantitative NMR profiling we identified urinary metabolic mark-

ers that correlated with eGFR and with the future rate of decline in eGFR. Although our model

with strongly significant predictors, but low R2 is evidently sub-optimal for prediction in clini-

cal practice, it showed a clear dependency between the urinary alanine/citrate ratio and annual

change in eGFR, which outperformed conventional clinical risk markers in early and late stage

CKD. A study with a longer follow-up period and a larger cohort of patients with early stage

ADPKD is needed to further explore the value of this ratio as a tool to predict disease

progression.

Supporting information

S1 Fig. Correlation between probabilistic quotient normalization (PQN) and urinary osmolal-

ity (A) and urinary creatinine (B). To compensate for urine dilution differences, the metabolic

data were normalized using PQN. This is a well-established normalization routine specifically

PLOS ONE Urinary metabolic profiling in ADPKD

PLOS ONE | https://doi.org/10.1371/journal.pone.0233213 May 22, 2020 12 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0233213.s001
https://doi.org/10.1371/journal.pone.0233213


developed for complex nuclear magnetic resonance spectroscopy (NMR), which considers the

concentrations of all metabolites. The PQN scaling factor was correlated with (clinical labora-

tory-derived) urinary osmolality (A, r = 0.86). A similar correlation was found between PQN

and urinary creatinine (B, r = 0.84).

(PDF)

S2 Fig. A Principal Component Analysis (PCA) score plot comparing the urinary meta-

bolic profiles between fasting and non-fasting obtained urine samples. The plot showed no

trend associated with fasting status. It was built using data matrix of the 29 quantified metabo-

lites, and the model required seven components to cover the first 50% of the variance with

20% covered by the first two components.

(PDF)

S3 Fig. Correlation map of all quantified metabolites built on the discovery cohort. Several

urinary metabolites correlated with the actual eGFR. Significant Pearson correlations (r,
p<0.05) are indicated by circles, blue and red indicating positive and negative correlations,

respectively. The size of the correlation is indicated by the shade of the circles, and is defined

by the colour bar. Correlation clusters and the correlations of eGFR with the metabolites are

highlighted by black and red borders, respectively.

(PDF)

S4 Fig. Variable importance plot of a random forest regression model showing the top 10

of candidate predictors for estimated GFR (eGFR) progression. We performed model deri-

vation based on a restricted cohort (n = 240) including patients with a follow-up of at least two

years and/or four estimated GFR (eGFR) measurements to identify metabolites association

with annual change in eGFR. The alanine/citrate ratio is most strongly associated with annual

change in eGFR. Legend: x-axis; percentage increase in mean squared error (%IncMSE) when

a variable is dropped, y-axis: metabolite ratios.

(PDF)

S5 Fig. Correlation between actual and predicted estimated glomerular filtration rate

(eGFR) in patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD) and

other chronic, renal disease patients (non-ADPKD). The model (transformed to log2 eGFR)

including four urinary metabolites (myo-inositol, asymmetric dimethylarginine (ADMA),

3-hydroxyisovalerate, creatinine) was associated with the actual eGFR in ADPKD (n = 338,

blue dots) and non-ADPKD (n = 42, CKD stage 1–2; orange dots) patients (between the

cohorts; r = 0.289, P = 0.027).

(PDF)

S1 Table. Probabilistic Quotient Normalization (PQN)-corrected levels of all quantified

urinary metabolites (n = 29) stratified by CKD stage. Data in mean and SD. ADMA, asym-

metric dimethylarginine; CKD, chronic kidney disease; DMA, dimethylamine; TMA, tri-

methylamine. �Between stages of CKD (Kruskal-Wallis test).

(PDF)

S2 Table. Association between the urinary alanine/citrate ratio with annual change in

eGFR in a randomly selected ADPKD cohort (n = 350). ADPKD, autosomal dominant poly-

cystic kidney disease; eGFR, estimated GFR; st β, standardized β. St β, F and P values were cal-

culated using multivariable linear regression.

(PDF)
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