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In the research work of the brain-computer interface and the function of human brain work, the state classification of multitask
state fMRI data is a problem. -e fMRI signal of the human brain is a nonstationary signal with many noise effects and in-
terference. Based on the commonly used nonstationary signal analysis method, Hilbert–Huang transform (HHT), we propose an
improved circle-EMD algorithm to suppress the end effect. -e algorithm can extract different intrinsic mode functions (IMFs),
decompose the fMRI data to filter out low frequency and other redundant noise signals, and more accurately reflect the true
characteristics of the original signal. For the filtered fMRI signal, we use three existing different machine learningmethods: logistic
regression (LR), support vector machine (SVM), and deep neural network (DNN) to achieve effective classification of different
task states. -e experiment compares the results of these machine learning methods and confirms that the deep neural network
has the highest accuracy for task-state fMRI data classification and the effectiveness of the improved circle-EMD algorithm.

1. Introduction

-e brain-computer interface (BCI) allows people to control
the machine through signals generated by brain activity to
implement communications between people and the envi-
ronment and expand the ability of humans to control
machines [1]. In recent years, functional magnetic resonance
imaging (fMRI) has become an important means of studying
the high-level cortical function of the human brain [2–5].
Based on blood-oxygen-level-dependent (BOLD) imaging, it
is a tool that allows functional changes to be studied in vivo
[6] and has been used to display the morphology and lo-
cation of the cortical center. -e process of data acquisition
is noninvasive and nonradiative, and the image resolution of
the data is very high and easy to combine with conventional
MR anatomical images.

One major feature of the fMRI signal is that it does not
satisfy linearity and stationarity and has both temporal and
spatial distribution characteristics [7, 8]. In 1999, Hil-
bert–Huang transform (HHT) [9], which is a combination of
empirical mode decomposition (EMD) and Hilbert trans-
form (HT), is an adaptive time-frequency analysis method

and very suitable for feature extraction and analysis of the
nonlinear and nonstationary signals [10]. HHT has good
temporal and spatial resolution [11–13] and does not require
a priori function basis [14], so that the original signal can be
smoothed and decomposed to different scales of fluctuations
and trends step by step [15]. -e application field is very
extensive [1, 16, 17] and very conducive to biomedical signal
extraction [18].

However, a tricky problem with applying the EMD
method is that when the cubic spline function is used to
calculate both ends of the data sequence, an end effect
occurs, causing the result to be distorted. In response to this
problem, Deng et al. [19] used neural networks to extend the
various intrinsic mode function (IMF) components to
achieve accurate EMD decomposition. Yang and Jia [20]
optimized the EMD and HT processes through time series
modeling and prediction methods and achieved efficient
frequency domain decomposition on stationary and simple
nonstationary time series. Cheng et al. [21], Peng et al. [16],
and Yang et al. [22] used the SVM approach to solve the end
effect in the EMD method. Wang and Gang [23] proposed a
new data expansion method based on minimum similarity
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distance, which effectively suppresses the divergence at both
ends of the signal during EMD decomposition, thus im-
proving the frequency resolution. On the basis of cubic
spline interpolation, Tai and Deng [24] proposed an im-
proved EMD method based on multiobjective optimization,
which achieved a good solution. From the above, we can see
that there are many improved methods for nonstationary
signal decomposition, but there is still a need to find a
suitable fast and efficient solution for spatial signals.

After smoothing the fMRI signal and extracting fea-
tures, machine state learning can be used to classify feature
learning and reconstruction, and so on for the task-state
fMRI data. In recent years, many classification methods
have been used and have important significance for fMRI
research, such as support vector machine (SVM) [25],
neighbor algorithm (kNN) [26], Gaussian Bayesian (GNB),
linear discriminant analysis (LDA) [27], logistic regression
(LR) [28], and deep learning [29–31]. Compared with
traditional machine learning methods, deep learning has
strong learning ability and can make better use of data sets
for feature extraction [32]. Nowadays, the use of deep
learning to achieve in-depth analysis of fMRI data has a
very high practical value. However, at present, the high-
precision classification of multitask state fMRI data is still a
problem.

-ere are many noise effects in the task-state data, and
the accuracy is generally lower than that of the rest state data.
Xin et al. [33] proposed a new classification algorithm for
depression, called weighted discriminant dictionary learning
(WDDL) of fMRI data in task state, with an accuracy rate of
79.31%. Ertugrul et al. [34] proposed a new framework to
encode the local connectivity patterns of the brain. -ey
classify the cognitive state of the Human Connectome
Project (HCP) task fMRI dataset by training the SVM.When
characterizing the pairwise correlation between pairs of bold
responses in all regions, the classification accuracy was
77.49%.

In view of the above analysis, we use EMD to process the
spatial frequency information of fMRI data at each time
point and improve the effectiveness of machine learning for
fMRI data by stripping out the spatial frequency data of
different stages. -erefore, based on the fMRI spatial data,
this paper proposed an effective circle-EMD method for
decomposing spatial nonstationary signals for the research
and classification of multitask state fMRI data and solved the
end effect of the traditional EMDmethod.We deeply studied
and compared the characteristics and contribution of each
IMF of fMRI data, verified the effectiveness of this method
by using a variety of machine learning algorithms, and fi-
nally achieved a higher precision classification of fMRI
spatial data.

2. Materials and Methods

2.1. Basic Principles of the EMD Method. -e purpose of
EMD is to decompose the signal into the sum of the IMFs
and obtain the components of the original signal with
different frequencies. -e main steps of EMD can be
summarized as follows:

(1) First, local extrema including the maximum and
minimum values of the signal x(t) are obtained, and
the upper envelope signals eupp(t) and the lower
envelope signal elow(t) are, respectively, constructed
by cubic spline interpolation according to these
values. And then we get the average of the envelope:
m(t) � [eupp(t) + elow(t)]/2.

(2) We calculate the signal h1(t) which has high fre-
quency by reducing the average from the signal:
h1(t) � x(t) − m(t).

(3) If the signal h1(t) satisfies the two conditions of the
IMF [35], (1) the function must have the same
number of local extremum points and zero crossings
over the entire time range, or at most one difference,
and (2) at any point in time, the envelope of the local
maximum (upper envelope) and the envelope of the
local minimum (lower envelope) must be zero on
average. -en, we set this signal to IMF and name it
C1(t), and the residual signal r1(t) � x(t) − C1(t).
If the condition is not satisfied, the signals h1(t) are
repeated as steps 1 and 2 as the original signal x(t),
and it is worthwhile to obtain an IMF that satisfies
the condition.

(4) Steps 1∼3 are repeated until the residual signal rn(t)

is a monotonic function or constant.

Finally, we decompose the signal to generate n IMFs and
a residual signal, namely, x(t) � 􏽐

n
i�1 Ci(t) + rn(t).

2.2. Improvement of EMD Algorithm: Circle-EMD. Since
the EMD algorithm uses a cubic spline difference to fit the
envelope of the maxima and minima, it produces end effects
at both ends. By analyzing the spatial signal sequence of
fMRI (at one time), we find that the signals of each ROI of
fMRI have no temporal correlations but have spatial cor-
relation such as a net and should not be regarded as time
series but network. -erefore, in this paper, the data queues
of each ROI are connected to form a circle (as shown in the
left part of Figure 1, the gray dotted lines are the back-end
part and front-end part of the data supplementary to the
front-end and back-end of this original data), so that there is
no end effect when calculating the envelope, and it can better
help extract the space feature.

Let the signal x(t) be n+ 1 values from 0 to n, and S(j)
denotes the fitting function between the jth and j+ 1th
values, and the second derivative of each endpoint is
Sj
″ � Mj, (j� 0, 1, 2, . . ., n). -en, the traditional cubic spline
interpolation equations are shown in the following equation:

μ1M0 + 2M1 + λ1M2 � 6f t0, t1, t2􏼂 􏼃,

μ2M1 + 2M2 + λ2M3 � 6f t1, t2, t3􏼂 􏼃,

. . .

μn− 1Mn− 2 + 2Mn− 1 + λn− 1Mn � 6f tn− 2, tn− 1, tn􏼂 􏼃.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

-ere is a total of n − 1 equations and n+ 1 unknown
variables, where hj � tj+1 − tj � 1, μj � (hj− 1/(hj− 1 +

hj)) � 0.5, λJ � (hj/(hj− 1 + hj)) � 0.5, and f[tj− 1, tj, tj+1] �
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(1/(hj− 1 + hj))[((x(tj) − x(tj− 1))/hj− 1) − ((x(tj+1) −

x(tj))/ hj)] � 2x(tj) − x(tj− 1) − x(tj+1). After connecting
the beginning and end of the data queue, we set the fit
function between x(n) and x(0) to S(n).

-rough the formulas S″(n)0 � S″(0)n and
S″(n)n � S″(n − 1)n, there are complementary equations:

μ0Mn + 2M0 + λ0M1 � 6f tn, t0, t1􏼂 􏼃,

μnMn− 1 + 2Mn + λnM0 � 6f tn− 1, tn, t0􏼂 􏼃.
􏼨 (2)

At this time, a total of n+ 1 equations and n+ 1 unknown
variables can calculate all the unknown coefficients. -e
individual IMF components of the EMD decomposition can
be further determined by the new annular envelope, as
shown in the right part of Figure 1. All the IMF signals
decomposed by circle-EMD can also be regarded as a cir-
cular data, as shown in Figure 2, in which the black signal is
the original signal and the other signals with other colors are
IMF signals.

2.3. Machine Learning Algorithms andModels. We use three
existing machine learning methods, LR, SVM, and DNN, to
achieve effective classification of different task states.

2.3.1. Nonlinear SVM. SVM is a binary classifier based on
supervised learning and has been widely used in various
scientific fields [36–38]. -e boundary of classification is the
maximum margin hyperplane for solving learning samples.
When encountering some linearly inseparable problems
(feature surfaces have hypersurfaces), nonlinear functions
can be used to transform these into linear separable prob-
lems by mapping data from the original feature space to
higher-dimensional Hilbert spaces. Common kernel func-
tions in SVM are polynomial kernel, RBF kernel, Laplacian
kernel, and Sigmoid kernel. -is paper uses the RBF kernel
function, also known as the Gaussian kernel, whose cor-
responding mapping function can map the sample space to
an infinite dimensional space. -e analytical expression is
shown in the following equation:

K X1, X2( 􏼁 � exp − X1 − X
2
2􏼐 􏼑/2σ2)􏼐 􏼑.􏼐 (3)

2.3.2. Logistic Regression for Multiclassification. LR is a
generalized linear regression analysis model that can handle
both classification and regression problems. -e improved
LR can even handle multiclassification problems [39]. -e
relationship between the intermediate value y and the input

x represents the linear part of the model, which is
y � 􏽐

m
i�1(wi ∗ xi) + b, where wi is the weight matrix and b is

the bias. -rough the obtained y, the final result of the
regression function can be obtained after passing the
Softmax function. -e formula for Softmax is
S(y) � (1/(1 + e− y)), whose the value range is distributed in
[0,1].

2.3.3. Deep Neural Network. -e neural network was first
developed into an important part [40] of machine learning
by being inspired by neurons in the brain.-e basis of neural
networks is the perceptron model [41]. A deep neural
network is a neural network that contains multiple layers of
hidden layers. DNN can be divided into three categories
according to the location of different layers: input layer,
hidden layer, and output layer.

-e deep learning model designed in this paper is shown
in Figure 3. -ere are three hidden layers. -e number of
neurons in each layer is 300, 200, and 100, respectively. -e
activation function is ReLU function. Each layer uses
Dropout and BatchNorm2d regularization to help prevent
overfitting of the training. -e loss function is the cross-
entropy loss function, and the batch_size size is 32.

C � −
1
n

􏽘
x

[y ln a +(1 − y)ln(1 − z)]. (4)

-e cross-entropy represents the distance between the
actual output (probability) and the expected output
(probability), that is, the smaller the value of the cross-
entropy, the closer the two probability distributions are. It is
very helpful for the training of machine learning [42].
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Residual
signal

IMF-1
IMF-2
IMF-3
IMF-4
IMF-5

IMF-n

…
…

…
…

m (t) = [eupp(t) + elow(t)]/2

m (t)
x (t)

eupp (t)

x (t)

Figure 1: flowchart of the proposed circle-EMD.
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posed by circle-EMD.
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Assuming that the probability distribution y is the desired
output, the probability distribution z is the actual output.
-e formula for the cross-entropy loss function is shown in
the following equation:

We used 10-fold cross-validation to evaluate the model
results. -e data are divided into 10 groups, and 9 experi-
ments are used as the training set and 1 group is used as the
test set for each experiment. A total of 10 experiments were
performed, so each group of data could be calculated as a test
set. Finally, the accuracy of all test sets was averaged to
obtain the final experimental results.

3. Experimental Process and Results

-e experimental process is shown in Figure 4. fMRI data are
first preprocessed by the Brain Decoder Toolbox, and then
IMF signals are obtained by circle-EMD decomposition.
-ree different machine learning tools are used as experi-
ments to verify the effective role of circle-EMD.

3.1. fMRI Data and Preprocessing. -e data and fMRI
decoding tools used in this article were obtained from the
website (http://www.cns.atr.jp/dni/en/downloads/brain-
decoder-toolbox/). -e data in this paper were obtained
on a 1.5 T MRI scanner (Shimadzu-Marconi) with a TR/TE/
flip angle� 5 s/50ms/90 degree, field of view (FOV)�

192mm, acquisition matrix� 64× 64, for functional images,
and 50 slices. During the fMRI data acquisition process, the
subjects performed three gestures of stone, scissors, and
paper in the MRI according to the instructions. -ere are
totally 10 runs, and each run has a 20-second break at the
beginning and end. In each run, there are 32 states, including
8 rest states and 24 task states, so the task-state data have 240
samples. We divided into 10-fold cross-validation, 216
samples as the training set, and 24 samples as the test set per
experiment, as shown in Table 1.

We use the Brain DecoderToolbox tool (the process flow
and parameters are shown in Table 2) to smooth, decontour,
and regularize the fMRI data and filter out the data of the six
ROIs most relevant to the pose, which are “M1_RHand,”

“SMA_RHand,” “CB_RHand,” “M1_LHand,” “SMA_L-
Hand,” and “CB_LHand,” thus obtaining 5333 voxels for
each sample. -e locations of each ROI data are shown in
Table 3. Based on the statistics of each voxel/channel (the
data value is distributed between − 5.44 and 24.12919), we
filter out the top 200 data with the highest statistical value
(the data value is distributed between 5.99434 and 24.12919)
to initially filter unnecessary redundancy. (-rough the
actual classification and comparison in the experiment, if the
original 5333 data are directly processed and classified
without the filter, the accuracy of the classification is rela-
tively low whether the SVM, LR, or DNN method is used).

By counting the position and number of six ROIs in the
fMRI data sequence, we obtain the results shown in Table 3.

3.2. Decomposing Data by Using Circle-EMD

3.2.1. Decomposed IMF Signal. As shown in Figure 5, it is a
partial result of the circle-EMD decomposition of the pre-
processed fMRI data sequence, where the “Current IMF” is
the sequence number of the decomposed IMF signal and the
“Sift Iter” is the number of iterations for extracting the IMF
signal. For our data set, the number of IMFs decomposed is
roughly between 4 and 7.

Using the original EMD and the circle-EMD algorithm
proposed in this paper, we decompose the preprocessed
fMRI data for each IMF signal, as shown in Figure 6. -e
uppermost black signal is an original data signal with a label
of stone, and each IMF signal is decomposed by two EMD
methods (the IMF signals are sequentially decomposed from
top to bottom). By comparing the distribution results in
Table 1, we find that the IMF signals obtained by the two
decompositions are very similar in the high-frequency part.
For example, in “CB_RHand,” these data have strong
characteristic signals at both high and low frequencies.
However, in the low-frequency part, the signal character-
istics are more obvious, such as the data in “M1_RHand.”

-e frequency ranges for each IMF in Figure 6 are shown
in Figure 7. For the convenience of display, fast Fourier
transform (FFT) is used to transform these spatial IMF
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Weights 1
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Figure 3: Deep learning model in this paper.

4 Computational Intelligence and Neuroscience

http://www.cns.atr.jp/dni/en/downloads/brain-decoder-toolbox/
http://www.cns.atr.jp/dni/en/downloads/brain-decoder-toolbox/


Preprocessing: Brain 
Decoder Toolbox
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Figure 4: -e whole process in this paper.

Table 1: Number of samples per experiment.

Data type Rock Scissors Paper
Training data 72 72 72
Testing data 8 8 8

Table 2: Process name and parameters used when using the Brain Decoder Toolbox.

Order index of process flow Process name Parameters
1 shiftData shift� 1 (shiftTR)
2 fmri_selectRoi rois_use� {1, 1, 1, 1, 1, 1}
3 selectChanByTvals num_chans� 200(nVoxels); tvals_min� 3.2
4 reduceOutliers std_thres� 4; num_its� 2
5 detrend_bdtb None
6 normByBaseline base_conds� 1 : 4
7 zNorm_bdtb app_dim� 2(alongspace); smode� 1
8 selectConds conds� 2 : 4

Table 3: -e locations of each ROI datum in the fMRI data sequence.

ROI
name TR/TE/flip angle SMA_RHand CB_RHand M1_LHand SMA_LHand CB_LHand

Index 5 s/50ms/90
degree

75-76, 85–88, 93,
95–109

110–114,
116–151 115, 152–200 75-76, 85–88, 93,

95–109
67, 71–74, 77–84, 89–92,

94

Figure 5: Circle-EMD results of decomposing fMRI signals.
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signals, and the frequency ranges are shown in the range of
[− π/2, π/2] (only positive frequency is plotted). From Fig-
ure 7, it can also prove that the original signal has suc-
cessfully been decomposed into IMF signals with different
frequency bands and energy.

By further comparing more results between the two
different methods, the common EMD algorithm has heavy
end effects. -e difference between the first and last of the
signal is often interrupted. -is means that when cubic
spline interpolation is performed, there is a phenomenon of
spectral leakage distortion after complementing 0, and the
side lobes are large. -is kind of signal has serious inter-
ference to the subsequent machine learning classification,
which affects the classification accuracy.

-e data signal in this paper should not have a temporal
correlation, nor the order of the data. -e IMF signal
decomposed by our algorithm has better continuity at the
first and last of the signal, as shown in Figure 8. -us, the
signal does not have a starting position and an ending
position in the actual sense and can be connected in a circle
shape. And it is truly in the low-frequency signal portion, the
signals have more significant data characteristics. Since there
is no zero-compensation operation, there is no spectral
distortion and the side lobes are extremely low, which can
help improve the accuracy of classification.

3.2.2. �e Role of Different IMFs. We use the SVM method
with RBF kernal to classify each IMF signal and signals formed
by IMF combination, and view the contribution of each IMF
signal to the classification. SVM uses MATLAB’s libsvm-mat
tool, version 3.0-1 (https://www.csie.ntu.edu.tw/∼cjlin/libsvm/),
the kernel function parameter is set to degree� 3, gamma� 0,
Coef0� 0, nu� 0.5, cache memory size� 100, and tolerance of
termination criterion� 1e − 3, p � 0.1, shrinking� 1, and the
weight matrix after training is 200∗ 3.

-e average accuracy of the 10-fold cross-validation
results is statistical as shown in Table 4. Since the number of
IMFs obtained by decomposing each fMRI signal is not
fixed, here we only extract the first 4 IMF signals when
comparing the IMF separately and finally show the results of
all IMF accumulations. In the right half of the table, we have
realistic SVM predictions and real label statistics. For ex-
ample, the third value of 40 in the first row indicates that 40
samples were correctly predicted under the 80 samples with
the real label as stones.

By comparison, we find that the IMF signal decomposed
first has higher frequency characteristics and also has a
higher contribution to the classification result. -e more the
IMF signals are superimposed, the higher the accuracy of the
data. Comparing with Table 5, we found that although the
classification accuracy of a single IMF signal, there is no high
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accuracy of the original signal. However, after super-
imposing each IMF signal, that is, deleting the residual
monotonic signal, the classification accuracy is the highest.

3.3. ClassificationResults ofMachineLearning. -ere are 240
data sets in this paper. In each experiment, 216 are training
data and 24 are test sets. For each training data, the input is
200-dimensional fMRI data, and the output label is a 3-
dimensional classified data. Using LR, SVM, and DNN, we
classify raw data and data after preprocessed by circle-EMD.
In the training process, the accuracy curve of the logistic
regression and deep learning of the experiment is shown in

the Figure 9 (red lines indicate the training set and green
lines indicate the test set), and the accuracy rate classification
results are shown in Table 6. To further compare the original
signal with our circle-EMD method, we still do the machine
learning classification statistics for the original signal.

From Table 6, we can see that for the fMRI data of this
paper, no matter which machine learning method, our
circle-EMD algorithm has achieved higher accuracy, which
proves that our circle-EMD method is effective for sepa-
rating spatial signals. Sex can help to refer to the classifi-
cation accuracy of machine learning.

To further compare the sensitivity and specificity of the
classification, this paper further calculated the weighted
average of precision, recall, and f1-score of the classification
results in Figure 6 (we only show the average value of 10-fold
cross-validation results. And since the samples are balanced,
the results of macroaverage and weighted average are the
same for multiclassification mean calculation, so this paper
only shows the results of weighted average).

Comparing the results of each machine learning classifi-
cation, deep learning performed best in each experiment, and
the average accuracy of the final three categories of the test set
reached 81.2%. LR and DNN have achieved close to 100%
classification accuracy on the training set of this data, but the
performance of LR on the test set is not enough, and it does not
have good generalization. -is result not only confirms the
validity of our circle-EMDmethod, but also the importance of
deep learning for fMRI data classification and learning.
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Table 4: Classification results of the task states of each circle-IMF signal and combined signals by using SVM.

IMF Label Rock (80) Scissors (80) Paper (80)
Prediction Rock Scissors Paper Rock Scissors Paper Rock Scissors Paper

1 0.5625 40 20 20 18 43 19 10 18 52
2 0.4833 46 25 9 31 26 23 14 22 44
3 0.4292 47 12 21 33 20 27 23 21 36
4 0.4458 51 19 10 32 30 18 25 29 26
1 + 2 0.5875 44 27 9 24 40 16 7 16 57
1 + 3 0.60 46 17 17 18 44 18 10 16 54
1 + 4 0.575 41 23 16 17 46 17 11 18 51
1 + 2 + 3 0.6333 50 20 10 22 45 13 7 16 57
1 + 2 + 4 0.5958 48 22 10 18 43 19 8 20 52
1 + 2 + 3 + 4 0.6417 53 18 9 20 45 15 6 18 56
All IMFs 0.6542 53 18 9 19 47 14 7 16 57

Table 5: Classification results of original signals that have not been processed by EMD.

Label Rock (80) Scissors (80) Paper (80)
Prediction Rock Scissors Paper Rock Scissors Paper Rock Scissors Paper

Original signal 0.6375 50 21 9 21 45 14 6 16 58
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Figure 9: Accuracy rate curve. (a) Logistic regression. (b) Deep neural networks.

Table 6: Accuracy results of extracted fMRI signals by using different machine learning algorithms.

Experiment number
Logistic regression SVM Deep learning

Original All IMFs Original All IMFs Original All IMFs
1 0.667 0.750 0.708 0.708 0.833 0.875
2 0.667 0.708 0.667 0.708 0.792 0.875
3 0.625 0.667 0.708 0.708 0.708 0.833
4 0.667 0.708 0.583 0.625 0.667 0.792
5 0.667 0.625 0.583 0.542 0.750 0.750
6 0.708 0.708 0.625 0.667 0.750 0.792
7 0.708 0.667 0.583 0.583 0.792 0.833
8 0.667 0.667 0.542 0.583 0.542 0.708
9 0.708 0.750 0.625 0.667 0.750 0.833
10 0.750 0.750 0.750 0.750 0.750 0.833
Average 0.683 0.700 0.638 0.654 0.733 0.812

8 Computational Intelligence and Neuroscience



4. Conclusions

In this paper, we propose a circle-EMD algorithm to de-
compose and preprocess the “stone-scissors-paper” multi-
task state fMRI data and compare it with the original EMD
method. On this basis, the three commonly used machine
learning methods: logistic regression, SVM, and DNN are
used to process the data obtained by different EMD algo-
rithms. We compare the effects of different EMD algorithms
on the processing results through experiments and finally
obtain the classification accuracy of different data by dif-
ferent machine learning methods.

-e results show that the proposed algorithm can
eliminate the end effect of spatial signals and extract signals
with the different spatial frequency features of multitask
state data more effectively. It also reduces the effects of low
frequencies and noise, more accurately reflects the data
characteristics of the original signal (especially, the char-
acteristics of the relatively low-frequency part), shows the
correlation between different ROIs, and finally achieves
higher classification accuracy. By comparing the various
IMF signals extracted by this method, it is found that the
contribution from low frequency to high frequency increases
in turn, and the accumulation of multiple IMF signals helps
to improve the accuracy of classification. -rough com-
parison with different machine learning algorithms, we also
found that the most effective algorithm is the deep learning
algorithm. -e highest accuracy in this experiment is up to
87.5%, with an average of 81.2%.

In general, themethod of this paper provides a new circle-
EMD-based data analysis method for analyzing task-state
fMRI data and combines the deep learningmethod to provide
a more effective solution for classification of multitask state
fMRI data, helping to better realize the brain-computer in-
teraction. -e limitation of the combination of the algorithm
and machine learning is that when processing spatial fMRI
signals with small amount of data, the effect is more obvious
(for example, 200 voxels are selected in this paper), and the
use of decomposed IMF signals is only verified in the motion
data type of this paper. In future research work, we will
experiment with more types of fMRI data and try to weight
each IMF signal to get a better performance and pay more
attention to the residual signal when using circle-EMD.
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