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Abstract

Effects of amyloid beta (Aβ) oligomers on viability and function of cell lines such as NB4

(human acute promyelocytic leukemia), A549 (human lung cancer (adenocarcinomic alveo-

lar basal epithelial tumor)) and MCF-7 (human breast cancer (invasive breast ductal carci-

noma)) were investigated. Two types of Aβ oligomers were used in the study. The first type

was produced in the presence of oligomerization inhibitor, hexafluoroisopropanol (HFIP).

The second type of amyloids was assembled in the absence of the inhibitor. The first type

preparation was predominantly populated with dimers and trimers, while the second type

contained mostly pentadecamers. These amyloid species exhibited different secondary pro-

tein structure with considerable amount of antiparallel β sheet structural elements in HFIP

oligomerized Aβ mixtures. The effect of the cell growth inhibition, which was stronger in the

case of HFIP Aβ oligomers, was observed for all cell lines. Tests aiming at elucidating the

effects of the amyloid species on cell cycles showed little differences between amyloid prep-

arations. This prompts us to conclude that the effect on the cancer cell proliferation rate is

less specific to the biological processes developing inside the cells during the proliferation.

Therefore, cell growth inhibition may involve interactions with the peripheral parts of the can-

cer cells, such as a phospholipid membrane, and only in case of the NB4 cells, where accu-

mulation of amyloid species inside the cells was detected, one may imply the opposite. In

general, cancer cells were much less susceptible to the damaging effects of amyloid oligo-

mers compared to earlier observations in mixed neuronal cell cultures.

Introduction

Short, 4.5 kDa amyloid-β (Aβ) peptide is produced in the brain. It is a by-product of the bio-

chemical processing of the abundant amyloid precursor protein (APP), which functions in the

brain. Despite its involvement in numerous biological processes, its function and biochemical

processing are not fully understood [1, 2]. The normal processing of APP is carried out by the

α-secretase which releases a large soluble extracellular domain sAPP-α which possibly under-

goes further degradation by extracellular proteases [3]. Abnormal processing of β- and γ-
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secretases yields typically 39–43 residue peptides, of which Aβ(1–40) and Aβ(1–42) were

mostly studied in the context of the Alzheimer’s disease etiology. Therefore modulation of the

activity of β- and γ-secretases is seen as an early preventive measure in Alzheimer’s disease [4].

Recent scientific data indicates that Alzheimer’s patients have a lower incidence of lung

cancer, however they are more susceptible to developing glioblastoma [5]. Although neuro-

blastoma and glioma cells are one of the most frequently studied model cancer systems of in
vitro toxicity of Aβ species [6–8], mechanistic insights of interrelationship between Alzhei-

mer‘s and other types of cancer are still scarce. To this date Aβ(1–42) was found to trigger

autophagic cell death in both human glioma and human neuroblastoma cell lines [9]. Brain

cancer cells were used in assessing protective properties of various compounds such as melato-

nin against the toxic effects of Aβ species [10]. Numerous works demonstrated cell specificity

of Aβ induced biological events. For example human neuroblastoma but not human embry-

onic kidney cells were capable of taking up presumably monomeric (not reported what oligo-

mer form was used) Aβ at nanomolar concentration range. This raises the question if other

than brain tumor cells are affected by the Aβ species? Simultaneous development of neurode-

generative processes and cancer is quite possible at older age so the answer to this question

may be important from the standpoint of understanding complex processes leading to a

multimorbidity.

It is known that Aβ peptide exhibits strong propensity for oligomerization, which leads to

formation of insoluble fibrils. The oligomerization is a complex process involving parallel/

series stages resulting in polymorphous mixtures of amyloid species including globular and/or

annular oligomers, protofibrils and fibrils [11–13].

Amyloid species as shown in numerous studies affect physiology and function of the brain

in animal models [14]. A particular effect on brain is strongly dependent on the degree of olig-

omerization as well as morphology. For example, Aβ�56 oligomers (56 kDa molecular mass

species) impair memory without neuronal loss in middle-aged mice [14]. Soluble Aβ oligomers

exhibit strong synaptotoxic effect [15], while insoluble Aβ fibrils promote microglia activity

and trigger inflammation in the brain [6, 16]. Injection of synthetic Aβ oligomer preparations

into mice accelerates tau hyperphosphorylation and leads to tangle formation reminiscent of

the Alzheimers disease hallmark found in post mortem brains [17]. It can be expected though

that in living brain various Aβ species are present simultaneously. Because precise quantifica-

tion of various oligomer forms in organism is currently unavailable, the exact molecular map

of the disease involving Aβ species is unknown.

In vitro toxicity tests allow in principle controlling compositions of Aβ oligomers in

experiments. Experiments using primary cell lines show strong dependence of biological

effects on the type of the oligomers [7, 18]. Soluble oligomers at concentrations exceeding

physiological levels trigger oxidative stress [6] and apoptosis [19]. Small 2−5 nm, well char-

acterized preparations of soluble oligomers induce death of neurons by necrosis [20]. Size-

dependent nature of the cytotoxicity of Aβ oligomers was demonstrated [20]. Large Aβ olig-

omers [20] or a mixture of oligomeric Aβ species triggered autophagy processes in mixed

neuronal-glial cultures from rat cerebellum [21]. The interactions of cell membranes with

amyloid oligomers are considered as one of the central events in Alzheimers etiology. Such

interaction leads to lysis, impairment of the homeostasis and cell death [22–24]. Despite evi-

dence of the toxicity of Aβ to cell cultures, large amount of experimental studies were per-

formed without reporting protocols to control oligomeric compositions of Aβ (see e.g. [6]).

Therefore our approach was to investigate the effect of Aβ oligomers on human cancer cells

using characterized amyloid β preparations.

Amyloid oligomers inhibit cancer cells
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Materials and methods

Preparation of Aβ(1–42) oligomers

HFIP protocol (protocol-I). 0.4 mg Aβ(1–42) were dissolved in 160 μl HFIP. The solu-

tion was kept in an open vial until all HFIP was fully evaporated. Aβ(1–42) residues were dis-

solved in 33 μL of 0.1 M NaOH at pH 12 and incubated for 15 min followed by the addition of

800 μL of PBS buffer (0.1 M NaCl, 0.01 M NaH2PO4, pH 7.4) and were kept undisturbed at

room temperature for 24 hours. Until further use, samples were stored at 4˚C.

HFIP—free protocol (protocol-II). 0.4 mg Aβ(1–42) were directly dissolved in 33 μL of

0.1 M NaOH at pH 12 and incubated for 15 min, followed by the addition of 800 μL of PBS

buffers (0.1 M NaCl, 0.01 M NaH2PO4, pH 7.4) and were kept undisturbed at room tempera-

ture for 24 hours. Samples were stored at 4˚C until further use.

HFIP—free protocol with Ab(1–42) FAM-labeled. 0.4 mg Aβ(1–42) and 2.6 μg Aβ(1–

42) FAM-labeled were directly dissolved in 41.8 μL of 0.1 M NaOH at pH 12 and incubated for

15 min, followed by the addition of 800 μL of PBS buffers (0.1 M NaCl, 0.01 M NaH2PO4, pH

7.4) and were kept undisturbed at room temperature for 24 hours. Samples were stored at 4˚C

until further use.

In all experiments the synthetic Aβ(1–42) and Aβ(1–42) FAM-labeled peptide was pur-

chased from the American Peptide Company (USA).

The amyloid oligomer solutions were filtered through the Millipore 0.22 μm filter before

biological assays or biophysical tests were performed. All data presented in the current work

refers to 0.22 μm filtered preparations unless stated otherwise. Upon request by one of the

reviewers and to ensure the fibril amyloid components are not present in preparations addi-

tional series of experiments were carried out with the centrifuge-filtered samples using Ami-

con centrifugal filters with the molecular weight cut-off (MWCO) at 100 kDa. The

experiments using centrifuge filtered amyloid samples were performed using amyloid peptides

purchased from GenScript (Hong Kong) We found the data obtained on filter-centrifuged

samples qualitatively replicates data on samples filtered only by 0.22 μm filters.

High performance liquid chromatography

High performance liquid chromatography (HPLC) analysis was performed on a Perkin Elmer

system that consists of a microprocessor controlled Perkin Elmer model 200 eluent delivery

pump and a fixed wavelength Perkin Elmer model 200 UV-VIS spectrophotometer detection

system. Samples were injected via a Perkin Elmer model 200 autosampler injector valve fitted

with a 15 μl volume injector loop. The sample concentration was 10 μM. Separation was per-

formed on a 150 mm long x 4.6 mm inner diameter column (Bio SEC-3, Agilent) with 3 μm

silica absorbent. Mobile phase was isocratic 0.1 M NaCl, 0.01 M NaH2PO4 buffer at pH 7.4,

flow rate of 0.25 ml/min, at a pressure of 34 bar (or 496 psi). Column temperature was main-

tained constant at 30 oC. All other parts of the system were maintained at room temperature

(22 ± 2 oC). Data collection and handling were carried out by the manufacturer (Perkin

Elmer) provided software. Peptide UV spectrophotometric detection was carried out at 275

nm wavelength. Seven protein standards were used to construct the calibration curve relating

the retention time and the molecular weight of amyloid species (see supporting information S1

Appendix).

Atomic force microscopy

The physical properties and morphology of the prepared of Aβ(1–42) oligomers were observed

by atomic force microscopy (Dimension Icon AFM system; Bruker, USA), operated in tapping
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mode in air. Model ScanAsyst Air or FESP (Bruker, USA) microcantilevers were used in this

work. About 30 μl of a 10 μM Aβ(1–42) solution (HFIP or HFIP-free protocols) was spotted

on freshly cleaved mica (V-4 grade, SPI Supplies, USA), incubated at room temperature for 10

min and rinsed with deionized water (Millipore Inc., USA), then blown dry with a nitrogen

stream. Typically, the surface was scanned with scan size 1 μm x 1 μm, 1024 samples/line and

images were acquired at 0.4 Hz scan rate. After scanning, the raw images were processed with

Nanoscope v1.41 (Bruker, USA) image processing software. Images were flattened by 3rd order

polynomial fit and statistically evaluated with particle analysis feature. Several images were

used for each sample to determine the average height and height distribution.

Fourier transform infrared spectroscopy (FTIR)

Infrared spectra were recorded on FTIR spectrometer Vertex 80v (Bruker, Germany) equipped

with the liquid nitrogen cooled MCT narrow band detector. The spectral resolution was set at

2 cm-1. Spectra were acquired by co-adding 400 scans. The sample chamber and the spectrom-

eter were evacuated during the measurements. FTIR spectra were recorded in transmission

mode. Samples were deposited at CaF2 substrate from 100 μM solution and dried in air; blank

CaF2 substrate was used as a reference. Parameters of the bands were determined by fitting the

experimental contour with Gaussian-Lorentzian form components using the GRAMS/AI 8.0

(Thermo Scientific, USA) software.

Cell lines, culture and plating

Human acute promyelocytic leukemia cells NB4, lung cancer cell line A549 and breast cancer

cells MCF-7 were used in this study. NB4 cells were maintained in RPMI 1640 + GlutaMAX

medium supplemented with 10% fetal bovine serum, 100 U/ml penicillin and 100 mg/ml

streptomycin (Gibco, Grand Island, NY, USA) in a humidified incubator at 37 ºC with 5%

CO2. A549 and MCF-7 cells were cultivated at the same conditions in DMEM + GlutaMAX

medium (Gibco, Grand Island, NY, USA) with indicated supplements. For growth inhibition

(GI) assessment exponentially growing cells were seeded in 96 well plates at a density of

0.5�106 cells/ml (NB4) and in 96 well plates at a density 1.0�104 (A549 and MCF-7) cells per

well. For cell cycle and apoptosis analysis cells were seeded in 6 well plates at a density of 1�106

(NB4) and 0.45�106 (A549 and MCF-7) cells per well. For immunocytochemical analysis cells

were seeded in 24 well plates at a density of 0.25�106 (NB4 in suspension, mounted on cover-

slips after labeling with DAPI) and 0.1�106 (A549 and MCF-7 directly on cover-slips) cells per

well.

Chemosensitivity testing

Amyloids were tested in triplicates at different concentrations in the range of 0.5−5 μM. For

negative control, cells were treated with an equivalent amount of solvent (v/v). For NB4, A549

and MCF-7 cell viability evaluation MTT assay was used. Drug treatment was started 24 h

after plating. Cells were incubated with agents for 24 and 48 hours. Then cell culture medium

was replaced with medium without phenol red and MTT reagent (Sigma, St. Louis, USA) was

added to the medium (20% of the culture medium volume from 5 mg/ml stock solution) and

cells were further incubated for 2 h. After incubation, the medium was discarded and 50 μl of

DMSO was added to each well. The absorbance of each well was measured at 540 nm using

Infinite M200 PRO (Tecan, Mannedorf, Switzerland) spectrometer. Data was expressed as GI

(%) values with SDs.

Amyloid oligomers inhibit cancer cells
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Cell cycle analysis by DNA content

Cells (1–1.5�106 cells/sample) were washed twice by centrifugation (200 rcf, 5 min, 4˚C) in

PBS, then resuspended in 1 ml of ice cold PBS. Later they were vortexed gently, dropwise

slowly adding 3.3 ml of cold absolute ethanol and stored at -20˚C overnight. Before staining

cells were centrifuged at 200 rcf, 10 min, 4˚C, washed twice with cold PBS, then resuspended

in 500 μl PBS, containing 50 μg/ml PI and 50 μg/ml RNAse A (Sigma, St. Louis, USA) and

incubated for 30 min in the dark at 37˚C. Specimens were flow cytometrically analyzed with

FACSCanto II, using FACSDiva Software 6.0 (BD Biosciences, CA, USA). Ten thousands

events were gathered for each sample. Non-specific fluorescence was monitored using PI

untreated control cells.

Cell death analysis using Annexin V binding

Cells were harvested by centrifugation (200 rcf, 5 min, 4˚C) and washed with PBS. For cell

death evaluation the ApoFlowEx1 FITC Kit (EXBIO, Prague, Czech Republic) was used.

Annexin V staining was performed according to the manufacturer‘s instructions. Specimens

were flow cytometrically analyzed with FACSCanto II, using FACSDiva Software 6.0. Ten

thousands events were gathered for each sample. Non-specific fluorescence was monitored

using Annexin V and PI untreated control cells.

Fluorescence analysis

For amyloid localization in human cancer cells the NB4, A549 and MCF-7 cell lines were culti-

vated with FAM-labeled amyloids for 4, 24 and 48 hours. After indicated time of treatment

cells were rinsed three times with phosphate buffer (PBS, pH 7.5) and fixed for 15 min in PBS

supplemented with 4% (w/v) paraformaldehyde. Then cells were rinsed again for three times

with PBS (pH 7.5) and permeabilized for 20 min in 0.2% Triton-X/PBS. After incubation cells

were rinsed four times with 1% PBS/BSA and nuclei were labeled using DAPI for 10 min.

After incubation cells were rinsed five times with 1% PBS/BSA. Cover-slips with cells were

dried and mounted on slides and analyzed with Zeiss Axio Observer Z1 (Carl Zeiss,

Germany).

Statistical analysis

The data are presented as means ± SD of three or more independent experiments. For MTT

statistical analysis two-way ANOVA was used in GraphPad Prism.

Results

Characterization of the size, morphology and molecular properties of

amyloid oligomers

We applied SEC HPLC to estimate the approximate molecular size distributions of Aβ(1–42)

oligomer species. As shown in Fig 1, HFIP–inhibited amyloid species comprise a mixture of

dimers and trimers of Aβ(1–42) (Fig 1A). The trimer peak is nearly 3-fold larger suggesting tri-

mer as a dominant component of the HFIP-inhibited mixture. The exact molar ratio of oligo-

mers remains unknown because the extinction coefficients of the particular amyloid

component are not known. The elution profile changes significantly in the absence of the olig-

omerization inhibitor HFIP (Fig 1B). In this case, the dominant peak eluting at t� 7.1 min

corresponds to oligomers with the approximate MW 67 kDa (see supporting material S1

Appendix for the HPLC molecular weight calibration experiments). This peak is most likely

Amyloid oligomers inhibit cancer cells
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dominated by a significant amount of 15-mers of Aβ(1–42) in the tested mixtures. Alongside

smaller species, presumably, hexamers, trimers and dimers are also present at lower concentra-

tion levels.

Fig 1. SEC–HPLC chromatograms of amyloids preparation. (A)–Aβ(1–42)–HFIP protocol preparation; (B)–Aβ(1–42)–HFIP-free protocol preparation. The

sample concentration was 10 μM. Mobile phase– 0.1 M NaCl, 0.01 M NaH2PO4 buffer at pH 7.4 and flow rate of 0.25 ml/min.

https://doi.org/10.1371/journal.pone.0221563.g001

Fig 2. Representative AFM images of adsorbed 10 μM Aβ(1–42) oligomers prepared by HFIP protocol (A) and

HFIP-free protocol (B). Mica surfaces (1 μm2) were visualized after 10 min incubation with preparations.

https://doi.org/10.1371/journal.pone.0221563.g002
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We probed the morphology of differently assembled amyloid β oligomers by the AFM. Fig

2 displays typical morphological features obtained using amyloid preparations by the HFIP

and HFIP-free protocols. A broad range of structures including protofibrils, which contain

bead by bead assemblies of multiple globules, and small, spherical oligomers was visualized for

both protocols. To evaluate differences produced by these two protocols the topography

images were analyzed by the Particle Analysis feature with Nanoscope software. Data analyses

are summarized in Fig 3. The height distribution revealed that the average height of Aβ(1–42)

produced by the HFIP protocol is 1.73 ± 0.68 nm and the HFIP-free protocol, 2.76 ± 1.04 nm,

respectively, Fig 3, in preparations which were assemble under the same condition on the

same day as ones used for HPLC experiment. We must acknowledge that the AFM data

includes significant standard deviations. Also, in some experimental data sets we observed

very similar height distributions (such like shown in Fig 3) for both types of amyloid prepara-

tions. These facts may cast doubt on the distinguishability of two types of preparations by the

AFM methodology, which in contrast to HPLC uses samples obtained by the adsorption on

mica process. Centrifuge filtering though the 100 kDa filter essentially did not affect amyloid

size distributions of amyloid preparations as it can be seen from the data in supporting mate-

rial S2 Appendix.

The molecular structure of β-amyloid oligomers has been probed by infrared spectroscopy.

Fig 4 compares FTIR spectra of oligomers prepared by HFIP and HFIP-free protocol in the

frequency region from 1200 to 1800 cm–1. The amide group vibrational modes are visible near

1231–1269 (Amide-III), 1528–1555 (Amide-II), and 1631–1696 cm–1 (Amide-I) [25–30]. The

broad band near 1398–1401 cm–1 is due to an asymmetric deformation vibration, δas(CH3), of

side chains (Ala, Ile, Leu, Val) methyl groups [31]. The low intensity bands near 1443–1454

cm–1 correspond to scissoring deformation vibration of side chains methylene groups, δ(CH2).

Vibrational modes of amide group are sensitive to the secondary structure conformation [25–

Fig 3. The actual height and Gauss approximation distributions of Aβ(1–42) adsorbed on mica. HFIP-protocol

(black box and line) and HFIP-free protocol (box with diagonal lines and dashed line).

https://doi.org/10.1371/journal.pone.0221563.g003
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30]. Thus, inspection of Amide-II spectral region of Aβ(1–42) oligomers prepared by the HFIP

protocol (small aggregates) (Fig 4(A)) reveals presence of the dominant band near 1528 cm–1

due to the β-sheet secondary structure and shoulder near 1555 cm–1 associated with α-helix

conformation [32]. In the case of large Aβ(1–42) oligomers (prepared by HFIP-free protocol)

the broad band centered near 1534 cm–1 dominates in the Amide-II spectral region (Fig 4(B))

indicating that β-sheet conformation prevails for this type of peptide aggregates. More quanti-

tative analysis of secondary structure conformations was prepared by considering the Amide-I

spectral region. It is accepted that Amide-I mode is more useful for secondary structure deter-

mination [26]. Amide-II mode arises from highly coupled N–H bending (60%) and C–N

stretching (40%) vibrations, while the Amide-I vibrational mode is considerably less coupled;

this mode is associated with predominant C = O stretching vibration (80%) with minor contri-

bution from C–N out-of-phase stretching motion, C–C–N deformation, and N–H in-plane

bending vibrations [26]. Fig 5 compares FTIR spectra of Aβ(1–42) oligomers formed using dif-

ferent protocols in the Amide-I spectral region. Experimental spectra were fitted with Gauss-

ian-Lorentzian form components, which can be assigned to different secondary structure

elements of peptides [26, 31, 33]. To determine the approximate position of fitted components,

the second derivative spectra were calculated (Fig 6). The relative fraction of secondary struc-

ture elements derived from the analysis of Amide-I band and assignments of the components

are given in Table 1. In both cases β-sheet is a dominant motive, visible as an intense band at

1631 cm–1 and less intensity high frequency band near 1695–1696 cm–1. Presence of the high

frequency component is an indication of antiparallel β-sheet configuration [34−36]. The rela-

tive fraction of β-sheet components determined from the integrated intensities of correspond-

ing infrared bands increases from 42.9 ± 2.0 to 79.4 ± 9.4% comparing small and larger

oligomers, respectively (Table 1). Importantly, small Aβ(1–42) oligomers exhibit considerably

higher integrated intensity of α-helical structural domain in comparison with larger ones,

36.6 ± 3.0% and 20.5 ± 9.4%, respectively.

Fig 4. FTIR spectra of Aβ(1–42) oligomers of different size. FTIR spectra of HFIP protocol (a) and HFIP-free

protocol (b) Aβ(1–42) oligomers deposited at CaF2 substrate in the spectral region of 1200−1800 cm−1.

https://doi.org/10.1371/journal.pone.0221563.g004
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FTIR spectra obtained on centrifuge-filtered samples showed no essential differences in the

secondary structure of amyloid species. More details can be found in the supporting material

S3 Appendix.

Effect of Amyloid species on cancer cells

Cancer cell growth inhibition after treatment with amyloids. Prepared amyloids were

tested for their antiproliferative activity using three different human cancer cell lines: acute

promyelocytic leukemia cells NB4, lung cancer cell line A549 and breast cancer cells MCF-7.

After 24 and 48 hour treatment, the effect of compounds was evaluated using MTT assay

according to the manufacturer’s instructions as described in Materials and Methods section.

Obtained results (Fig 7) indicate that amyloids prepared by using HFIP protocol inhibited

cancer cell growth more in comparison with amyloids, prepared by using HFIP-free protocol.

Regarding the differences of amyloid preparation protocols more statistically significant effects

were observed on NB4 and MCF-7 cells when using HFIP protocol amyloids, in contrast the

effects of HFIP-free protocol amyloids were more statistically significant on A549 cells. We

detected that after 24 hour treatment with 2 μM of HFIP protocol amyloids cell growth in NB4

Fig 5. Comparison of Aβ(1–42) oligomers in Amide-I spectral region. FTIR absorption spectra with fitted

Gaussian-Lorentzian form components in Amide-I spectral region: (A) spectra of Aβ(1–42)–HFIP protocol, and (B)

Aβ(1–42)–HFIP-free protocol; both deposited at CaF2 substrate.

https://doi.org/10.1371/journal.pone.0221563.g005
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and MCF-7 cell lines was inhibited by 20%, whereas after 24 hour treatment with HFIP-free

protocol amyloids growth inhibition reached 13%. The same tendencies were observed after

48 hour treatment, the cell growth inhibition was increased up to 2 times when cells were

treated with Aβ oligomers, prepared using HFIP protocol.

In summary, all used Aβ oligomer preparations were non-toxic (the observed growth inhi-

bition didn’t exceed 50% after 48 h) to investigated cancer cell lines. However, the decrease in

cell proliferation activity was observed after treatment with Aβ oligomers, prepared using

HFIP and HFIP-free protocols.

The effect of amyloids on cell cycle distribution. In order to determine, if cell growth

inhibition was mediated by the cell cycle arrest, flow cytometric cell cycle analysis was per-

formed. NB4, A549 and MCF-7 cells were exposed to 1 μM Aβ oligomers prepared by the

HFIP protocol or to 2 μM and 5 μM Aβ oligomers prepared by the HFIP-free protocol. Con-

trol cells were incubated with appropriate amount of solvent. Results are presented in Fig 8.

It was shown that HFIP protocol preparations induced a slight NB4 cells arrest in G0/G1

cell cycle phase. After 48 hour incubation with 1 μM of Aβ oligomers G0/G1 cell cycle phase

was increased app. by 3% (compared to solvent control). The same effect was evident for amy-

loids prepared using HFIP-free protocol. For instance, after 48 hour treatment with 2 μM Aβ

Fig 6. Second derivative spectra of Amide-I band. (a) Amide-I band of HFIP protocol, and (b) HFIP-free protocol of

Aβ(1–42) oligomers deposited at CaF2 substrate in the spectral region of 1590−1760 cm−1.

https://doi.org/10.1371/journal.pone.0221563.g006

Table 1. Amide-I peak positions and integrated intensities with corresponding band assignments of Aβ(1–42) peptide.

Peptide Aβ(1–42) α-helix

cm−1 (%)

β-sheet

cm−1 (%)

β-sheet

organization index

Unordered helix

+ random

cm−1 (%)

Aβ(1–42)—HFIP protocol 1650

(36.6 ± 3.0)

1631 / 1696

(42.9 ± 2.0)

0.154 ± 0.02 1678

(20.4 ± 5.1)

Aβ(1–42)—HFIP-free protocol 1662

(20.5 ± 9.4)

1631 / 1695

(79.4 ± 9.4)

0.054 ± 0.02 −
(−)

https://doi.org/10.1371/journal.pone.0221563.t001
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Fig 7. Evaluation of growth inhibition of cancer cell lines treated with amyloids. The anti-proliferative activities of

amyloids were tested using the MTT assay as previously described. (A)–growth inhibition of cells treated with HFIP

protocol amyloids, concentration range 0.5–2 μM. (B)–growth inhibition of cells treated with HFIP-free protocol

amyloids, concentration range 1–5 μM. P�0.05 (�), P�0.01 (��), P�0.001 (���) indicate significant differences, if not

indicated otherwise the difference was not significant.

https://doi.org/10.1371/journal.pone.0221563.g007

Fig 8. Distribution of cell cycle phases of cancer cells treated with amyloids. Amyloid activity on cell cycle

distribution was analyzed by flow cytometry, as detailed in the Materials and methods section. (A)–cell cycle of cells

treated with 1 μM HFIP protocol amyloids and solvent for negative control. (B)–cell cycle of cells treated with 2–5 μM

HFIP-free protocol amyloids and solvent for negative control.

https://doi.org/10.1371/journal.pone.0221563.g008
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oligomers of HFIP-free protocol, the arrest of NB4 cells in G0/G1 cell cycle phase was greater

than in solvent control app. by 7%.

We demonstrated that in human lung cancer cell line A549 after 24 hour treatment with

amyloids prepared by HFIP protocol the cell accumulation in S phase was increased app. by

4% and after 48-hours of treatment cell arrest in G2/M cell cycle phase was observed. The

effect of amyloids prepared by the HFIP-free protocol also had a mild tendency to arrest A549

cells in S phase. In addition, the same tendency of cell arrest in G2/M phase was registered.

After 48-hour treatment with 2 μM and 5 μM of amyloids (HFIP-free protocol) cell accumula-

tion in G2/M phase increased by 2–3% compared to solvent control.

MCF-7 cells treated with 1 μM amyloids (HFIP protocol) for 24 hours showed cell arrest in

G2/M phase (more than 7% compared to solvent control). In contrast, HFIP-free protocol

amyloids showed tendency to arrest MCF-7 cells in G0/G1 cell cycle phase after 24 hours of

treatment. In general, Aβ oligomer effect on cancer cell cycle distribution was not very signifi-

cant. Only a mild tendency of NB4 cell cycle arrest in G0/G1 cell cycle phase was observed

after treatment with Aβ oligomers prepared using HFIP and HFIP-free protocols. In contrast,

in lung cancer cells A549, as well as in breast cancer cells MCF-7, Aβ oligomers slightly

increased cell accumulation in S or G2/M phases.

Cell death of cancer cells treated with amyloids. All cancer cell lines were treated with

2 μM HFIP protocol amyloids and 5 μM HFIP-free protocol amyloids for 24 and 48 hours.

Control cells were incubated with appropriate amount of solvent.

Obtained data indicate, that Aβ oligomers are nontoxic to investigated cancer cell lines. In

NB4 cells after treatment with HFIP protocol preparations only a mild increase in necrotic cell

subpopulation (Annexin V-/PI+) was detected (Fig 9A): after 24 hours treatment with 2 μM

Aβ oligomers number of necrotic cells increased approximately by 7%. The observed tenden-

cies of solvent and amyloid activity on early (Annexin V+/PI-) and late apoptosis (Annexin V

+/PI+) do not indicate that amyloid preparations play major role in NB4, A549 and MCF-7

cells apoptotic death (see S4 Appendix).

Fluorescence analysis of cancer cells treated with amyloids. To elucidate the accumula-

tion areas of amyloids in cancer cells, NB4, A549 and MCF-7 cell lines were cultivated with

FAM-labeled amyloids for 4, 24 and 48 hours. Fig 10 presents fluorescent microscopy images.

MCF-7 cell specimens show how amyloids hovered over the cells after 4, 24 and 48 hours of

Fig 9. Induction of cancer cell death by amyloids. The pathway of cell death induced by amyloids was analyzed by

flow cytometry. Representative scatter plots showing Annexin V and PI staining of NB4 cells, I–necrosis (Annexin V-/

PI+), II–late apoptosis (Annexin V+/PI+), III–early apoptosis (Annexin V+/PI-). (A)–NB4 cells treated with 2 μM of

HFIP protocol amyloids and solvent for negative control. (B)–NB4 cancer cells treated with 5 μM of HFIP-free

protocol amyloids and solvent for negative control.

https://doi.org/10.1371/journal.pone.0221563.g009
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incubation and with time aggregated into the cells membrane. This kind of behavior of amy-

loids was not very intensive in A549 cell line, but still could be detected. In contrast, in NB4

cells FAM-labeled amyloids were detected mainly in the area of the nucleus.

Discussion

Our HPLC data indicate clear effect of HFIP on oligomerization outcome. As seen in Fig 1, the

HFIP-free medium produces a range of amyloid species spanning from dimers to pentadeca-

mers. The molecular weight estimate performed via calibration of the chromatographic col-

umn as described in the supporting material S1 Appendix suggests pentadecamers are the

main component of the HFIP-free amyloid preparation. In contrast, HPLC data indicates just

two major components in HFIP assembled preparations. According to calibration (see S1

Appendix) those components are dimer and trimer with the clear dominance of the latter

form of oligomer.

The size of amyloid β(1–42) monomer in solution was reported and its hydrodynamic

radius was found to be ~ 1.7 nm [37]. The group of Lyubchenko [38] reported images of cross-

linked amyloid β(1–42) (Phe 10, Tyr42) oligomers (monomers–decamers) adsorbed on

Fig 10. Fluorescence analysis of cancer cells with FAM-labeled amyloids. Amyloid accumulation in cancer cells after

certain periods of time (4, 24, 48 h) and control cells without amyloid treatment. FAM-labeled amyloids are shown in

green, DAPI stained nuclei are shown in blue. Magnification x63.

https://doi.org/10.1371/journal.pone.0221563.g010
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modified mica surface by AFM. The height for the monomer, trimer and pentamer as visual-

ised by AFM was found to be approx. 0.6, 0.8 and 1.2 nm, respectively [38]. Our AFM data set

presented in Fig 2 clearly indicates a dominance of smallest species, presumable monomers,

dimers and trimers in amyloid deposits on mica (Fig 3). In contrast, HFIP-free preparations

are dominated by species with AFM heights from 2.5 to 3.5 nm. Very likely this interval may

correspond to pentadecamer population, which, as shown by the HPLC data, is dominant frac-

tion in solution. As noted before AFM data exhibits poor reproducibility compared to the

HPLC, so the HPLC methodology is preferable for the precise characterization of the amyloid

oligomer species in mixtures.

As shown earlier, small 3−5 nm oligomers assembled in the presence of HFIP exhibited sig-

nificant toxicity in the primary mixed neuronal cultures [20]. In contrast, large (>5 nm) spher-

ical oligomers triggered no necrosis, however, facilitated long-term autophagy effects [20].

Both oligomer forms were dominated by the β-sheet (43%) and disordered (32%) peptide frag-

ments [20]. In the current work, FTIR data indicates similar secondary structure content (39%

β-sheet, and 29% disordered) in HFIP prepared β-amyloid oligomers (Fig 5). However, HFIP-

free oligomers exhibit quite different secondary structure, which is dominated at 87% by the β-

sheet peptide fragments with the below detection limit content of the disordered structures. In

addition, oligomers prepared with HFIP tend to form higher amount of α-helix (32%), com-

pared to HFIP-free oligomers containing only 20% of α-helix structures.

Recent structure-toxicity studies have revealed clear correlation between the amyloid toxic-

ity and presence of antiparallel β-sheet secondary structure; peptides with parallel β-sheet con-

figuration are non-toxic [36, 39−41]. While secondary structure of small (toxic, 1−2 nm) and

larger (non-toxic, 4−5 nm) oligomers can be sensitively probed by CD spectroscopy, this tech-

nique is not able to discriminate the antiparallel and parallel β-sheet configuration [20]. In

contrast, FTIR spectroscopy provides a possibility to determine the so-called β-sheet organiza-

tion index (A1695/A1631) which correlates with the relative amount of antiparallel β-sheet struc-

ture [41]. Table 1 indicates nearly 3-fold higher β-sheet organization index for Aβ(1–42)

oligomers prepared using HFIP. This allows us to conclude that the content of antiparallel β-

sheet structural elements is higher in HFIP-assembled compared to HFIP-free β-amyloid olig-

omers. Conversely, parallel β-sheet structure is more abundant in larger peptides, consisting

approximately of 15 monomers.

In conclusion, FTIR along with the size exclusion HPLC data shows that the HFIP assem-

bled oligomers are dominated by the relatively low molecular mass species (dimers, trimers).

Our attempt to apply centrifuge-filtering using MWCO 100 kDa indicated no significant

changes neither to FTIR data (S3 Appendix) nor to AFM oligomer size distributions (S2

Appendix), which suggests that if large (>150 kDa, according to HPLC data) oligomers were

present in amyloid preparations their contribution to physical parameters of oligomer mix-

tures was miniscule. According to the FTIR data the antiparallel, intramolecular β-sheets dom-

inate HFIP-assembled oligomers (Table 1, β-sheet organization index). In contrast, HFIP-free

oligomers consist mainly of pentadecamers with some hexamers and smaller species. This

preparation is dominated by parallel intermolecular β-sheets (Table 1, β-sheet organization

index), which are the main structural component of HFIP-free oligomers.

The amyloid preparations were characterized right before starting the biological experi-

ments. One cannot preclude possibility of oligomerization processes was continuing in biolog-

ical media during the time span of the biological tests. Even though such process cannot be

excluded we argue that the processes in biological buffer were significantly slower because of

the dilution of the samples. In biological medium the monomer based concentration of Aβ(1–

42) was from 20 to 200 times smaller than in oligomerization buffers. Also, both buffers con-

tained similar concentrations of inorganic salts. Nevertheless, biological buffer composition as
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a factor that may influence action of oligomer preparations described in the current study

needs to be taken into account if the reproduction of our results would be attempted. Also,

upon request by one of the reviewers we attempted to test if the presence of large oligomers

(>150 kDa as measured by HPLC) may affect biological effects observed in the current study.

Consistent with physical characterization data we observed only minimal quantitative differ-

ences in cell culture responses to both 0.22 μm and 150 kDa filtered amyloid samples (see S5

Appendix for details). Such results indicate minor biological effects of larger than 150 kDa

oligomeric species at concentrations which were beyond the detection limits of techniques

used in the current work.

It is known that β-amyloids affect cells, especially neurons, and can cause various diseases

[42–44]. The effects are different, while the structural peculiarities of the species which were

used for testing remained mainly unexplored. One of the most studied effect of amyloids on

cells is cell cytotoxicity. Several studies demonstrated cytotoxicity in neurons and neuroblas-

toma cells [20, 45–48]. Our study shows that human hematological (NB4) and solid (A549,

lung and MCF-7, breast) cancer cells are sensitive to β-amyloids as well (Fig 7). We have

shown that the level of sensitivity depends on the protocol of preparation of amyloids and the

type of cell line. All three cancer cell lines we used were more sensitive to HFIP protocol amy-

loids, which we showed have distinct molecular structure and size (vide ultra).

Information about cell cycle distribution changes in cell cultures are affected by β-amyloids

is scarce. Frasca and colleagues [49] demonstrated that β-amyloid peptide fragment (25–35)

modified neuroblastoma cell cycle profiles by markedly increasing the number of cells in the S

phase and reducing the population of the G2/M phase. Bhaskar et al. [50] showed that primary

cultures of cortical neurons incubated with Aβ(1–42) oligomers were able to re-enter the cell

cycle. In addition, this phenomenon was associated with activation of Akt and mTOR signal-

ing pathways.

In this study, we determined that the phase of the cancer cell cycle arrest upon treatment

with Aβ oligomers does not depend on the preparation protocol – it lies in cancer cell line

itself, since all cell lines demonstrated different manner. In addition, a slight induction of NB4

cell necrosis after 24 hour treatment with HFIP protocol preparations was observed. This data

is consistent with previous studies in other cell lines [51, 52]. Results of fluorescence analysis

suggest that β-amyloids maintain a tendency to aggregate into A549 and MCF-7 cancer cell

membranes. This could lead to membrane disruption and loss of cell viability [22, 53]. How-

ever, in NB4 cells FAM-labeled amyloids were mainly detected in the area of the nucleus. Such

phenomenon may be explained (at least partially) due to the differences in plasma membrane

composition of investigated cell lines, intrinsic characteristics of different cancer cells or may

be related to the type specificity of cancer cells (hematological or solid). The results of FAM-

labeled amyloid localization in NB4 cells also correlate with growth inhibition, cell cycle analy-

sis and Annexin V and PI staining results, indicating different and more pronounced effect of

β-amyloids on NB4 cells, compared to cells of solid tumors.

It is known that amyloid precursor protein (APP) and its family members amyloid precur-

sor-like protein 2 (APLP2) expression is aberrantly altered in many types of cancers, e.g., pan-

creatic, colon, breast, prostate, lung, and others. Moreover, these proteins participate in

various molecular pathways in cancer cells, including both pro-growth and pro-invasion func-

tions [54]. In addition, some cancers (especially hepatic) were shown to be associated with

increased peripheral blood levels of β-amyloids [55]. Epidemiological studies have revealed

that patients with a history of cancer have a slightly lower risk of developing Alzheimer’s dis-

ease and inversely, patients with Alzheimer’s disease are not so cancer susceptible [56–58].

Such inverse epidemiological relationship between cancer and Alzheimer’s disease raises a

question about biological mechanisms that interconnects both conditions. However, data
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related to β-amyloids effects on cancer cells, especially, in the context of the structural features

of the amyloid species are lacking. Our results demonstrate that β-amyloids, especially ones

with relatively low content of β-sheet structures but high antiparallel β-sheet organization

index inhibit growth of hematological and solid cancer cells. The inhibition effect itself differs

for different cell lines, which obviously related to peculiar characteristics of different cancer

cells.
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