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In vitro systems are ideal setups to investigate the basic principles of biochemical
reactions and subsequently the bricks of life. Cell-free protein synthesis (CFPS)
systems mimic the transcription and translation processes of whole cells in a
controlled environment and allow the detailed study of single components and reaction
networks. In silico studies of CFPS systems help us to understand interactions
and to identify limitations and bottlenecks in those systems. Black-box models
laid the foundation for understanding the production and degradation dynamics of
macromolecule components such as mRNA, ribosomes, and proteins. Subsequently,
more sophisticated models revealed shortages in steps such as translation initiation
and tRNA supply and helped to partially overcome these limitations. Currently, the
scope of CFPS modeling has broadened to various applications, ranging from the
screening of kinetic parameters to the stochastic analysis of liposome-encapsulated
CFPS systems and the assessment of energy supply properties in combination with flux
balance analysis (FBA).

Keywords: in vitro protein synthesis, cell-free synthetic biology, mathematical model, in silico, ribosomes,
transcription and translation, modeling

INTRODUCTION

Cell-free protein synthesis (CFPS) technology has a long history in life sciences, which started with
fundamental research on deducing the genetic code (Nirenberg and Matthaei, 1961). Over several
decades, the system was developed stepwise into a polypeptide production machinery (Spirin
et al., 1988). Since the early adaptations of the system for commercial use (Shimizu et al., 2005),
an increasing number of applications have emerged in the market (e.g., PURExpress, PUREfrex,
PUREfrex2.0, myTXTLkit). These are based either on synthetic transcription–translation systems
with a well-defined composition or on crude cell extracts that contain a more complex component
assembly. While the product titer and production volume of such systems have increased from a
few microliters to hundreds of liters, several limitations of the system remain. To date, and even
within the best commercial systems, the protein titer with CFPS systems is orders of magnitude
lower than that of in vivo whole-cell production due to resource expense and reduced longevity
(Carlson et al., 2012; Gregorio et al., 2019; Silverman et al., 2019). Here, purpose-driven modeling
can be a crucial tool to push the boundaries forward and identify bottlenecks.

CFPS is an “open” experimental system that allows defined reaction setups, which is ideal for
simulation approaches. It has emerged not only as a research tool for the processes of transcription
and translation but as a biomanufacturing platform for rapidly prototyping production systems
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in silico and in vitro (Laohakunakorn et al., 2020; Vilkhovoy
et al., 2020). For a variety of transcriptional and translational
components, kinetic parameters are known, allowing the study
of their behavior. Yet, one of the most fundamental principles of
modeling always restricts the approach; the accuracy of model
predictions cannot exceed the granularity of the model itself.
In other words, distinctions between experimental observations
and simulations are likely to occur if model predictions,
extrapolated data sets, or fundamental model structures do
not reflect the real problem. Consequently, such discrepancies
may motivate a more thorough study of the experimental
problem. Hence, proper model design aims to reflect reality
with sufficient granularity (e.g., should the maturation of a
reporter be considered?), thereby building on a solid mixture
of experimentally validated data supported by assumptions.
In this regard, we provide a brief overview of the existing
models for CFPS and related systems and how they are applied
to specific cases. It must be stated that many models have
been developed with different objectives regarding the system
environment, model approach (deterministic, stochastic), and
granularity. Therefore, the models are not categorized as “good”
or “bad” but clustered and assessed with respect to their particular
purpose. In contrast to the mini-review of Koch et al. (2018),
which focuses on deterministic models for CFPS, we expand the
scope to adjacent fields and highlight qualitative and quantitative
model characteristics.

When developing a model, it is necessary to know the
components that should be considered. A CFPS system typically
consists of, at least, the core components of transcription
and translation: a mRNA polymerase, ribosomes, translational
factors, amino acyl-tRNA synthetases, amino acids, tRNAs, an
energy regeneration system, and nucleotides (Shimizu et al.,
2005). Additionally, the DNA substrate, the produced mRNA,
and the product (in most cases presented here, GFP derivatives)
must be considered. If a crude cell extract is used, the system
becomes much more complex, as the concentration of many of
the components is unknown. The modeling studies on CFPS
presented in detail in section “Development and Application
of CFPS Models” share the common goal of identifying key
model parameters by parameter regression on experimental data.
However, the complexity of the models differs. By trend, the
models may be divided into four groups of different granularities
(Figure 1):

“Minimum model”: Minimal models, presented in section
“Identifying Bottlenecks in CFPS Systems,” take into account
up to ten parameters or equations, mainly focusing on
macromolecular components such as mRNA and DNA. They are
the backbone for more detailed descriptions. Additionally, most
of the genetic circuit models presented in section “Extending the
Scope of CFPS Modeling” can be described as minimum models.

“Structured model”: Medium-scale models that introduce
structured descriptions of certain aspects of the transcription-
translation network. In structured models, kinetic models such as
Michaelis–Menten or Hill are implemented in combination with
larger ODE systems of up to 100 equations.

“Unstructured model”: Large-scale models are fine-grained.
They are meant to describe the CFPS in a holistic way

and comprise networks of several hundred reactions. These
models typically use simple individual reactions without further
structural elements in order to save computational costs (e.g.,
Matsuura et al., 2017).

“Hybrid model”: A special case are hybrid models, connecting
structured models to other networks such as metabolic networks,
or unstructured parts of lumped elements. Intrinsically, the
approach increases the model complexity and computational
costs. However, it offers an in-depth analysis of CFPS.

DEVELOPMENT AND APPLICATION OF
CFPS MODELS

Continuous models are typically used to simulate CFPS systems.
They make use of ordinary differential equations (ODEs) and
algebraic equations to dynamically describe model states. In
a structured model, equations incorporate affinity constants
and other parameters. To reduce complexity, models can
be formulated following an unstructured black-box approach,
considering only apparent kinetics (Bailey and Ollis, 1986).
The differences between the model types are dynamic. Often,
models are partly structured to focus on selected segments of
the reaction network with particular interest. We call these
approaches “hybrid models.” The quality of CFPS mechanistic
models relies heavily on the proper model structure and the
correct identification of model parameters. Given the complex
nature of CFPS, the precondition of independent datasets for
parameter identification is challenging and may require repeated
careful consideration for each regression analysis (Golightly and
Wilkinson, 2005; Moore et al., 2018). Stochastic effects play
only a minor role in most of the classical CFPS modeling
approaches. In liposome or droplet-based CFPS, due to small
reaction volumes, low numbers of molecules may cause rendering
reactions between different molecules in stochastic events. Under
such conditions, a description with a discrete and stochastic
model is preferable (Gillespie, 1977; Frazier et al., 2009).

Identifying Bottlenecks in CFPS Systems
The most straightforward way of describing in vitro expression
of GFP is to consider the macromolecular components, DNA,
mRNA, and proteins in a black-box model (Karzbrun et al.,
2011; Stögbauer et al., 2012; Chizzolini et al., 2017; Marshall
and Noireaux, 2019). This allows fitting kinetic equations to
the experimental results of GFP production, mRNA production,
and mRNA degradation. RNA polymerase and ribosomes are
considered as catalytic components. For simplification, we
call such approaches “minimum models.” Karzbrun et al.
(2011) proposed a coarse-grained dynamic model consisting
of four enzymatic reactions. Kinetic studies were performed
for crude cytoplasmic extract from Escherichia coli to identify
biosynthesis and degradation parameters. A similar granularity
was chosen by Stögbauer et al. (2012) to simulate and analyze the
results gathered with the PURExpress system. Here, the model
neglects protein degradation but covers a broader experimental
range, identifying the plateau phase when the translational
system expires. A comparable ODE-based model was applied
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FIGURE 1 | On-trend categorization of CFPS models with respect to the defined model levels “minimum,” “structured,” “unstructured,” and “hybrid.” Color-coded
squares indicate model classes, size, and particular features. The transition from “minimum” to “structured” considers the implementation of detailed kinetics. In
contrast, the shifting from “minimum” to “unstructured” extends the reaction network and kinetic complexity. “Hybrid model” represents a tradeoff between
“structured” and “unstructured” approaches. NTPs, nucleoside triphosphates; S50/S30, ribosomal subunits; EFTu, elongation factor Tu; EFG, elongation factor G;
IF1/IF2/IF3, initiation factors; GFP, green fluorescent protein.

to a variety of regulatory elements (promotor strength) to
identify limitations in the resources of the transcription–
translation system (Marshall and Noireaux, 2019). Here, the
commercially available “myTXTLkit” was used. Despite the
application of different CFPS systems, all models revealed a
saturation effect in GFP production under increased DNA
template concentrations. Chizzolini et al. (2017) extended
the minimal model to describe the expression of different
fluorescence proteins under various regulatory elements. Here,
limitations of current CFPS models were addressed, namely
the specificity for only narrow experimental data sets, limited
prediction capacity, and neglecting biophysical factors (e.g., RNA
secondary structure).

With a model system of similar complexity, it was shown
that limitations of CFPS may occur, which could not be
mirrored by minimum models (Doerr et al., 2019). Using a
comprehensive experimental data set of commercial E. coli CFPS,

depletion of tRNAs and translation initiation were identified
as limiting factors. By extending the minimum model to a
structured description with additional terms for inactive mRNA
states, it was possible to improve the prediction quality for the
experimental data.

More fine-grained models were necessary to identify the
challenging substrate limitations in silico. Such a model was
introduced in our laboratory by Arnold et al. (2005) and recently
renovated (Nieß et al., 2017). In this hybrid model, a simplified
transcriptional model was connected to a detailed description of
the translation process. The unique approach uses a ribosome
flow model to simulate the movement of the ribosome along a
one-dimensional discrete template (MacDonald and Gibbs, 1969;
Heinrich and Rapoport, 1980). This approach enables a careful
study of the influence of different components on the translation
rate. The elongation factor Tu and tRNA concentration were
identified as the most sensitive parameters hampering the
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translation rate. As a key difference between in vitro and in vivo
conditions, a control shift from the ternary complex to translation
initiation was identified.

An equally complex system was developed to describe
the synthesis of a short Met-Gly-Gly peptide in an E. coli-
based in vitro system by incorporating 968 reactions and 241
components (Matsuura et al., 2017). The approach evaluated the
stability of pseudo-steady states, revealing the temporal stability
of metabolite clusters, their collapse, and re-merge, until a final
steady state is reached. Interestingly, increasing tRNA supply also
led to a slight increase in translation rates (observed as increased
poly-peptide production), but the effect was much less dominant,
as shown by Nieß et al. (2017).

Analysis and Prediction of
Liposome-Encapsulated Protein
Synthesis
A special case of in vitro protein synthesis is the encapsulation
of CFPS components in liposomes. In this model, only a few
stochastically distributed components may be balanced, creating
different reaction conditions in the vesicle and outside the vesicle.
The initial studies showed that GFP production kinetics strongly
depend on liposome size and lipid composition (Sunami et al.,
2010). In a first attempt to simulate protein synthesis inside
liposomes, a medium-sized CFPS model considering 30 species
and 106 reactions was connected to a stochastic model for
encapsulation (Lazzerini-Ospri et al., 2012). Later, the model was
extended to 280 species and 270 reactions, comprising a coupled
transcription–translation model (Calviello et al., 2013). The
approach allowed screening of GFP production with different
start conditions either by looking at different liposome diameters
or by considering different quantities of CFPS components inside
the liposome. In agreement with continuum CFPS simulations,
optimal DNA levels were identified for maximizing GFP
formation. Oversaturation of the system with DNA decreased
GFP yields. This finding reflected the enormous energy needs for
the transcription process. Follow-up studies showed that some
of the results could be achieved with a much less complicated
model. Here, around 10 reactions were incorporated by lumping
reactions for tRNA charging, transcription, translation, and
energy regeneration. The simplified model described the behavior
of the PURE system under 27 different compositions, rendering
resource availability from standard conditions to limitation,
remarkably well (Mavelli et al., 2015; Carrara et al., 2018).

Extending the Scope of CFPS Modeling
CFPS systems have emerged as ideal test beds for genetic circuits,
allowing easier and faster prototyping than traditional in-cell
engineering. Consequently, mathematical models to describe
those systems have been developed (Niederholtmeyer et al.,
2015; Takahashi et al., 2015). They cover a wide range of
regulatory circuits: two-gene cascades (Siegal-Gaskins et al.,
2014), sigma factor guided regulation (Adhikari et al., 2020),
complex genetic ring oscillators (Niederholtmeyer et al., 2015),
and experimentally verified RNA circuit controllers (Agrawal
et al., 2018, 2019; Hu et al., 2018). The developed “minimum

models” typically consist of three to ten ODEs and mass
balances, considering mRNA, regulatory RNAs, or protein
products as model species, and mass action, Hill, or Michaelis–
Menten kinetics for regulatory descriptions. Even with coarse-
grained models, the highly dynamic systems could be mirrored
and predicted successfully. The model-guided circuit design
significantly reduced development times.

The use of in silico models is not limited to well-defined model
systems such as E. coli crude extract or commercial products.
Moore et al. (2018) broadened their application to study the
CFPS capacities of Bacillus megaterium, linking robotic liquid
handling with a coarse-grained ODE model (26 parameters, 14
species, and 18 reactions) for the TX-TL system. Key kinetic
parameters of the xylose-repressor system were approximated
from DNA titration experiments. Simulations were performed
using parameters identified by Bayesian parameter inference.
Extending the model to describe the concurrent expression of two
targets, plasmids carrying GFP and mCherry derivatives revealed
competition for translational resources. In general, the reported
translation elongation rates (between 0.10 and 0.02 aa s−1) were
slower than those reported for CFPS systems. The inefficient use
of available energy accounted for the low performance. Another
model approach for investigating resource competition in CFPS
was formulated by Gyorgy and Murray (2016) with a minimal
model for genetic circuits. Here, the authors could successfully
quantify the burden of two targets expressed simultaneously on
the resources of a CFPS system.

A constraint-based model to approximate energy and
substrate supply from E. coli CFPS extract was presented by
Varner and colleagues (Dai et al., 2018; Vilkhovoy et al.,
2018; Horvath et al., 2020). They connected a simplified
description of protein production (Allen and Palsson, 2003) and
allosteric enzyme regulation (Wayman et al., 2015) with the
metabolic network. Flux balance analysis (FBA) was applied to
estimate the flux patterns of central carbon metabolism, amino
acid biosynthesis, and energy metabolism using the objective
function of maximizing the production rate of chloramphenicol
acetyltransferase (CAT). Analysis of different amino acid supply
scenarios in silico revealed inefficient energy yields of the
experimental in vivo setup, most likely due to unfavorable
side reactions. Similar scenarios may have also occurred in the
experimental setup for B. megaterium described above.

DISCUSSION

A historical trend can be observed regarding the objectives of
CFPS models. Early models (Arnold et al., 2005; Karzbrun et al.,
2011; Stögbauer et al., 2012) are focused on the basic CFPS
system using GFP as an experimental readout, beyond classical
targets such as ß-galactosidase, chloramphenicol transferase,
luciferase, or other likewise “easy to quantify” targets. In the past
decade, an increasing number of diverging scientific branches
have developed broadening the scope of model building and
simulations. Yet, the GFP-based system is described in most
detail and is the focus of current investigations. Currently,
derivatives of the initial GFP are commonly used, such as its
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TABLE 1 | Overview of the different granularities of CFPS models.

References Features No. of
parameters

No. of
species

No. of
equations

kTX [nt s−1] kTL [aa s−1]

Karzbrun et al. (2011) Minimal model of the CFPS system 10 7 4 0.50 4.00

Stögbauer et al. (2012) Refined minimal model of the CFPS system 8 5 4 2.20 0.03

Mavelli et al. (2015) and Carrara
et al. (2018)

Simplified CFPS model for screening of different CFPS
compositions

16 9 6 1.67 0.09

Marshall and Noireaux (2019) Simulation of different transcription (promoter) and
translation initiation (ribosome binding site) configurations

14 5 5 10.00 2.50

Chizzolini et al. (2017) Study on different fluorescence protein targets, regulatory
elements, and critical evaluation of model prediction

12 10 10 – –

Moore et al. (2018) Model description and kinetic parameter estimation for
CFPS of non-model bacteria

26 14 18 8.13–11.47 0.09–0.11

Doerr et al. (2019) Identification of translation initiation as bottleneck of CFPS,
analysis of different commercial kits

13 10 10 – –

Lazzerini-Ospri et al. (2012) and
Calviello et al. (2013)

In lipo protein synthesis, stochastic distribution of
components in liposomes

24–280 106–270 – 19.00 4.00

Matsuura et al. (2017) Quasi-stationary state analysis of complex model networks 483 241 968 – –

Nieß et al. (2017) (based on
Arnold et al., 2005)

First detailed description of coupled transcription and
translation model (Arnold). Comparison of in vitro and
in vivo conditions, metabolic control analysis

>70 174+ no.
of

codons

>500 – 1.12

Dai et al. (2018); Vilkhovoy et al.
(2018), and Horvath et al. (2020)

Coupling of CFPS to flux balance network of the central
carbon metabolism, implementation of allosteric regulation

– 146 264 – –

Each reference is listed with its unique features alongside the number of parameters, species, and equations incorporated in the model. If available, the transcriptional
and translational rate constants kTX and kTL as readouts of the model are given. Models that share the same background are lumped together (note that genetic circuit
models are not considered here).

“enhanced” and “super folder” variants (Pédelacq et al., 2006;
Shin and Noireaux, 2010). The mRNA product is typically
quantified with RNA aptamer reporters such as the malachite
green RNA aptamer. The broadening of scientific approaches and
the extension of cell-free genetic circuits will increase the need for
easy and reliable reporter systems based on short nucleotide or
peptide sequences (Wick et al., 2019).

When analyzing the different model granularities (Figure 1),
major differences are observed. For coarse-grained models,
compromises are made by assuming certain states of the model
system by neglecting components or by lumping different
metabolites (e.g., all amino acids) to one species. Fine-grained
models consider these species in detail. System complexity
has been increased from small systems with around 10
equations to large models with hundreds of reaction components
(Table 1). Increasing complexity can offer the possibility to
resolve bottlenecks by getting insights into reactions or reaction
networks. Experimental access to all process elements is hardly
possible, and only subsets of information are normally available,
even for best investigated bacterial strains such as E. coli. As a
result, complex models usually rely on multiple data resources
covering different experiments (Matsuura et al., 2017; Nieß et al.,
2017), whereas small models may be well identified by single
experiments. Interestingly, it was shown that results gathered
with complex systems can also be mimicked with reduced
systems (e.g., Mavelli et al., 2015). Consequently, deciding a
proper CFPS model structure should be driven by the questions
to be answered, and should critically reflect the database for
model identification.

The quality of CFPS models is checked by challenging
model predictions with experimental observations. Typically,

rates for transcription (kTX), translation, and elongation (kTL) are
experimental readouts. However, the range of these parameters
is broad (Table 1). kTX has been reported from 0.5 (Karzbrun
et al., 2011) to 19 nt s−1 (Calviello et al., 2013). kTL
ranged from 0.03 (Stögbauer et al., 2012) to 4.00 aa s−1

(Karzbrun et al., 2011; Calviello et al., 2013). The apparent
differences may reflect the intrinsic problem of using relatively
few experimental readouts to identify models of different
complexities (Chizzolini et al., 2017). It has been shown that
even simultaneously planned and performed CFPS experiments
can lead to significant outcomes between different laboratory
sites (Cole et al., 2019). As the modeling studies presented
here are based on a wide range of commercial and homemade
CFPS systems and extracts, this might explain the deviance of
calculated parameters.

CONCLUSION

Currently, CFPS models can identify bottlenecks in the
transcriptional and translational processes as well as infer kinetic
parameters from model data. The consensus of most model
predictions is the identification of the translational rather than
the transcriptional process as one of the key targets for further
developments in CFPS systems. Potential starting points are
translation initiation, tRNA supply, and recycling. In most
approaches, the modeled mechanisms of the translational process
seem to be oversimplified. Inspiring approaches for in vivo
translation have been published by Vieira et al. (2016) and
Dykeman (2020) that could be adapted to in vitro descriptions.
For many modeling purposes, hybrid models can be the ideal
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tradeoff between complexity and acceptable computational costs.
As CFPS systems and genetic circuits get more complex and
consider multiple targets (RNAs/proteins), models that consider
the joint burden on resources will come into focus (Gyorgy
and Murray, 2016; Borkowski et al., 2018). A feedback loop
between the model investigation and experimental setup has to be
established. The works on genetic circuit models have proved that
fast and easy prototyping is possible with CFPS. To unravel the
key mechanisms for designing models, data from metabolomics
and proteomics have to be integrated. Recent research addresses
this need and offers a variety of datasets that could be harnessed
by the CFPS modeling community (Garcia et al., 2018; Garenne
et al., 2019; Miguez et al., 2019). This significantly increases
the possibility to describe CFPS with an improved mechanistic
resolution, up to a complete dynamic description of the CFPS
system components. The development will open the door for a
thorough application of tools of statistical systems analysis and

metabolic control analysis to translate simulation results into
system engineering advice.

AUTHOR CONTRIBUTIONS

JM reviewed the literature, designed the concept, wrote the
manuscript, and prepared the figures. MS-H and RT co-edited
and supervised the manuscript. All authors approved the
manuscript for publication.

FUNDING

JM was supported by the UfIB Ph.D. program of
“Bundesministerium für Bildung und Forschung – BMBF”
(Grant No. 031B0725).

REFERENCES
Adhikari, A., Vilkhovoy, M., Vadhin, S., Lim, H. E., and Varner, J. D. (2020).

Effective biophysical modeling of cell free transcription and translation
processes. BioRxiv [Preprint]. doi: 10.1101/2020.02.25.964841

Agrawal, D. K., Marshall, R., Noireaux, V., and Sontag, E. D. (2019). In vitro
implementation of robust gene regulation in a synthetic biomolecular integral
controller. Nat. Commun. 10:5760. doi: 10.1038/s41467-019-13626-z

Agrawal, D. K., Tang, X., Westbrook, A., Marshall, R., Maxwell, C. S., Lucks, J.,
et al. (2018). Mathematical modeling of RNA-based architectures for closed
loop control of gene expression. ACS Synth. Biol. 7, 1219–1228. doi: 10.1021/
acssynbio.8b00040

Allen, T. E., and Palsson, B. (2003). Sequence-based analysis of metabolic demands
for protein synthesis in prokaryotes. J. Theor. Biol. 220, 1–18. doi: 10.1006/jtbi.
2003.3087

Arnold, S., Siemann-Herzberg, M., Schmid, J., and Reuss, M. (2005). Model-
based inference of gene expression dynamics from sequence information. Adv.
Biochem. Eng. Biotechnol. 100, 89–179. doi: 10.1007/b136414

Bailey, J. E., and Ollis, D. F. (1986). Biochemical Engineering Fundamentals (2. ed).
New York, NY: McGraw-Hill.

Borkowski, O., Bricio, C., Murgiano, M., Rothschild-Mancinelli, B., Stan, G. B.,
and Ellis, T. (2018). Cell-free prediction of protein expression costs for growing
cells. Nat. Commun. 9:1457. doi: 10.1038/s41467-018-03970-x

Calviello, L., Stano, P., Mavelli, F., Luisi, P. L., and Marangoni, R. (2013).
Quasi-cellular systems: stochastic simulation analysis at nanoscale range. BMC
Bioinformatics 14:S7. doi: 10.1186/1471-2105-14-S7-S7

Carlson, E. D., Gan, R., Hodgman, C. E., and Jewett, M. C. (2012). Cell-free
protein synthesis: applications come of age. Biotechnol. Adv. 30, 1185–1194.
doi: 10.1016/j.biotechadv.2011.09.016

Carrara, P., Altamura, E., D’angelo, F., Mavelli, F., and Stano, P. (2018).
Measurement and numerical modeling of cell-free protein synthesis:
combinatorial block-variants of the pure system. Data 3, 1–12.
doi: 10.3390/data3040041

Chizzolini, F., Forlin, M., Yeh Martín, N., Berloffa, G., Cecchi, D., and Mansy,
S. S. (2017). Cell-free translation is more variable than transcription. ACS Synth.
Biol. 6, 638–647. doi: 10.1021/acssynbio.6b00250

Cole, S. D., Beabout, K., Turner, K. B., Smith, Z. K., Funk, V. L., Harbaugh,
S. V., et al. (2019). Quantification of interlaboratory cell-free protein synthesis
variability. ACS Synth. Biol. 8, 2080–2091. doi: 10.1021/acssynbio.9b00178

Dai, D., Horvath, N., and Varner, J. (2018). Dynamic sequence specific constraint-
based modeling of cell-free protein synthesis. Processes 6, 1–28. doi: 10.3390/
pr6080132

Doerr, A., de Reus, E., van Nies, P., van der Haar, M., Wei, K., Kattan, J., et al.
(2019). Modelling cell-free RNA and protein synthesis with minimal systems.
Phys. Biol. 16:025001. doi: 10.1088/1478-3975/aaf33d

Dykeman, E. C. (2020). A stochastic model for simulating ribosome kinetics
in vivo. PLoS Comput. Biol. 16:e1007618. doi: 10.1371/journal.pcbi.100
7618

Frazier, J. M., Chushak, Y., and Foy, B. (2009). Stochastic simulation and analysis
of biomolecular reaction networks. BMC Syst. Biol. 3:64. doi: 10.1186/1752-
0509-3-64

Garcia, D. C., Mohr, B. P., Dovgan, J. T., Hurst, G. B., Standaert, R. F., and
Doktycz, M. J. (2018). Elucidating the potential of crude cell extracts for
producing pyruvate from glucose. Synth. Biol. 3, 1–9. doi: 10.1093/synbio/
ysy006

Garenne, D., Beisel, C. L., and Noireaux, V. (2019). Characterization of the all-
E. coli transcription-translation system myTXTL by mass spectrometry.
Rapid Commun. Mass Spectrom. 33, 1036–1048. doi: 10.1002/rcm.
8438

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions.
J. Phys. Chem. 81, 2340–2361. doi: 10.1021/j100540a008

Golightly, A., and Wilkinson, D. J. (2005). Bayesian inference for stochastic kinetic
models using a diffusion approximation. Biometrics 61, 781–788. doi: 10.1111/
j.1541-0420.2005.00345.x

Gregorio, N. E., Levine, M. Z., and Oza, J. P. (2019). A user’s guide to cell-free
protein synthesis. Methods Protoc. 2:24. doi: 10.3390/mps2010024

Gyorgy, A., and Murray, R. M. (2016). “Quantifying resource competition and its
effects in the TX-TL system,” in Proceedings of the 2016 IEEE 55th Conference
on Decision and Control, CDC 2016, 1(Cdc), Las Vegas, NV, 3363–3368.

Heinrich, R., and Rapoport, T. A. (1980). Mathematical modelling of translation of
mRNA in eucaryotes; steady states, time-dependent processes and application
to reticulocytest. J. Theor. Biol. 86, 279–313. doi: 10.1016/0022-5193(80)
90008-9

Horvath, N., Vilkhovoy, M., Wayman, J. A., Calhoun, K., Swartz, J., and Varner,
J. D. (2020). Toward a genome scale sequence specific dynamic model of cell-
free protein synthesis in Escherichia coli. Metab. Eng. Commun. 10:e00113.
doi: 10.1016/j.mec.2019.e00113

Hu, C. Y., Takahashi, M. K., Zhang, Y., and Lucks, J. B. (2018). Engineering
a functional small RNA negative autoregulation network with model-guided
design. ACS Synth. Biol. 7, 1507–1518. doi: 10.1021/acssynbio.7b00440

Karzbrun, E., Shin, J., Bar-Ziv, R. H., and Noireaux, V. (2011). Coarse-grained
dynamics of protein synthesis in a cell-free system. Phys. Rev. Lett. 106, 1–4.
doi: 10.1103/PhysRevLett.106.048104

Koch, M., Faulon, J. L., and Borkowski, O. (2018). Models for cell-free synthetic
biology: make prototyping easier, better, and faster. Front. Bioeng. Biotechnol.
6:182. doi: 10.3389/fbioe.2018.00182

Laohakunakorn, N., Grasemann, L., Lavickova, B., Michielin, G., Shahein, A.,
Swank, Z., et al. (2020). Bottom-up construction of complex biomolecular
systems with cell-free synthetic biology. Front. Bioeng. Biotechnol. 8:213. doi:
10.3389/fbioe.2020.00213

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 October 2020 | Volume 8 | Article 584178

https://doi.org/10.1101/2020.02.25.964841
https://doi.org/10.1038/s41467-019-13626-z
https://doi.org/10.1021/acssynbio.8b00040
https://doi.org/10.1021/acssynbio.8b00040
https://doi.org/10.1006/jtbi.2003.3087
https://doi.org/10.1006/jtbi.2003.3087
https://doi.org/10.1007/b136414
https://doi.org/10.1038/s41467-018-03970-x
https://doi.org/10.1186/1471-2105-14-S7-S7
https://doi.org/10.1016/j.biotechadv.2011.09.016
https://doi.org/10.3390/data3040041
https://doi.org/10.1021/acssynbio.6b00250
https://doi.org/10.1021/acssynbio.9b00178
https://doi.org/10.3390/pr6080132
https://doi.org/10.3390/pr6080132
https://doi.org/10.1088/1478-3975/aaf33d
https://doi.org/10.1371/journal.pcbi.1007618
https://doi.org/10.1371/journal.pcbi.1007618
https://doi.org/10.1186/1752-0509-3-64
https://doi.org/10.1186/1752-0509-3-64
https://doi.org/10.1093/synbio/ysy006
https://doi.org/10.1093/synbio/ysy006
https://doi.org/10.1002/rcm.8438
https://doi.org/10.1002/rcm.8438
https://doi.org/10.1021/j100540a008
https://doi.org/10.1111/j.1541-0420.2005.00345.x
https://doi.org/10.1111/j.1541-0420.2005.00345.x
https://doi.org/10.3390/mps2010024
https://doi.org/10.1016/0022-5193(80)90008-9
https://doi.org/10.1016/0022-5193(80)90008-9
https://doi.org/10.1016/j.mec.2019.e00113
https://doi.org/10.1021/acssynbio.7b00440
https://doi.org/10.1103/PhysRevLett.106.048104
https://doi.org/10.3389/fbioe.2018.00182
https://doi.org/10.3389/fbioe.2020.00213
https://doi.org/10.3389/fbioe.2020.00213
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-584178 October 22, 2020 Time: 17:16 # 7

Müller et al. Modeling Cell-Free Protein Synthesis

Lazzerini-Ospri, L., Stano, P., Luisi, P. L., and Marangoni, R. (2012).
Characterization of the emergent properties of a synthetic quasi-cellular system.
BMC Bioinformatics 13(Suppl. 4):S9. doi: 10.1186/1471-2105-13-S4-S9

MacDonald, C. T., and Gibbs, J. H. (1969). Concerning the kinetics of polypeptide
synthesis on polyribosomes. Biopolymers 7, 707–725.

Marshall, R., and Noireaux, V. (2019). Quantitative modeling of transcription and
translation of an all-E. coli cell-free system. Sci. Rep. 9, 1–12. doi: 10.1038/
s41598-019-48468-8

Matsuura, T., Tanimura, N., Hosoda, K., Yomo, T., and Shimizu, Y. (2017).
Reaction dynamics analysis of a reconstituted Escherichia coli protein
translation system by computational modeling. Proc. Natl. Acad. Sci. U.S.A. 114,
E1336–E1344. doi: 10.1073/pnas.1615351114

Mavelli, F., Marangoni, R., and Stano, P. (2015). A simple protein synthesis model
for the pure system operation. Bull. Math. Biol. 77, 1185–1212. doi: 10.1007/
s11538-015-0082-8

Miguez, A. M., McNerney, M. P., and Styczynski, M. P. (2019). Metabolic profiling
of Escherichia coli-based cell-free expression systems for process optimization.
Ind. Eng. Chem. Res. 58, 22472–22482. doi: 10.1021/acs.iecr.9b03565

Moore, S. J., MacDonald, J. T., Wienecke, S., Ishwarbhai, A., Tsipa, A., Aw, R., et al.
(2018). Rapid acquisition and model-based analysis of cell-free transcription–
translation reactions from nonmodel bacteria. Proc. Natl. Acad. Sci. U.S.A. 115,
4340–4349. doi: 10.1073/pnas.1715806115

Niederholtmeyer, H., Sun, Z. Z., Hori, Y., Yeung, E., Verpoorte, A., Murray,
R. M., et al. (2015). Rapid cell-free forward engineering of novel genetic ring
oscillators. eLife 4:e09771. doi: 10.7554/eLife.09771

Nieß, A., Failmezger, J., Kuschel, M., Siemann-Herzberg, M., and Takors, R. (2017).
Experimentally validated model enables debottlenecking of in vitro protein
synthesis and identifies a control shift under in vivo conditions. ACS Synth. Biol.
6, 1913–1921. doi: 10.1021/acssynbio.7b00117

Nirenberg, M. W., and Matthaei, J. H. (1961). The dependence of cell-free protein
synthesis in E. coli upon naturally occuring or synthetic polyribonucleotides.
Biol. Chem. 47, 1588–1602.

Pédelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C., and Waldo, G. S. (2006).
Engineering and characterization of a superfolder green fluorescent protein.
Nat. Biotechnol. 24, 79–88. doi: 10.1038/nbt1172

Shimizu, Y., Kanamori, T., and Ueda, T. (2005). Protein synthesis by pure
translation systems. Methods 36, 299–304. doi: 10.1016/j.ymeth.2005.04.006

Shin, J., and Noireaux, V. (2010). Efficient cell-free expression with the endogenous
E. Coli RNA polymerase and sigma factor 70. J. Biol. Eng. 4, 2–10. doi: 10.1186/
1754-1611-4-8

Siegal-Gaskins, D., Tuza, Z. A., Kim, J., Noireaux, V., and Murray, R. M. (2014).
Gene circuit performance characterization and resource usage in a cell-free
“breadboard.”. ACS Synth. Biol. 3, 416–425. doi: 10.1021/sb400203p

Silverman, A. D., Karim, A. S., and Jewett, M. C. (2019). Cell-free gene expression:
an expanded repertoire of applications. Nat. Rev. Genet. 21, 151–170. doi: 10.
1038/s41576-019-0186-3

Spirin, A. S., Baranov, V. I., Ryabova, L. A., Ovodov, S. Y., and Alakhov, Y. B. (1988).
A continuous cell-free translation system capable of producing polypeptides in
high yield. Science 242, 1162–1163.

Stögbauer, T., Windhager, L., Zimmer, R., and Rädler, J. O. (2012). Experiment
and mathematical modeling of gene expression dynamics in a cell-free system.
Integr. Biol. 4, 494–501. doi: 10.1039/c2ib00102k

Sunami, T., Hosoda, K., Suzuki, H., Matsuura, T., and Yomo, T. (2010). Cellular
compartment model for exploring the effect of the lipidic membrane on the
kinetics of encapsulated biochemical reactions. Langmuir 26, 8544–8551. doi:
10.1021/la904569m

Takahashi, M. K., Chappell, J., Hayes, C. A., Sun, Z. Z., Kim, J., Singhal, V.,
et al. (2015). Rapidly characterizing the fast dynamics of RNA genetic circuitry
with cell-free transcription-translation (TX-TL) systems. ACS Synth. Biol. 4,
503–515. doi: 10.1021/sb400206c

Vieira, J. P., Racle, J., and Hatzimanikatis, V. (2016). Analysis of translation
elongation dynamics in the context of an Escherichia coli cell. Biophys. J. 110,
2120–2131. doi: 10.1016/j.bpj.2016.04.004

Vilkhovoy, M., Adhikari, A., Vadhin, S., and Varner, J. D. (2020). The evolution of
cell free biomanufacturing. Processes 8, 1–19. doi: 10.3390/PR8060675

Vilkhovoy, M., Horvath, N., Shih, C. H., Wayman, J. A., Calhoun, K., Swartz, J.,
et al. (2018). Sequence specific modeling of E. coli cell-free protein synthesis.
ACS Synth. Biol. 7, 1844–1857. doi: 10.1021/acssynbio.7b00465

Wayman, J. A., Sagar, A., and Varner, J. D. (2015). Dynamic modeling of cell-
free biochemical networks using effective kinetic models. Processes 3, 138–160.
doi: 10.3390/pr3010138

Wick, S., Walsh, D. I., Bobrow, J., Hamad-Schifferli, K., Kong, D. S., Thorsen, T.,
et al. (2019). PERSIA for direct fluorescence measurements of transcription,
translation, and enzyme activity in cell-free systems. ACS Synth. Biol. 8, 1010–
1025. doi: 10.1021/acssynbio.8b00450

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Müller, Siemann-Herzberg and Takors. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 October 2020 | Volume 8 | Article 584178

https://doi.org/10.1186/1471-2105-13-S4-S9
https://doi.org/10.1038/s41598-019-48468-8
https://doi.org/10.1038/s41598-019-48468-8
https://doi.org/10.1073/pnas.1615351114
https://doi.org/10.1007/s11538-015-0082-8
https://doi.org/10.1007/s11538-015-0082-8
https://doi.org/10.1021/acs.iecr.9b03565
https://doi.org/10.1073/pnas.1715806115
https://doi.org/10.7554/eLife.09771
https://doi.org/10.1021/acssynbio.7b00117
https://doi.org/10.1038/nbt1172
https://doi.org/10.1016/j.ymeth.2005.04.006
https://doi.org/10.1186/1754-1611-4-8
https://doi.org/10.1186/1754-1611-4-8
https://doi.org/10.1021/sb400203p
https://doi.org/10.1038/s41576-019-0186-3
https://doi.org/10.1038/s41576-019-0186-3
https://doi.org/10.1039/c2ib00102k
https://doi.org/10.1021/la904569m
https://doi.org/10.1021/la904569m
https://doi.org/10.1021/sb400206c
https://doi.org/10.1016/j.bpj.2016.04.004
https://doi.org/10.3390/PR8060675
https://doi.org/10.1021/acssynbio.7b00465
https://doi.org/10.3390/pr3010138
https://doi.org/10.1021/acssynbio.8b00450
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

	Modeling Cell-Free Protein Synthesis Systems—Approaches and Applications
	Introduction
	Development and Application of Cfps Models
	Identifying Bottlenecks in CFPS Systems
	Analysis and Prediction of Liposome-Encapsulated Protein Synthesis
	Extending the Scope of CFPS Modeling

	Discussion
	Conclusion
	Author Contributions
	Funding
	References


