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Abstract

Only a few studies have investigated the potential of using geotagged social media data for

predicting the patterns of spatio-temporal spread of vector-borne diseases. We herein dem-

onstrated the role of human mobility in the intra-urban spread of dengue by weighting local

incidence data with geo-tagged Twitter data as a proxy for human mobility across 45 neigh-

borhoods in Yogyakarta city, Indonesia. To estimate the dengue virus importation pressure in

each study neighborhood monthly, we developed an algorithm to estimate a dynamic mobil-

ity-weighted incidence index (MI), which quantifies the level of exposure to virus importation

in any given neighborhood. Using a Bayesian spatio-temporal regression model, we esti-

mated the coefficients and predictiveness of the MI index for lags up to 6 months. Specifically,

we used a Poisson regression model with an unstructured spatial covariance matrix. We

compared the predictability of the MI index to that of the dengue incidence rate over the pre-

ceding months in the same neighborhood (autocorrelation) and that of the mobility informa-

tion alone. We based our estimates on a volume of 1�302�405 geotagged tweets (from

118�114 unique users) and monthly dengue incidence data for the 45 study neighborhoods in

Yogyakarta city over the period from August 2016 to June 2018. The MI index, as a stand-

alone variable, had the highest explanatory power for predicting dengue transmission risk in

the study neighborhoods, with the greatest predictive ability at a 3-months lead time. The MI

index was a better predictor of the dengue risk in a neighborhood than the recent transmis-

sion patterns in the same neighborhood, or just the mobility patterns between neighborhoods.

Our results suggest that human mobility is an important driver of the spread of dengue within

cities when combined with information on local circulation of the dengue virus. The geo-

tagged Twitter data can provide important information on human mobility patterns to improve

our understanding of the direction and the risk of spread of diseases, such as dengue. The

proposed MI index together with traditional data sources can provide useful information for

the development of more accurate and efficient early warning and response systems.
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Author summary

Recent studies have shown that Twitter can be utilized as a tool for health research, and

aggregated large-scale social media data can indicate the risk of infectious disease in real-

time with high accuracy and at low cost. However, most of these studies relied primarily

on content analysis or text mining, while only a few analyzed the networks of Twitter

users. None has incorporated user geolocation data to explain health outcomes at an

intra-urban level. Currently dengue early warning systems rely on syndromic surveillance,

which lacks completeness and timeliness. Effective syndromic surveillance is rarely

achieved due to its technical complexity and a general lack of capacity. Researchers have

assessed vector indices, meteorological factors and environmental variables as predictors

of dengue incidence, but have failed to capture the complexity of transmission as it relates

to human behaviors and movements. Here we develop an algorithm to estimate a dynamic

mobility-weighted incidence index (MI), which quantifies the level of exposure to virus

importation in a given neighborhood. The proposed index is based on publicly available

social media and routine disease surveillance data, and provides a low-cost source of

information for assessing the risk of spread of communicable diseases, such as dengue.

This study suggests that the MI index is of utility and significance for dengue surveillance

and early warnings systems and can enhance timely decision-making within the public

health system.

Introduction

Dengue has become a major concern for public health authorities in tropical and sub-tropical

developing countries [1]; the frequency and magnitude of epidemics, the incidence of severe

disease, and the rate of hospitalizations have increased in the past few decades [2]. Asia-Pacific

countries bear the heaviest disease burden of dengue where over 1�8 billion people are esti-

mated to be at risk of infection [3,4]. Dengue also poses a serious economic challenge to coun-

tries due to high costs of dengue prevention and control programs, particularly during

epidemic peaks [5,6].

Timely and accurate disease reporting and forecasting is the pillar of infectious disease con-

trol. However, public health agencies often report disease trends and outbreaks with severe

delays, and reporting tends to be based on aggregated disease data at national or regional levels

with little information about disease counts and trends at local levels. Dengue is a notifiable

disease in most endemic countries; however, several studies revealed high levels of under-

reporting in routine surveillance systems, particularly from ambulatory care settings [2]. These

shortcomings hamper programmatic efforts on the ground to mount timely, context-specific,

and effective response to abnormal disease events, including incipient epidemics [7].

Population growth, unplanned urbanization, increased vector density, and climate variabil-

ity are all identified as important contributing factors to dengue propagation [8]. Spatial and

temporal variation in interactions among hosts, dengue viruses, vectors and the environment

have led to a heterogeneous distribution of dengue risk across geographical locations [9–11].

Understanding how these complex interactions influence the epidemiology of dengue at dif-

ferent spatial and temporal scales is important to assess transmission risk and allocate

resources efficiently [8,12]. A main obstacle to studying such complex interactions has been

the limited availability of large-scale spatial and temporal datasets.

Several studies have explored using near real-time streaming data from Twitter to investi-

gate public health trends. As of the first quarter of 2017, there were about 328 million monthly
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Twitter users worldwide [13]. This large volume of social media data may be exploited for pub-

lic health monitoring and surveillance purposes [14,15]. The most recent literature has focused

on analysing Twitter content using text mining methods to estimate and forecast infectious

disease activity [16,17], predict heart disease mortality [18], and measure health-related quality

of life [19]. One study explored the use of Twitter content for dengue forecasting, but focused

on verifying the correlation between number of dengue cases and dengue-related tweets

posted over the same time period [20].

In this study, we investigated the use of publicly available geotagged Twitter data for pre-

dicting the spatio-temporal clustering patterns of dengue incidence. First, we designed, imple-

mented and evaluated an algorithm that harvested and analysed real-time Twitter streams to

estimate proxies of human mobility in a densely populated urban area. Then we weighted the

incidence of dengue in all neighborhoods by the mobility proxies to specific locations and gen-

erated a dynamic Mobility-weighted Incidence (MI) index. Lastly, we demonstrated that the

MI index was highly predictive of the temporal and spatial patterns of dengue spread in Yogya-

karta municipality, Indonesia.

Methods

Data

The study was conducted in Yogyakarta municipality, one of the five districts and the capital

of Yogyakarta Province in Indonesia. Yogyakarta municipality is a medium sized, densely pop-

ulated, and rapidly developing urban area, spread over 32.5 km2 with an average population

density of 14,000 persons/km2. It is located about 538 km away from the capital Jakarta and

lies between 75 to 132 m above sea level in the central southern part of Java island at 07˚

45’57”–07˚50’25” S and 110˚20’41”–110˚24’14” E [21]. Yogyakarta municipality is divided into

45 neighborhoods (Fig 1, number 1 to 45), ranging in surface area between 0.3 and 1.68 km2.

This study used neighborhoods as the geographical unit of observation.

We obtained monthly dengue cases (i.e. dengue fever, dengue haemorrhagic fever, and den-

gue shock syndrome) for each neighborhood (Den) during the period August 2016–June 2018

from the Dengue Surveillance Report of the Yogyakarta Municipality Health Office. We com-

plemented dengue surveillance data with geotagged tweets posted in the administrative bound-

aries of the study area during the same period. To achieve this, we employed the Twitter’s

Application Programming Interface (API) and selected Tweets within Yogyakarta municipal-

ity for analysis. We only extracted the user identification string, timestamp, and longitude and

latitude of the user’s location in the Tweets. We overlaid the geotagged tweets on the adminis-

trative map of the study area and exchanged the geocode to the neighborhood identification

number (ID).

We formulated an algorithm to estimate a dynamic MI index, quantifying the level of expo-

sure to virus in any given study neighborhood due to importation form other neighborhoods.

The MI index was calculated based on Twitter users’ mobility patterns between pairs of neigh-

borhoods. The mobility patterns were computed by estimating the rate with which a Twitter

user in one study neighborhood re-tweeted in another neighborhood within the same month.

Based on this information, we generated a monthly matrix (It) measuring the cumulative num-

ber of mobility events between each pair of neighborhoods at time t, in months. Then, we cre-

ated the monthly mobility network (Ni,j,t) of neighborhoods by multiplying (It) with its

transpose (It
T). We set the diagonal of the 45×45 matrix of the affiliation to zero. Then we stan-

dardized the monthly mobility matrix (Ni,j,t) by dividing it by the total number of mobility

events observed at time t (Nt) for all the neighborhoods. This ensured that, at a fixed time, the

mobility matrix would always sum to 1. We referred to the standardized mobility matrix as,
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Ňt. To capture the total exposure to incoming mobility into each neighborhood, j, we aggre-

gated the standardized mobility from all the 45 neighborhoods over one month and referred to

this as the TWjt. The TW index is thus a time dependent vector of length 45. We further con-

structed a new matrix by multiplying the standardized mobility, Ňijt, by the vector of the num-

ber of dengue cases reported in each neighborhood i (of outgoing mobility), and we referred

to this index as importations and computed it as Iijt = Ňijt × Denit. Lastly, to capture the total

exposure to the dengue virus imported due to human mobility into each neighborhood, j,
from all the other neighborhoods, i, we aggregated the importations, Iijt, from all the 45 neigh-

borhoods over one month and referred to this as the MIjt. The MI index is thus a time depen-

dent vector of length 45.

We then investigated the association between dengue incidence and the Den, TW and MI

variables using a Bayesian spatio-temporal modelling framework assuming a Poisson distribu-

tion of the monthly counts in each neighborhood. In the model, we estimated and adjusted for

the spatial covariance between neighborhoods using an unstructured spatial covariance

matrix. We further adjusted for the influence of population size variability across neighbor-

hoods by offsetting population size. Thus, the regression analysis assessed predictors of the

incidence of dengue. We implemented the models using the INLA R-package [22,23]. In the

regression model, we started out by investigating how much of the variability in the dengue

counts could be explained by the spatial covariance and intercept model only (the null model),

leaving out all predictor variables. Subsequently, we included the MI, TW and Den variables

one lag at a time (crude), and then all lags 1 to 6 months simultaneously, but only one variable

Fig 1. The map (panel a) and the adjacency matrix (panel b) of the 45 study neighborhoods (rows and columns identify areas; squares identify neighborhoods) in

Yogyakarta municipality, Indonesia.

https://doi.org/10.1371/journal.pntd.0007298.g001
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at a time. For variables showing important prediction skill, we also analyzed their combined

predictive ability. The models were fitted with all lags in the same model, but with only one of

the MI, TW and Den variables at a time. The model structure can be described as:

yit = Poisson(λit); λit = Eit ρit
log(ρit) = ηit
ηit = bo+ S βk zi(t-k) + ui+vi + log(pi)
The terms ui and vi are the spatial effects, representing unspecified features of neighbor-

hood i that do and do not display spatial structure [24], respectively. The k indicates the lag in

months and takes values from 1 to 6. The z corresponds to the variables MI, TW and Den. The

coefficient βk represents the regression coefficients for the variable z at lag k. The pi variable

offsets the population size of neighborhood i. The models were evaluated based on the Bayes-

ian Information Criterion (BIC) and the estimate of R-square, as well as on prediction perfor-

mance according to the standardized root mean square error (SRMSE).

Results

The total number of dengue cases during the 23-month study period was 1,203, with the high-

est monthly count of 13 cases reported for neighborhood ID 11 in August 2016. The monthly

incidence of dengue in the study area increased gradually from December to March of next

year and then decreased until the start of the rainy season in October (Fig 2). Overall, the inci-

dence of dengue was decreasing over the study period.

The number of Twitter users and the population size of each study neighborhood are

shown in S1 Fig.

The monthly mobility patterns for the 45 neighborhoods appeared to be relatively consis-

tent over the study period, except that a slight increase in the number of mobility events was

observed over the same period. The mobility patterns varied considerably across different

pairs of neighborhoods (Fig 3). The MI index (Fig 4) for each neighborhood reflected a combi-

nation of the mobility estimates and the disease counts (Fig 2). In general, we found that the

MI index was not only higher for the neighborhoods with relatively higher mobility to other

neighborhoods, but also reflected the decreasing trend in the disease counts over time (Figs 3

and 4).

Table 1 describes the crude and adjusted model estimates of the lag effects of Den, TW and

MI using the Bayesian spatio-temporal regression model. We found that the mobility and the

centrality of a neighborhood proved not to be important for predicting the incidence of den-

gue on its own. This is shown by comparing the model fit of the TW lag variables (crude and

adjusted) to the null model and their observed lack of difference in the R-square, BIC and

SRMSE in Table 1. In contrast, the Den and MI variables provided important information for

predicting the incidence of dengue at lead times 1 to 6 months based on the crude and adjusted

estimates of the model (Table 1). The coefficients from the crude and adjusted models are

graphically presented in Fig 5. Unsurprisingly, the uncertainty and confidence intervals for the

coefficient estimates increased in the lag adjusted models compared to the crude single lag

models. Overall, the coefficients were smaller in the adjusted models. This is because of the

similarity of information carried over in lags of a specific variable, i.e. due to temporal covari-

ance. In the adjusted models, we observed a decreasing pattern in the association to the Den

and MI variables with increasing lags, with the exception that both peaked at lag 3 months.

While most lags associated with the Den variable showed statistically significant associations,

the associations with the MI variable were more uncertain, with the exception of at lag 3

months. However, since the SRMSE was lower for the MI model, it appeared that this variable

still included more vital information for predicting the incidence of dengue in the
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neighborhoods. Furthermore, an inspection of the crude estimates strongly supported this

conclusion, where the MI variable at lag 3 months had clearly the best predictive ability and

almost the same predictive ability as the adjusted models with all lags, in view of the R-

square, BIC and SRMSE values (Table 1). The Den variable at lag 3 months did not show a

similar good performance with significantly lower predictive ability, R-square, BIC and

SRMSE.

The model including both the Den and MI variables at lags 1 to 6 months estimated an R-

square, BIC and SRMSE of 0.271, 1140.8 and 0.778, respectively, and showed considerably

higher predictive ability compared to the adjusted models of the Den and MI variables alone

(Table 1). This supports the fact that these variables contributed different information to the

predictive ability of the model. Looking at the coefficients in this combined model, the esti-

mates were not very different than those obtained from the adjusted single variable model esti-

mates, confirming the exclusive unique contribution of these two variables to the predictive

ability.

Fig 2. Time-series of reported dengue cases (Den) between August 2016 and June 2018 for the 45 study

neighborhoods in Yogyakarta municipality, Indonesia.

https://doi.org/10.1371/journal.pntd.0007298.g002

Fig 3. The TW index capturing the temporal pattern of the aggregated total monthly mobility into each of the 45

study neighborhoods in Yogyakarta municipality, Indonesia, August 2016—June 2018.

https://doi.org/10.1371/journal.pntd.0007298.g003
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Discussion

This study revealed insights into how the intra-urban outbreak risk relates to a combination of

human mobility and the size of local outbreaks, and developed a new early warning variable

indicating the risk of spread. The indicator integrated human mobility proxies derived through

an analysis of Twitter user geolocation data with disease surveillance data, and demonstrated

its ability as a predictor of dengue incidence up to 6 months lead time at the intra-city level.

The proposed MI index captures dynamic network properties in a simplified and condensed

form and can be used in regression models, similar to the model fitted here, to describe com-

plex spatio-temporal interactions between human mobility and disease spread. We found that

the impact of human mobility on disease spread cannot be effectively studied without combin-

ing mobility information with disease incidence data. This is not surprising because mobility

does not necessarily translate into a greater exposure to the circulating virus unless it is com-

bined with disease incidence information—this is exactly what the new MI index captures. We

propose further the development of methods and the testing of the MI index, particularly for

predicting the risk of incidence and spread of dengue with a lead time of 3 months. We also

propose that future research should consider the combined effects of the MI index and the

past cases in the same location (the Den variable), which was found to contribute significantly

to the prediction accuracy of the models. These findings have implications for empirical stud-

ies assessing the incidence risk (such as adjusting for mobility bias in cluster randomized trials)

and for risk assessments at both micro and macro geographical levels, especially in the devel-

opment of early warnings systems using near-real time data [25,26,27].

The demonstrated predictive ability of the MI index alone (20% of the variability in the inci-

dence of dengue in mutually exclusive locations) and in combination with auto-correlative

terms (27% of the variability in the incidence of dengue in mutually exclusive locations) hold

great promise for improving predictions, early warning systems, and timely response. It also

highlights the importance of understanding better the role of population mobility in the spread

of arboviruses at the intra-city scale. The combined use of autoregressive terms and the MI

index along with other factors, such as weather variability, environmental characteristics, and

vector activity, is likely to yield substantially improved predictions. Furthermore, adjusting for

virus exposure using the MI index would be important for studies mapping the spatial and spa-

tiotemporal risk factors for dengue. For instance, human mobility, as shown in this study, is an

Fig 4. The MI index estimating the temporal pattern of the aggregated importations into each of the 45 study

neighborhoods in Yogyakarta, Indonesia, August 2016—June 2018.

https://doi.org/10.1371/journal.pntd.0007298.g004
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Table 1. Model fitting statistics and coefficients (R-sq = R square, BIC = Bayesian Information Criterion, SRMSE = standardized root mean square error, coefficient

mean = log(relative risk), coefficient sd = standard error, 2.5 percentile = lower end of 95% credible interval of coefficient, 97.5 percentile = higher end of 95% credi-

ble interval of coefficient).

Variable R-sq BIC SRMSE fixed effects

coefficient mean coefficient sd 2.5 percentile 97.5 percentile

Null model 0.064 1337.855 0.882 -10.0739 0.0668 -10.2084 -9.9463

Crude lag estimates

Den lag1 0.098 1246.184 0.865 0.2472 0.0196 0.2075 0.2844

Den lag2 0.123 1244.557 0.854 0.2385 0.0194 0.1993 0.2757

Den lag3 0.164 1213.810 0.833 0.2410 0.0178 0.2054 0.2754

Den lag4 0.090 1262.592 0.869 0.1996 0.0191 0.1612 0.2363

Den lag5 0.105 1270.408 0.862 0.1847 0.0191 0.1465 0.2215

Den lag6 0.080 1278.772 0.874 0.1675 0.0186 0.1304 0.2034

TW lag1 0.065 1337.276 0.881 4.2158 2.9655 -1.8731 9.8080

TW lag2 0.065 1337.581 0.881 4.0453 3.0282 -2.1836 9.7437

TW lag3 0.065 1337.596 0.881 4.2636 3.1498 -2.1978 10.2092

TW lag4 0.066 1337.292 0.881 4.7574 3.2264 -1.8396 10.8690

TW lag5 0.066 1336.294 0.881 5.7825 3.2885 -0.9000 12.0587

TW lag6 0.066 1336.181 0.881 6.0791 3.3850 -0.7870 12.5534

MI lag1 0.086 1237.947 0.871 14.7771 1.2940 12.2140 17.3077

MI lag2 0.132 1224.506 0.849 15.1857 1.3731 12.5236 17.9179

MI lag3 0.197 1198.824 0.817 15.6868 1.4773 12.8975 18.7013

MI lag4 0.174 1221.191 0.828 14.4542 1.4724 11.6631 17.4517

MI lag5 0.172 1220.364 0.829 13.8227 1.4964 11.0159 16.8935

MI lag6 0.137 1230.597 0.847 11.1021 1.1871 8.8499 13.5165

Adjusted lag estimates

Den lag1

Den lag2

Den lag3

Den lag4

Den lag5

Den lag6

0.201 1168.257 0.815 0.1080

0.0689

0.1136

0.0544

0.0326

0.0526

0.0288

0.0300

0.0282

0.0266

0.0263

0.0247

0.0503

0.0090

0.0574

0.0015

-0.0193

0.0035

0.1634

0.1267

0.1681

0.1058

0.0839

0.1005

TW lag1

TW lag2

TW lag3

TW lag4

TW lag5

TW lag6

0.068 1340.723 0.880 0.1794

-9.0344

-10.4439

-4.4227

15.4022

15.9111

12.6758

14.7070

15.8923

15.8500

15.9844

14.9473

-24.7466

-38.1347

-41.8313

-35.7277

-16.1796

-13.5140

25.0110

19.6128

20.5637

26.5013

46.5789

45.1656

MI lag1

MI lag2

MI lag3

MI lag4

MI lag5

MI lag6

0.217 1194.667 0.807 5.6002

4.6889

8.4452

6.1895

2.0293

-4.8919

3.7329

3.3112

3.6902

3.8815

4.3635

4.0121

-1.6199

-1.8357

1.2679

-1.6790

-6.9640

-13.1124

13.0294

11.1655

15.7461

13.5752

10.1850

2.6493

Combined variable model

Den lag1

Den lag2

Den lag3

Den lag4

Den lag5

Den lag6

MI lag1

MI lag2

MI lag3

MI lag4

MI lag5

MI lag6

0.271 1140.838 0.778 0.0816

0.0485

0.0964

0.0510

0.0265

0.0445

3.2332

3.8463

7.0018

2.9156

0.5181

-4.5618

0.0302

0.0302

0.0279

0.0273

0.0269

0.0246

3.9101

3.6771

3.9220

4.1978

4.3102

3.9001

0.0213

-0.0118

0.0408

-0.0034

-0.0267

-0.0045

-4.3982

-3.4612

-0.7220

-5.6567

-8.3993

-12.5642

0.1398

0.1068

0.1505

0.1040

0.0788

0.0921

10.9449

10.9795

14.6739

10.8263

8.5290

2.7519

https://doi.org/10.1371/journal.pntd.0007298.t001
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important predictor and a potential confounder of the local incidence of dengue at the spatio-

temporal scales.

This analysis benefited from a novel data source and a novel procedure for tracking and

predicting human mobility from publicly available social media data, providing a low-cost

source of information. Given the high explanatory power of the MI index to describe the vari-

ability in dengue incidence, we believe that social media driven mobility indicators have the

potential to allow researchers to assess the risk of communicable diseases, such as dengue, in

real time by capturing dynamic network properties of importance for timely disease control.

We estimated the user mobility patterns and the affiliation network in a relatively small but

densely populated urban area by utilizing data from the Twitter’s API. The retrieved data from

the API represent only about 1% of the Twitter volume, but previous research suggests that

when geographic boundary boxes are used almost the complete sample of Twitter location

data can be extracted [28,29]. Ideally, it is better to use data from Twitter’s Firehose. The major

drawbacks of Firehose data are its prohibitively high cost and large storage and computational

resource requirements [29], both of which can adversely affect the sustainability of transla-

tional applications of such data for public health preparedness and response.

We derived mobility from a rather short (23-month) time-series data from August 2016 to

June 2018 to infer for the degree of association between the MI index and the observed dengue

cases. Future studies should assess the predictive performance of the MI index further by using

longer prospective validation series and building more complete models of dengue disease

dynamics by including other predictive factors. We further suggest that future studies investi-

gate non-linearities in virus exposure and response relationships and implement a distributed

lag approach. Despite these limitations, we were able to demonstrate a strong association of

the MI index with reported dengue cases. Therefore, we believe that the MI index holds prom-

ise as an alarm variable in disease surveillance and early warning systems, contributing to a

better understanding of spatial patterns of outbreak clusters over time, namely dynamic

hotspots.

A limitation of this study is the assumption that user movements between consecutive

tweets were representative of the overall population mobility, while in fact Twitter users may

represent a selected group of individuals. It is, however, important to note that the use of Twit-

ter and other social media platforms is very common in Indonesia [30], and that the demon-

strated predictive ability of the MI index in this study supports the belief that Twitter data can

capture the important aspects of mobility relevant for the spread of dengue in a densely

Fig 5. The crude and adjusted coefficients for the Den and MI models for lag times 1 to 6.

https://doi.org/10.1371/journal.pntd.0007298.g005
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populated urban area. This goes hand in hand with prior studies validating Twitter as a viable

data source to study human mobility [31,32]. Using mobile phone data with geo-tags would

have been a better alternative, although the downside is that such data are harder to acquire

and use prospectively over time. Yet, human mobility patterns extracted from geotagged

tweets have been reported to have similar overall features with mobile phone records [33].

The analysis employed a novel procedure for tracking and predicting human mobility and

dengue spread at the intra-urban level using publicly available social media data from Twitter.

We demonstrated that dengue cases were well predicted by a dynamic mobility-weighted inci-

dence index at a lead time of 1 to 6 months at the within-city level. The newly developed MI

index captures the micro-level dynamics of human mobility and virus importation in a con-

densed form, making it useful for use in empirical regression models. The results suggest that

human mobility is an important driver of the movements of incidence clusters within a city.

We conclude that this novel early warning indicator has implications for dengue surveillance

and early warning systems and can potentially enhance timely decision-making and coordina-

tion within the public health system.
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