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Soluble FcɛRI: A biomarker for IgE‐mediated diseases

To the Editor,

Soluble IgE receptors interact with IgE in the extracellular matrix and

are important in the regulation of immune diseases.1-5 Soluble FcεRII

(sCD23) and galectin‐3 (εBP) are currently used as biomarkers,1

though correlation data on serum titers and severity of allergies are

controversial.1,6

FcεRI, the high‐affinity IgE Fc receptor, is expressed on several

innate cell types,2 and a truncated version of the IgE‐binding alpha

subunit is found as a soluble isoform (sFcεRI) in human serum. In cir-

culation, sFcεRI is mostly detected as a complex with IgE.7 This

observation raises the question of how sFcεRI affects detection of

serum IgE titers.

In order to assign clinical implications of sFcεRI, we assessed

serum titers in its total and IgE‐bound forms in different IgE‐
mediated diseases in 312 individuals. We compared pediatric popula-

tions with primary food allergies (n = 59), insect venom allergies

(n = 9), allergic asthma (n = 24), atopic dermatitis (n = 25), food‐sen-
sitized nonallergic children (n = 31), and nonallergic controls (n = 17).

Additionally, other sensitized groups and controls (n = 147) were

included in the study (Table S1-S4).

SFCΕRI IS ELEVATED IN SERUM OF ATOPIC

INDIVIDUALS AND IS MODULATED BY ALLERGEN

EXPOSURE

Serum samples were analyzed by ELISA to detect IgE‐bound and total

serum sFcεRI levels (Figure S1). First, sFcεRI was ubiquitously detect-

able among controls (median 1.20 ng/mL) but titers were significantly

higher in atopic individuals (median 2.88 ng/mL, Figure 1A and Table

S1). In line with previous studies,7,8 IgE and sFcεRI levels correlated

positively in all patients, and sFcεRI in circulation was almost uniquely

detected as a complex with IgE (Figure 1B,C). Next, we grouped the

atopic individuals based on their main IgE‐mediated disease (Table S2)

as food allergy (FA), insect venom allergy (IV), allergic asthma (AA), or

atopic dermatitis (AD). AD, AA, and FA groups presented with signifi-

cantly higher sFcεRI levels than controls (Figure 1D).

Since IgE‐sensitization profiles toward food allergens are gener-

ally a poor measure of clinical symptoms, we compared sFcεRI titers

in two food‐sensitized nonallergic groups (FS and Ghana) with FA

patients (Table S3). The Ghana cohort showed similar correlations as

already described between IgE and sFcεRI, IgE‐bound and total

sFcεRI levels, and no correlation with peanut‐specific IgE (sIgE) titers.

No significant difference was detected with regards to disease activ-

ity among food‐sensitized individuals (Figure S2).

We then investigated whether serum sFcεRI levels were different

in patients diagnosed with atopic dermatitis or asthma, with (Pos

sIgE) or without (Neg sIgE) a clinically relevant sIgE profile. sFcεRI

titers did not differ based on the patients’ sIgE profile. However, we

found significantly higher titers in patients with elevated IgE (Fig-

ure S3) in both AD and AA groups (Figure 1E‐H).

Recently, we demonstrated that sFcεRI is released from dendritic

cells and mast cells after antigen‐specific FcεRI crosslinking.5 Thus,

we studied how sFcεRI levels in circulation are affected by allergen

exposure. We compared sFcεRI levels in AA individuals (n = 14 pairs)

during (In) and before/after (Out) season for their most clinically rele-

vant allergen (Table S4) and observed that serum levels could signifi-

cantly increase (50%) or decrease (50%) during season. This pattern

was similarly observed with total IgE levels (Figure S4). In order to

better determine the role of allergen exposure, we analyzed food‐
sensitized individuals on allergen avoidance (n = 13) during an oral

food challenge (Figure S5). We observed a general trend of sFcεRI

titers to decrease after allergen exposure (Figure 1I).

IGE:SFCΕRI COMPLEXES INTERFERE WITH IGE

DETECTION

sFcεRI binds to the Fc portion of IgE and can potentially interfere with

antibody binding to that region. We thus investigated whether sFcεRI

affects antibody‐based IgE detection. For this purpose, a recombinant

IgE‐binding protein (rsFcεRI) and a mutated version which cannot bind

IgE (rsFcεRIm) were generated. Prior to a commercial IgE ELISA, sam-

ples containing human cIgE were incubated with the recombinant pro-

teins (Figure 2A‐C). Our hypothesis was that IgE detection will be

impaired and reflected in a decrease of IgE levels with increasing con-

centrations of rsFcεRI. In Figure 2D, we show an r = −0.867 with

P = 0.005 which depicts a significant negative correlation in support

of our hypothesis. On the contrary, as shown in Figure 2E, increasing

concentrations of the mutant version of rsFcεRI which is unable to

bind IgE do not show interference in IgE detection (r = 0.349, ns). This

interference with IgE detection by rsFcεRI was confirmed with human

IgE (Figure 2F) and human serum (n = 2) from patients with elevated

IgE levels (Figure 2G). In addition, we observed that sFcεRI titers were

significantly higher in serum than plasma (Figure S6).

To the best of our knowledge, this is the first analysis of sFcεRI

levels in a pediatric population of well‐classified sensitized and aller-

gic individuals. We show that sFcεRI is correlated with IgE levels, is

significantly increased in IgE‐sensitized individuals, and can be modu-

lated by allergen exposure. We collected evidence that sFcεRI can

Abbreviations: cIgE, chimeric humanized anti-NIP immunoglobulin E; DC, dendritic cell;

FcεRI, Fc epsilon Receptor I, high-affinity IgE Fc receptor; IgE, Immunoglobulin E; IQR,

interquartile range; MC, mast cell; OFC, oral food challenge; rsFcεRIm, mutant recombinant

human sFcεRI; rsFcεRI, recombinant human sFcεRI; sCD23, soluble isoform of CD23,

low-affinity IgE Fc receptor; sFcεRI, soluble isoform of FcεRI; sIgE, allergen-specific

immunoglobulin E; SPT, skin prick test; εBP, epsilon binding protein.
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interfere with IgE detection in serum, which might be of importance

in regard to interference in sIgE detection and diagnosis. Although

further research on the modulation by allergen exposure and

interference with sIgE molecules is needed, sFcεRI represents an

additional biomarker for IgE‐mediated diseases and its use could be

a valuable tool in clinical practice.
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F IGURE 1 sFcεRI is highly expressed in allergic individuals and it is modulated by allergen exposure. Detection of total and IgE‐bound
sFcεRI levels by ELISA. Total sFcεRI levels in control and atopic (n = 148) groups (A). Correlation between total sFcεRI and total IgE levels in
atopic group (B). Total and IgE‐bound sFcεRI levels in atopic group (C). Total sFcεRI levels in control and IgE diseases groups (D). Total sFcεRI
levels with and without sIgE sensitizations, and normal and elevated IgE levels in AD (E‐F) and AA (G‐H). Total sFcεRI levels during OFC (I).
Graphs represent individuals with median plus IQR. Mann‐Whitney test (A, E‐H), Kruskal‐Wallis test plus Dunn's multiple correction (C), and
Spearman r coefficient ranks (B, D) were performed, where *P < 0.05, **P < 0.01, and ****P < 0.0001. Co: control (n = 17); IV: insect venom
(n = 9); AD: atopic dermatitis (n = 45); AA: allergic asthma (n = 69); FA: food allergy (n = 59); Pos: positive; Neg: negative; IQR: interquartile
range; OFC: oral food challenge (n = 13) [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 2 sFcεRI interferes with IgE
detection ELISA. Detection of IgE and
sFcεRI levels by ELISA and Western Blot.
Representation of rsFcεRI and rsFcεRIm

proteins (A). Detection of rsFcεRI and
rsFcεRIm proteins by Western Blot analysis
in nonreducing and reducing conditions (B‐
C). Detection of IgE pre‐incubated with
rsFcεRI and rsFcεRIm proteins in a 500 ng/
mL cIgE solution (D‐E). Detection of IgE
pre‐incubated with rsFcεRI in human IgE
(1:10‐1:100) or human serum (3202 and
903 ng/mL) solutions (F‐G). Graphs
represent assay triplicates of a
representative experiment (D‐E), or assay
duplicates of biological triplicates (F) or
two individuals (G). Spearman coefficient
rank analysis or 1‐way ANOVA test plus
Tukey's multiple correction was performed,
where *P < 0.05 and ****P < 0.0001
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Delayed drug hypersensitivity to bortezomib: Desensitization
and tolerance to its analogue carfilzomib

To the Editor,

Bortezomib is a boronic acid dipeptide that selectively inhibits the

proteasome and is currently used as standard of care in the treat-

ment of patients with multiple myeloma (MM).1,2 It has been shown

to inhibit the expression of cell adhesion molecules, co‐stimulatory

molecules and NF‐β activation, to deplete alloreactive T lymphocytes

and to decrease Th1 cytokine production.

Cutaneous side effects related to bortezomib administration are

frequent, as reported in a phase 3 randomized study,3 in which 57%

and 70% of patients experienced a grade 3 or higher skin toxicity with

subcutaneous and intravenous administration, respectively. The sever-

ity of skin reactions described in the literature includes a wide range

of manifestations, from local delayed flare reaction and perivascular

dermatitis, to symmetrical drug‐related intertriginous and flexural

exanthema (SDRIFE),4 Nicolau syndrome,5 sweet and sweet‐like syn-

drome,6 erythema multiforme‐like,7 drug reaction with eosinophilia

and systemic symptoms (DRESS)8 and fatal toxic epidermal necrolysis

(TEN).9 T cell–mediated immunopathology is central to these severe
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