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Abstract: Among the PGPB, the genus Azospirillum—with an emphasis on A. brasilense—is likely
the most studied microorganism for mitigation of plant stress. Here, we report the investigation of
functional mutants HM053, ipdC and FP10 of A. brasilense to understand how the biological functions
of these microorganisms can affect host Zn uptake. HM053 is a Nif + constitutively expressed strain
that hyper-fixes N2 and produces high levels of the plant’s relevant hormone auxin. FP10 is a Nif -

strain deficient in N2-fixation. ipdC is a strain that is deficient in auxin production but fixes N2. Zn
uptake was measured in laboratory-based studies of 3-week-old plants using radioactive 65Zn2+

(t 1
2

244 days). Principal Component Analysis was applied to draw out correlations between microbial

functions and host 65Zn2+ accumulation. Additionally, statistical correlations were made to our prior
data on plant uptake of radioactive 59Fe3+ and 59Fe2+. These correlations showed that low microbial
auxin-producing capacity resulted in the greatest accumulation of 65Zn. Just the opposite effect was
noted for 59Fe where high microbial auxin-producing capacity resulted in the greatest accumulation
of that tracer.

Keywords: plant-growth-promoting bacteria; zinc nutrient uptake; maize; 65Zn and 59Fe radiotracers

1. Introduction

Zinc has been implicated with a broad spectrum of growth characteristics in higher
plants. In apple, visible symptoms of Zn deficiency occur in dicotyledons where a signifi-
cant decrease in leaf size is seen [1]. This trait, coined “little leaf” syndrome, is observed as a
common growth characteristic in many fruit tree species subjected to Zn deficiency [2]. Zinc
also plays important roles in many biochemical functions within plants. It is an essential
component for over 300 enzymes [3]. It also plays a role in DNA and RNA metabolism, cell
division, and protein synthesis [4]. A lack of sufficient Zn during plant growth can decrease
yield and crop quality because of the disruption in these normal metabolic functions [5–7].

Today, approximately 30% of global crop production is lost due to essential nutrient
deficiencies caused by climatic extremes that result in excessive soil weathering [8] and
lack of diverse agricultural practices that deplete nutrient levels in soil. Additionally, foods
produced from Zn-deficient crops can result in human Zn deficiency, which can impact
human well-being by reducing immune function and increasing the risk of growth stunting
in children or adverse pregnancy outcomes in women [5,9].

Plant-growth-promoting bacteria (PGPB), which can help their host weather difficult
conditions and potentially increase nutritional value of crops, are finding increased use in
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agriculture. These organisms can activate physiological and biochemical responses within
their host for mutual benefit to build natural tolerances to environmental stresses and
thereby reduce losses in the field [10–16]. Several have been identified as endophytes of
grass species, including Azoarcus spp. in Kallar grass (Leptochloa fusca (L.) Kunth) and rice
(Oryza sativa) [17–19], Herbaspirillum seropedicae in sugarcane (Saccharum officinarum) [20]
and sorghum (Sorghum bicolor) [19], and Gluconacetobacter diazotrophicus in sugarcane [21].
Others have been identified as epiphytes, including Azospirillum brasilense and lipoferum,
which have been commercialized as crop inoculants for maize and wheat [22–25]. These
strains are gaining increasing acceptance in agriculture as PGPB inoculants. Unlike rhi-
zobia that form an intracellular symbiosis with their legume hosts, PGPB do not induce
the formation of observable plant structures (nodules). They are also not usually major
components of the soil microflora [20,26]. These N2-fixing bacteria infect at the emergence
of lateral roots and in the zone of elongation and differentiation above the root tip [14].
Typically, very high numbers of PGPB in roots have been reported (i.e., ≤108 gram−1 root
dry weight) with no observable disease symptoms [17].

The present work reports on the use of radioactive 65Zn (t 1
2

244 days) to examine
root assimilation and whole-plant transport of the metal under different conditions of
growth. A review of the literature reveals a limited number of papers that have used Zn
radioisotopes to examine plant uptake of the metal [26–29]. Measuring Zn uptake through
its radioactive decay can be highly quantitative. However, its general utility in plant biology
is limited by the fact that many laboratories are not equipped with the appropriate nuclear
instrumentation needed to make such measurements. Here, plants were inoculated with
three different functional mutant strains of Azospirillum brasilense PGPB, including HM053,
a Nif + constitutively expressed mutant of the nif gene coding for nitrogen fixation enzymes
that fixes excess N2 and excretes large amounts of ammonium into the rhizosphere; ipdC,
a mutant strain disrupted in the ipdC gene thus impaired in biosynthesizing the plant’s
relevant hormone auxin, indole-3-acetic acid [16]; and FP10, a Nif – mutant that is deficient
in fixing N2, and also compared plant performance for assimilating 65Zn relative to non-
inoculated controls. These studies were conducted to determine whether these microbial
functions had any influence on their host’s performance. Furthermore, the longer-term
effects of microbial functions on host seed filling were examined in outdoor potted plant
studies to determine whether harvested kernels had a higher Zn content.

2. Materials and Methods
2.1. Bacteria Growth

Functional mutants were grown in liquid NFbHP-lactate medium following published
procedures [13]. The concentration of zinc in the growth media was 0.8 µM ZnSO4 ·7 H2O.
Cultures were washed with sterile water and diluted to 1 mL containing between 106 to
108 colony-forming units per milliliter (CFU mL−1). Bacteria content was measured by sam-
ple turbidity, where OD600 = 1.0 (optical density at 600 nm, corresponding to 108 cells mL−1).
Root inoculation involved adding the inoculum to a Petri dish of 10–20 maize seedlings
and rocking in a shaking incubator for two hours at 30 ◦C. Seedlings were then placed into
germination pouches for five days before transplanting to hydroponics. Liquid inoculants
of each bacterial mutant were made by taking the liquid bacteria cultures described above
and centrifuging the cultures down to a pellet. The supernatant above the pellet was
removed, and sterile water washes of the pellet were completed for 3 rinses. Upon rinsing
the nutrient from the pellet, it was diluted to 1 mL total volume in sterile water and then
administered to the plants, both indoors and out.

2.2. Laboratory Plant Growth:

Maize kernels from Elk Mound Seed Co. (Hybrid 8100, Elk Mound, WI, USA) were
dark-germinated at room temperature for two days on sterilized paper towels wetted with
sterile water in a Petri dish. Seeds were inoculated with bacteria culture as appropriate
and transplanted to plastic seed germination pouches (PhytoAB, Inc., San Jose, CA, USA)
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wetted with sterile Hoagland’s basal salt solution for approximately one week. They were
then transferred to individual 600 mL hydroponics cells that were continuously aerated and
filled with Hoagland’s nutrient (pH 6.0). The nutrient was exchanged on a five-day cycle.
Growth conditions consisted of 12-hour photoperiods, 500 µmol m−2 s−1 light intensity,
and temperatures of 25 ◦C/20 ◦C (light/dark) with humidity at 70–80%.

2.3. Outdoor Plant Growth

For outdoor, non-radioactive studies, 3 maize kernels from Elk Mound Seed Co.
(Hybrid 8100) were sown into each of 2.7-gallon pots filled with ProMix. Plants were
placed on elevated tables outside and pots were rotated every week to ensure uniformity
of growth conditions. After germination, any excess seedlings were removed from each
pot leaving a single plant. A capful of fertilizer (~1.2 g) containing nitrogen, phosphate,
and potash (14-14-14, Osmocote™ Smart-Release Plant Food Flower & Vegetable™, The
Scotts Company, Marysville, OH, USA) was added to the assigned pots at the time of
planting. Fertilizer was reapplied to pots 30 and 60 days after germination (DAG). Study
regimes included the following: (i) non-inoculated control plants; (ii) plants inoculated with
A. brasilense HM053 bacterium; (iii) plants inoculated with A. brasilense ipdC bacterium; and
(iv) plants inoculated with A. brasilense FP10 bacterium. Plants were administered liquid
inoculants at 21, 42, and 63 DAG using re-washed bacteria cultures containing between 106

to 108 colony-forming units per milliliter, as described above. These cultures were further
diluted to 10 mL volumes in sterile water and administered to the pots. Treatments were
randomized across the planting platforms. At the end of the growing season, cobs were
harvested, and seeds analyzed by ion chromatography for Zn content.

2.4. 65Zinc Studies
65Zn was purchased from PerkinElmer Life Sciences (Billerica, MA USA). One hour

before administration of radiotracer, plants were removed from their hydroponics cells and
suspended in 600 mL beakers consisting of 100 mL of deionized water (Figure 1). Plants
were maintained at the same daytime light and temperature conditions as that used to
maintain their growth. An aqueous solution of 65Zn radiotracer at 0.74 MBq was injected
into the beaker of water in which the roots were immersed. Based on the radiotracer’s
specific activity, we estimated that 45 µg of non-radioactive Zn was introduced to the
100 mL of deionized water during a tracer study (equivalent to 0.7 µM), which closely
matched the 0.8 µM Zn levels introduced via the Hoagland’s nutrient solution during plant
growth. Hence, the mass of Zn introduced in the tracer studies did not perturb the plant’s
normal exposure to this micronutrient. A radiation detector (Eckler & Ziegler, Inc., Berlin,
Germany 1-inch Na-PMT, photomultiplier tube gamma radiation detector) affixed to the
plant 8 cm above the base of the stem provided dynamic feedback on 65Zn transport from
roots to shoots. Data were acquired at a 1 Hz sampling rate using 0-1 V analog input into
an acquisition box (SRI, Inc, Torrance, CA, USA). After 3 h of acquisition, roots were cut
from the shoots, thoroughly washed in water, blotted dry, and weighed. Shoots were also
weighed. Both root and shoot tissues were then sequentially placed in a 3 inch NaI-PMT
gamma well-type detector for quantifying the amount of 65Zn radioactivity. 65Zn uptake
and allocation percentages were calculated as the amount of radiotracer counted in the
plant roots and shoots divided by total radioactivity administered as a percentage and the
amount of radioactivity measured solely in the shoots divided by the total radioactivity in
the roots and shoots as a percentage, respectively.
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After exposure, phosphor plates were then read using the Typhoon 9000 imager (Ty-
phoonTM FLA 9000, GE Healthcare, Piscataway, NJ, USA). Images were only used quali-
tatively for determining spatial patterning of 65Zn tracer in roots and shoots; hence no 
attempt was made to normalize image data. Comparative whole-plant radiographic im-
ages of 59Fe3+ and 59Fe2+ were also acquired from our prior work [16], but because of the 
faster decay rate of this radionuclide (t½ 44.5 day), we only needed to expose these tissues 
for 16 hours.  
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Zinc content was quantified from corn kernels using ion chromatography coupled 
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stored in brown glass vialsin a refrigerator (2–8 °C). Zn standards were prepared in 0.1M 
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Figure 1. Experimental setup used for plant 65Zn uptake studies. During exposure to radiotracer,
plants were maintained at a constant 500 µmol m−2 s−1 light intensity and 21 ◦C temperature.

2.5. Plant Radiography

After 65Zn administration, plants were harvested and roots were blotted dry and laid
out on an absorbent pad for imaging. Shoots were also laid out on a separate absorbent
pad for imaging. Radiographic images of different tissue areas (roots and shoots) were
acquired by exposing phosphor plate films. Phosphor plates of roots were exposed for
36 h while plates of shoots were exposed for 120 h to acquire a sufficient signal. After
exposure, phosphor plates were then read using the Typhoon 9000 imager (TyphoonTM

FLA 9000, GE Healthcare, Piscataway, NJ, USA). Images were only used qualitatively for
determining spatial patterning of 65Zn tracer in roots and shoots; hence no attempt was
made to normalize image data. Comparative whole-plant radiographic images of 59Fe3+

and 59Fe2+ were also acquired from our prior work [16], but because of the faster decay
rate of this radionuclide (t 1

2
44.5 day), we only needed to expose these tissues for 16 h.

2.6. Ion Chromatography Analysis of Corn Kernel Zn Content

Zinc content was quantified from corn kernels using ion chromatography coupled
with UV absorption detection following the collection and drying of the kernels in an oven
for 3 weeks at 65 ◦C. Seeds were pulverized between plastic sheets using a wooden mallet
and dissolved in 1 mL of 1M HCl. Samples were subjected to ultrasonication for 5 minutes
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at 100% amplitude (Branson Bransonic 32; Sigma-Aldrich Corp. St. Louis, MO, USA) then
centrifuged for 15 minutes at 3000 rpm. The supernatant was removed for sampling and
stored in brown glass vialsin a refrigerator (2–8 ◦C). Zn standards were prepared in 0.1 M
HCl using zinc chloride (ZnCl2, 1 mg mL−1).

The analytical system consisted of a Thermo Scientific Dionex AXP Metal-Free HPLC
with a Rheodyne metal-free injector and PEEK tubing 1/20 cm inner diameter. The ion
chromatography column was a Thermo Fisher Scientific™ Dionex™ (Waltham, MA, USA)
IonPac CS5A 4 i.d. × 250 mm analytical column outfitted with a CG5A 4 i.d. × 40 mm guard
column designed to separate a broad range of metal complexes by cation and anion chro-
matography. The mobile phase consisted of 7 mM pyridine-2,6-dicarboxylic acid, 66 mM
potassium sulfate, and 74 mM formic acid pH 4.2 run at a flow rate of 1.2 mL min−1. A post
column reagent comprising 0.5 mM 4-(2-pyridylazo) resorcinol (Dionex Corp., Sunnyvale,
CA, USA) in MetPac PAR post column diluent (1.0 M 2-dimethylaminoethanol/0.50 M
ammonium hydroxide/0.30 M sodium bicarbonate pH 10.4) at a flow rate of approximately
0.6 mL min−1 was used for detection by a Knauer Smartline 2500 UV detector operated at
530 nm. Sterile water (HyPure™ WFI Quality Water, HyClone Laboratories, Logan, UT,
USA) was used in solvent preparation. All biological samples were analyzed in triplicate.

2.7. Statistical Analysis

Data were subjected to the Shapiro–Wilk Normality Test to identify outliers, so all
data groups reflected normal distributions. Data were analyzed using the Student’s t-test
for pair-wise comparisons made between non-inoculated controls and bacteria treatment.
Statistical significance was set at p < 0.05.

2.8. Principal Component Analysis of 65Zn and 59Fe Data

The 65Zn uptake and allocation data from the present study and 59Fe data from our
prior work [16] were analyzed by Principal Component Analysis (PCA) using XLSTAT
software version 2020.3 (Addinsoft Inc., New York, NY 10001, USA).

3. Results and Discussion

Results in Figure 2 of the different rates for 65Zn transport as a function of A. brasilense
inoculation showed that ipdC > HM053 > FP10. FP10 was most like non-inoculated control
plants. Tissue distribution of Zn using ‘cut and count’ techniques revealed a similar
dissimilarity between ipdC bacteria and the other inoculants (Figure 3). Systematic trends
defining uptake and in planta translocation of 65Zn become apparent in the PCA biplot
(Figure 4A). The information included in the biplot was represented by two principal
components (PC), with PC1 representing 71.89% of the information embedded in the data
and PC2 representing 28.11%. The PCs selected to represent the data are classified as
feature vectors (F1 and F2), as shown on the biplot. The axes are in terms of the eigenvalues,
with larger values indicating a greater variance and thus a greater representation of the
information within the data. The active variables, shown as dotted lines, represent the
initial variables of root assimilation of 65Zn and shoot allocation. The length of the active
variable vectors indicates how well the variables are tied to the feature vectors. Since
the active variable vectors are equivalent in length in Figure 4A and are found equally
between F1 and F2, it can be interpreted that both active variables are equally represented
by both F1 and F2. As displayed, each of the microbial treatments clustered together,
indicating behavior within a treatment type that was distinct from other treatments. It was
shown that FP10 and non-inoculated maize were similar in overall 65Zn uptake and shoot
allocation behavior. HM053 inoculated maize exhibited a slight elevation in allocation
patterns relative to control and FP10. ipdC was most unique in its uptake and allocation
patterns than other treatments in the X- and Y-axis directions.
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What distinguishes ipdC from the other microbial inoculants examined in this study
is its deficiency in producing auxin (indole-3-acetic acid), an important plant hormone.
Our past studies showed that the HM053 mutant exhibited the highest level of auxin
biosynthesis, being 2 times that of FP10 and 13 times that of ipdC [16]. We know that auxin
biosynthesis in plants and Zn levels are strongly correlated [30–32]. With tryptophan being
the principal intermediate in auxin biosynthesis, withholding Zn was shown to lower
plant tryptophan levels [30] and auxin levels [31], while exogenous treatment with Zn
increased tryptophan levels [32]. We suspect that the mechanism for promoting plant
65Zn uptake in the present study has to do with the auxin-producing capacity of the
microorganism. We note that while ipdC lacks the ability to biosynthesize auxin, it still
processes the molecular machinery to produce indole—a key precursor to tryptophan
biosynthesis [16]. In fact, maize root indole emissions with ipdC inoculation were nearly
2 times that of HM053 inoculated plants, and 1.5 times that of FP10 inoculated plants [16].
We suspect this behavior may be due to bacteria-root indole trafficking, which could
elevate the endogenous pool of plant tryptophan, causing an elevation in Zn uptake. To the
best of our knowledge, no one has examined whether tryptophan treatments will elevate
endogenous levels of plant Zn.

Similar statistical treatments were applied to our previously published 59Fe data [16],
both for ferrous (Fe2+) and ferric (Fe3+) forms of the tracer to yield Figure 4B,C, respectively.
As displayed here, each of the microbial treatments again clustered together, indicating
the behavior within a treatment type that was distinct from the other microbial treatments.
Unlike our 65Zn2+ data shown in Figure 4A, we observed different microbial influences
on host iron assimilation, with HM053 exhibiting the greatest influence for root uptake
and shoot allocation of both 59Fe3+ and 59Fe2+ over the other bacteria strains. In our
earlier work, we ascertained through whole-plant radiographic imaging that the oxidation
state of the iron radiotracer was unaltered by the microorganism’s functions. Here, we
noted that each oxidation state of the radiometal exhibited a different spatial patterning
across the shoot tissues with 59Fe3+ accumulating in leaf tips, while 59Fe2+ accumulating
uniformly throughout the leaves. Figure 5 shows an example of this distribution from
HM053 inoculated maize plants since HM053 caused the largest increase in 59Fe3+ and
59Fe2+ allocations to shoots relative to the other microbial inoculants. For comparison, we
also show radiographic images in the same figure from maize 65Zn2+ studies as a function
of ipdC, FP10, and HM053 microbial inoculants. In all cases here, 65Zn spatial patterning in
leaves was similar to that of 59Fe2+. However, root tissues exhibited significantly different
radiotracer distributions, where elongation zones showed higher levels of 65Zn than both
oxidation states of the 59Fe radiotracer. Additionally, we noted a common trend where a
high accumulation of 65Zn was observed in the lower stem region, likely in the coleoptile.
Past studies have shown that the coleoptile in maize seedlings exhibits a strong growth
dependency on auxin [33]. Taken together, our results show that maize assimilation
of divalent metals such as Zn2+ or Fe2+ has significant dependency on microbial auxin
biosynthesis. Once assimilated, these metals also exhibit very different spatial patterning
during transport aboveground.

Finally, we examined the longer-term influence of these mutant strains of A. brasilense
on kernel zinc content. Results in Figure 6 showed that HM053 did not alter seed zinc
levels relative to non-inoculated controls. However, both ipdC and FP10 bacteria showed
significantly less zinc content. Hence, while ipdC promotes zinc accumulation in host
vegetative tissues, that action does not translate to the seed filling process. We suspect that
heavy 65Zn accumulation in the lower stem may minimize the metal’s availability during
seed filling.
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Figure 6. Kernel Zn content was measured using ion chromatography. Data reflect means for
N = 12 replicates (±SE). Statistical significance p < 0.05 was designated by ‘a’ in the compari-
son of treatment type to untreated control, and ‘b’ in a comparison of ipdC or FP10 treatments to
HM053 treatment.

4. Conclusions

The present work showed evidence that certain biological traits of root-associating
microorganisms can have beneficial effects on the host plant in promoting Zn uptake. These
mechanisms of action appeared to correlate with the auxin producing capacity of the mi-
croorganism in that the auxin deficient mutant ipdC had the greatest influence in promoting
host 65Zn uptake. Mechanisms of action appear not to be universally translated across all
metals, since 65Zn and 59Fe exhibited very different dependencies on microbial functions.
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While the microbial actions promoting host Zn uptake could benefit over the long
term in improved crop yield, our results suggest that there is little or no effect on kernel Zn
content improving its nutritional value.
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