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Abstract: Cholangiocarcinoma (CCA) and pancreatic adenocarcinoma (PDAC) may lead to the
development of extrahepatic obstructive cholestasis. However, biliary stenoses can also be caused
by benign conditions, and the identification of their etiology still remains a clinical challenge.
We performed metabolomic and proteomic analyses of bile from patients with benign (n = 36)
and malignant conditions, CCA (n = 36) or PDAC (n = 57), undergoing endoscopic retrograde
cholangiopancreatography with the aim of characterizing bile composition in biliopancreatic disease
and identifying biomarkers for the differential diagnosis of biliary strictures. Comprehensive analyses
of lipids, bile acids and small molecules were carried out using mass spectrometry (MS) and nuclear
magnetic resonance spectroscopy (!H-NMR) in all patients. MS analysis of bile proteome was
performed in five patients per group. We implemented artificial intelligence tools for the selection
of biomarkers and algorithms with predictive capacity. Our machine-learning pipeline included
the generation of synthetic data with properties of real data, the selection of potential biomarkers
(metabolites or proteins) and their analysis with neural networks (NN). Selected biomarkers were
then validated with real data. We identified panels of lipids (n = 10) and proteins (n = 5) that when
analyzed with NN algorithms discriminated between patients with and without cancer with an
unprecedented accuracy.

Keywords: human bile; cholangiocarcinoma; pancreatic adenocarcinoma; lipidomics; proteomics;
machine-learning

1. Introduction

Human bile is a complex fluid that is produced and secreted by the liver, transported through
the bile canaliculi and bile ducts and stored in the gallbladder [1]. In the gallbladder, bile is
concentrated approximately by a factor of up to fifteen, and upon feeding it is driven to flow through
the common bile duct to be ultimately released into the duodenum [2]. Major roles of bile include
the emulsification of dietary lipids and liposoluble vitamins for their digestion and absorption,
and the excretion of endobiotics (e.g., bilirubin and cholesterol) as well as xenobiotics (e.g., toxins
and drugs). Bile composition reflects its physiological roles, and besides inorganic electrolytes its
major components comprise bile acids, phospholipids, cholesterol, bilirubin and a small proportion
of proteins [2,3]. The chemical nature and concentrations of the different biliary constituents are
influenced by the activity of the cell types that participate in its synthesis, storage and secretion, including
hepatocytes, cholangiocytes and gallbladder epithelial cells. In healthy conditions, the concentrations
of biliary components are tightly controlled. Therefore, alterations in bile composition may reveal the
presence of different hepatobiliary and pancreatic disorders as well as the impairment of enterohepatic
circulation [3,4]. Moreover, abnormal bile composition can also contribute to disease progression along
the biliary and digestive tracts [3,5-7].

The composition of human bile has been studied over decades. Recently, the application of “omic”
technologies, mainly based on nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry
(MS), has provided a more detailed molecular picture of this fluid [3,4]. A deeper characterization of
bile composition may allow not only a better understanding of hepatobiliary physiology, but also the
identification of biomarkers to discriminate benign and malignant disease conditions [4,8,9]. Bile is rich
in lipids, with bile acids (BAs) accounting for about 72% of the total lipid pool, whereas phospholipids
and cholesterol contribute approximately 24% and 4%, respectively [2,10]. BAs, key molecules for
dietary fat handling, are mostly conjugated with the aminoacids glycine and taurine. Alterations in BA
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pool size and composition have been reported in hepatopancreatobiliary diseases [10-13]. Among
biliary phospholipids, the most abundant species (>95%) are phosphatidylcholines (PCs), a broad
family of diacylphospholipids with different fatty acid side chains [14,15], while sphyngomyelins
(SMs) comprise about 1-3% of total phospholipids [16,17]. PCs, as well as SMs, are important for the
emulsification of hydrophobic and potentially cytotoxic BAs, and for the stabilization of mixed micelles
involved in excretory functions and fat digestion [1,18]. Changes in total bile PC concentrations also
occur in hepatobiliary diseases [11,13,15,19].

Proteins are natural constituents of the biliary fluid, representing about 5% of bile’s dry weight [2].
Proteins may reach the bile from the bloodstream through different cellular pathways, and can also be
produced by biliary epithelial cells and hepatocytes [3]. These proteins are thought to play different
physiological functions, including immunological defense, biliary protection, lipid transport and
enzymatic activities [3]. Changes in the bile proteome also occur in pathological situations, and in some
cases such as the formation of gallstones these alterations may contribute to disease progression [20].
The bile proteome may be as well an interesting source of potential biomarkers, since proteins can be
released into the bile from diseased cells within the biliary tract or from surrounding organs such as
the pancreas [21-24].

Regarding pancreatobiliary diseases, the accurate etiological diagnosis of biliary stenoses remains
a clinical challenge. Strictures of the common bile duct may have a diverse origin [25], and the
discrimination between benign and malignant stenoses in early stages has not been satisfactorily
achieved yet [26]. Benign conditions include primary sclerosing cholangitis, chronic pancreatitis,
choledocolithiasis, bile duct injury and infections, among others. Malignant stenoses are mostly
attributable to neoplasias arising from the biliary tree, such as cholangiocarcinoma (CCA) or gallbladder
carcinoma, or from the pancreas as in the case of pancreatic ductal adenocarcinoma (PDAC) [26-29].
CCAs and PDAC:s are very aggressive neoplasms, and therefore their early diagnosis is essential for the
application of potentially curative surgical procedures and/or pharmacological therapies [30,31]. Several
diagnostic tools are available to discriminate benign from malignant biliary strictures [29]. These include
a range of non-invasive imaging techniques plus endoscopic retrograde cholangiopancreatography
(ERCP). ERCP is a commonly applied procedure that allows relief of biliary obstruction in patients with
stenosis, while providing high-resolution fluoroscopic images and tissue sampling by biliary brushings
and endoluminal biopsies [29]. However, several studies indicate that the sensitivity for malignancy
of ERCP, even when combined with brush cytology and fluorescent in situ hybridization, plus the
analysis of circulating tumor biomarkes such as carbohydrate antigen 19-9 (CA 19-9), is still far from
optimal [29,32-34]. Therefore, the identification of new markers that can help in the discrimination
between benign and malignant biliary stenoses is very much needed. Interestingly, the ERCP procedure
also allows for the collection of biliary fluid in a minimally invasive manner. Taking advantage of
this possibility, over the past years a number of studies have performed metabolomic and proteomic
analyses of bile obtained from patients with biliary obstruction. Significant alterations in biliary
lipid composition, including concentrations of PCs and conjugated BAs [11-13,15,19,35,36] or the
presence of certain PC oxidized species, could discriminate malignant from benign biliary strictures [37].
Proteomic studies have significantly contributed to the definition of the normal bile composition,
adding hundreds of new proteins to the list [22,38-44]. These proteomic studies have implemented
multiple fractionation steps and purification methods of varying complexity prior to MS analyses,
and most of them include the evaluation of bile from patients with malignant stenoses due to CCA or
PDAC. A number of potential biomarkers that could discriminate malignant disease were identified
in these works. If validated in subsequent analyses, the evaluation of a well-selected panel of these
biomarkers may increase the diagnostic accuracy of biliary stenosis. On the other hand, bile proteomics
can also contribute to a better understanding of the mechanisms of the tumorigenic process [45]. Taken
together, these findings reveal the complexity of the bile proteome and attest to the interest of its
characterization from both physiological, pathological and diagnostic points of view.
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In the present study we have performed parallel metabolomic and proteomic analyses of human
bile from patients with benign and malignant (CCA and PDAC) biliary stenoses. For the metabolomic
studies, mostly focused on the lipidome of bile, we have implemented MS analysis coupled with
ultra-high-performance liquid chromatography (UHPLC-MS). Our platform has a high sensitivity and
an unprecedented large coverage of different classes of metabolites with a wide dynamic range [46,47],
allowing us to produce a most complete lipidomic profile of human bile. This approach was
complemented with a detailed high-performance liquid chromatography (HPLC)-MS/MS profile of
biliary BAs and a 'H-NMR-based analysis of more hydrophilic metabolites. Our proteomic approach
implied a streamlined preparation of the bile samples which leverages the targeted analysis of potential
bile protein biomarkers. Data analysis and interpretation in omics-based clinical studies can be
challenging. In addition to the intrinsic biological complexity, lack of big cohorts due to limitations
in sample gathering or high analytical costs, and intragroup variability of measurements further
complicate these studies. In this context, recent works have shown that implementation of artificial
intelligence approaches can help to unravel disease-specific markers and pathological mechanisms even
in data-limited regimes [48-52]. Therefore, using a novel approach, we have combined metabolomic and
proteomic measurements with machine intelligence modeling and synthetic data generation [51,53,54]
to identify molecular patterns that can discriminate malignant from benign biliary strictures.

2. Results

2.1. UHPLC-MS Lipidomic Analysis of Bile

Bile samples obtained from patients described in Table 1 were processed to extract metabolites
with similar lipophilic properties and analyzed in a UHPLC-MS-based platform. We were able
to detect 162 metabolic features in these samples belonging to a wide range of lipid species,
including fatty acid amines (FAA), monoacylglycerols (MG), diacylglycerols (DG), triacylglycerols (TG),
cholesterol (Cho), cholesteryl esters (ChoE), phosphatidyletanolamines (PE), phosphatidylinositols
(PI), phosphatidylcholines (PC), phosphatidylcholine plasmanyles and plasmenyles (MEMAPC),
lysophosphatidylcholines (LPC), sphingomyelins (SM) and ceramides (Cer). To our knowledge this is
the most comprehensive and detailed analysis of the human bile lipidome reported so far. Previous
work has found substantial differences in the molecular composition of hepatic and biliary PCs,
suggesting the existence of a PC pool destined to biliary secretion [16]. As a large proportion of
serum circulating lipids are of hepatic origin, first we decided to compare the bile lipidomic profile
of control patients (benign biliary stenoses) with that from our recent analysis of human serum
lipidome carried out with the same analytical platform [47]. Because of their high abundance in
bile and/or their potential functional significance, we compared the relative contents of the different
molecular subspecies of PCs, SMs and Cer detected. As shown in Figure 1a, the six most abundant
PC species in bile, which together amounted to over 70% of all PC species, were also the six most
abundant species in serum. However, there was more diversity in the next ten most abundant PC
subspecies, and their relative proportions were more evenly distributed in bile than in serum. Little
is known about the molecular species of SMs and Cer present in human bile. Similar to what was
observed for PCs, we found that almost 50% of biliary SMs was accounted for by three highly enriched
species, SM(d18:1/16:0), SM(d18:1/24:1) and SM(d18:2/24:0), both in serum and in bile, and albeit in
low proportions more SM species were detected in serum (Figure 1b). We detected twelve different
molecular species of Cer in bile, with predominance of specific variants such as Cer(d18:1/24:1),
Cer(d18:2/24:0), Cer(d18:1/16:0) and Cer(18:1/22:0), metabolically related to the most abundant biliary
SMs. We found differences in the relative abundance of some Cer species between bile and serum.
For instance, Cer(d18:1/24:0) and Cer(d18:1/23:0) were approximately 7- and 4-fold more abundant
in serum, respectively, while Cer(18:1/16:0), the second most-abundant ceramide in bile, was 4-fold
less abundant in serum (Figure 1c). Next, we compared the levels of lipid metabolites in bile samples
from patients with benign strictures with those in patients with CCA and PDAC-related stenoses
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(Figure 2). In agreement with previous findings [11,13,15,19,35], we observed an overall reduction in
PCs concentrations in bile from CCA and PDAC patients compared to controls. LPCs showed a trend
towards reduced levels in samples from CCA, which reached statistical significance in those from
PDAC patients. However, the levels of PC plasmanyles and plasmenyles, as well as those of FAAs,
were consistently reduced in bile samples from CCA and PDAC patients. Total MGs and TGs were
present at lower concentrations in bile form CCA and PDAC patients, while there were no statistical
differences in the levels of DGs, which tended to be higher in PDAC patients. As observed for FAAs,
total concentrations of SMs and Cer were also reduced in bile from patients with malignant stenoses.
We did not observe significant changes in the concentrations of Cho, ChoEs or PEs between control and
cancer patients [55]. A heatmap representing all the individual lipid species identified in this analysis,
showing their relative levels (fold-change) in bile samples from control vs. CCA and PDAC patients is
shown in Table S1.

Table 1. Demographic and clinical characteristics of the study cohort.

. Benign Biliary _ _ "
Variables Conditions (1 = 36) CCA (n =36) PDAC (n = 57) p Value
. ap=0.05,
Age, median (years) + SD 66 +19 74+ 12 71+ 12 b =009
Gender (Male/Female) 19/17 17/19 25/32 p=0.718
Location of biliary stenosis
(Distal/Hilar/Intrahepatic) 10/0/1 18/15/3 57/0/0
Operated stenosis ** 1(9.1%) 14 (38.9%) 16 (28%)
Stage IV (AJCC Pronostic o o
Group **) NA 8 (22.2%) 15 (26.3%)
2 p=0.067,
Body Mass Index (kg/m?) 27.28 + 4.56 25.26 + 4.65 25.86 + 4.96 b= 0169
a —
. . p =0.00019,
Bilirrubin (mg/dL) 3.18 £3.10 9.05+7.78 10.79 + 7.11 b = 0.00000037
a —
Albumin (g/dL) 3.69 + 0.47 3.29 +0.57 3.46 + 047 bp p_—odogzzg !
a —
p =0.0078,
GGT (U/L) 609 + 517 1013 + 678 1116 + 724 b p = 000083
INR 1.13 £0.17 1.14 £ 0.22 1.13 £ 0.15 "p=08,
. x . . X .. . X . b p — 0.98
a
p =0.0018,
Total cholesterol (mg/dL) 171 + 48 225 + 82 233 + 107 b p = 0.0026
. . 2p=0.187,
Triglycerides (mg/dL) 138 + 81 169 + 105 178 + 81 b P =0.031
a
. p =0.042,
PNI 44.80 + 6.74 4141 +6.81 41.82 £5.95 b= 0033
. ap=0.578,
High CA19-9 (>37 U/L) ***** 10 (27.8%) 24 (66.7%) 46 (80.7%) b = 0.065

* a = CCA vs. Benign biliary conditions, b = PDAC vs. Benign biliary conditions. ** 31 (29.8%) patients with biliary
stenosis underwent surgery. *** AJCC: American Joint Committee on Cancer staging system; NA: Not applicable;
**#** PNI: Prognostic Nutritional Index. ***** Serum CA19-9 was measured in 110 (85.3%) patients.
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Figure 1. Relative proportions of the different species of phosphatidylcholines (PCs) (a) sphingomyelins
(SMs) (b) and ceramides (Cer) (¢) found in human bile and serum analyzed by UHPLC-MS (MS analysis
coupled with ultra-high-performance liquid chromatography).
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Figure 2. UHPLC-MS-based lipidomic analysis of bile samples from patients with benign stenoses
(controls) and patients with CCA (cholangiocarcinoma) or PDAC (pancreatic adenocarcinoma). Lipid
species shown include phosphatidylcholines (PC), lysophosphatidylcholines (LPC), PC-plasmenyles,
PC-plasmanyles, fatty acid amines (FAA), monoglycerides (MG), diglycerides (DG), triglycerides (TG),
sphingomyelins (SMs) and ceramides (Cer).

2.2. HPLC-MS/MS Analysis of BAs in Bile

We also performed a quantitative analysis of BAs in bile samples from our cohort of patients.
In agreement with a previous report [15], we found a significant decrease in the total concentrations
of BAs in samples from patients with malignant stenoses (Figure 3). Levels of glycine-conjugated
BAs, the most abundant species, were reduced in CCA and PDAC samples, while taurine-conjugated
BA levels did not change significantly (Figure 3). The ratio of glycine- vs. taurine-conjugated BAs
in normal bile is around 3 [56]. Accordingly, in our control bile we found a 2.7 ratio, while in bile
samples from CCA and PDAC patients this ratio markedly fell (Figure 3). Previous studies have
reported that the concentrations of biliary constituents such as BAs are reduced in bile from patients
with biliary obstruction, in an inverse correlation with cholestasis [11,36]. Therefore, we evaluated
whether there was a correlation between the total levels of BAs and serum bilirubin or GGT levels
in our cohort of patients. Interestingly, a significant negative correlation was found in patients with
benign cholangiopathies which was not observed in those with malignant diseases (Figure S1).
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Figure 3. HPLC-MS/MS-based analysis of BAs (bile acids) in bile samples from patients with benign
stenoses (controls), CCA or PDAC. Levels of total BAs, glyco-conjugated and tauro-conjugated BAs,
along with the ratio between glyco-conjugated and tauro-conjugated species (G/T) are shown.

2.3. H-NMR Analysis of Bile

Previous studies evidenced the complex ' H-NMR spectrum of human bile, which is due in part to
the aggregation of its lipophilic constituents and the overlap of spectral peaks [8]. This complicates
the detailed and quantitative evaluation of the bile metabolome unless samples are processed and
fractionated prior to their analysis [8]. Our MS-based approaches described above provided a broad and
accurate coverage of biliary lipids and BAs. Therefore, bile samples from our cohort were processed
to extract more aqueous-soluble metabolites prior to 'H-NMR analysis as described in Methods.
Spectra were baseline corrected, referenced to the methyl group signal of TSP at 0.00 ppm, aligned and
binned into 0.01 ppm wide rectangular buckets over the spectral region § 8.757-0.261. The residual
water (6 4.78-4.59 ppm) and contrast reagent (Omnipaque) residual (6 1.98-1.92, 2.43-2.39, 3.71-3.39,
4.18-3.76) signal regions were excluded from further analyses to avoid interference. Nevertheless,
the analysis of Omnipaque concentrations in bile samples helped us to rule out a potential confounding
effect due to sample dilution. This could alter the concentrations of other metabolites or proteins in
bile. In this regard, we did not find any correlation between the concentrations of Omnipaque and BAs,
suggesting the absence of a systematic dilution effect of bile samples by contrast reagent [55]. Spectra
were then normalized to the total area of the corresponding spectra and by probabilistic quotient
normalization (PQN). In our ' H-NMR analyses we were able to detect the most hydrophilic conjugated
BAs species. We confirmed the reduced levels of glycine-conjugated BAs in bile from CCA patients,
and a similar trend in PDAC patients, while taurine-conjugated BAs levels consistently remained
unchanged (Figure 4a). In agreement with our MS analysis, the signal corresponding to the PC fatty
acyl chain (PC fatty acyl CH3) was reduced in bile from CCA patients, and showed a downward trend
in bile from PDAC patients (Figure 4a). Interestingly, using this "H-NMR analysis we could detect
other water-soluble metabolites whose changes might be related to the pathologic process. These
included reduced levels of acetate, phosphocholine, valine and creatine plus creatinine in either CCA or
PDAC, but mostly in the latter (Figure 4b). Conversely, formate levels were increased in bile from CCA
and PDAC patients, and glucose concentrations were significantly elevated in patients with pancreatic
neoplasia (Figure 4b). In view of the high glucose concentrations in bile from PDAC patients, we
examined the levels of glycated hemoglobin (HbAlc) in serum, an index of mean glycemia used for the
monitoring of long-term glycemic status [57]. Levels of HbAlc found were: 5.93 + 1.2%, 5.75 + 1.3%
and 6.56 + 1.4% in controls, CCA and PDAC patients, respectively, and these values were statistically
different when data from CCA and PDAC patients were compared (p = 0.018).
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Figure 4. Conjugated BAs and PC (a) and water-soluble metabolites (b) identified in the 'H-NMR-based
analysis of bile samples from patients with benign stenoses (controls), CCA or PDAC.

2.4. Application of Machine-Learning Methods to Metabolomic Data to Differentiate between Benign and
Malignant Biliary Stenoses

Machine learning is a branch of artificial intelligence that when applied in biomedicine can be
used to reduce large data sets to small sets of biomarkers with high performance. Machine-learning
techniques implement pattern recognition and identify algorithms that can differentiate and predict
clinical conditions using complex and non-linearly related data [58]. In view of the complexity of the
metabolomic data, in which the number of input variables normally exceeds the number of subjects
analyzed [58], we decided to implement machine-learning methods to extract the most useful predictive
information. As described in the flowchart presented in Figure 5, first we performed a more conventional
multivariate analysis. The unsupervised principal component analysis (PCA) of lipidomic data was not
able to discriminate between controls and patients with malignant stenoses [55]. Next, we performed a
supervised discriminant analysis of principal components (DAPC), an alternative multivariate method
that focus on between-group variability while neglecting within-group variation [59]. This DAPC
analysis allows the selection of a set of features, lipid metabolites in this case, which contribute most to
the separation between groups (each of them explaining at least 2% of the variability between groups
of samples). Their identity, contribution to inter-group variability in the DAPC analysis, Area Under
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the Curve (AUC) ROC (Receiver Operating Characteristics) curve values, sensitivity and specificity are
summarized in Table S2. However, the predictive values of these metabolites, either individually or in
combination, was still suboptimal (Table S2). It is becoming evident that to build accurate predictive
models applicable in real life large cohorts of patients, then associated data divided into training and
validation sets, along with algorithms to identify inner patterns in those data, are necessary. To this
end, machine-learning approaches can be very useful. However, for machine-learning tools to work
properly, large datasets need to be available. To overcome this situation the generation of synthetic
data is gaining interest [48]. The synthetic data has to fulfill two main requisites, on one hand it has to
mimic the observations that could be collected from further experiments on each variable, including the
“experimental noise”. On the other hand, the data structure has to be maintained. Biological data is full
of correlated variables and it is important to maintain that relationship [51]. Once the synthetic data
was generated as described in Materials and Methods, we applied three different reduction approaches
for feature selection: DAPC, random forest (RF) and AUC analyses. Next, as indicated in Figure 5, the
three lists of features selected, including the best three to ten variable combinations, were used to train
three different machine-learning algorithms: a Bayesian variant of general linear model (BGLM) [60],
C5.0 [61] and neural networks (NN) [62]. In the case of RF, it was only challenged with its own list,
with the purpose of comparing it as a gold standard algorithm for this study [63]. Once trained, real
data was used to validate the predictive capacity of the algorithms. With this approach we were able
to select the best feature combination and the algorithm with higher predictive capacity for that set of
features. We found that optimal feature selection and predictive performance was obtained with the
combination of DAPC (top ten features) and NN analysis. The robustness of this model was evaluated
with five statistical tests as described in Materials and Methods. These tests assessed the accuracy in
feature selection (influenced by the number of samples), the impact of the inclusion or exclusion of
each selected feature in the analysis, the existence of the inner pattern of the data identified by the
algorithm, the analysis of the contribution of each individual variable to the performance of the model,
and whether the model was or not overfitted and prone to detect artificial patterns. With this approach
we identified a combination of lipid species (features) that when analyzed with the NN algorithm
(structure of this neural network is shown in Figure S2a) permitted us to differentiate between patients
with benign stenoses and CCA with an AUC of 0.984, 94.1% sensitivity and 92.3% specificity. These
species, all described in the bile lipidomic analysis provided in Table S1, encompassed a series of PCs,
including those containing arachidonic acid (20:4), certain Cers and total TGs levels (Figure 6a). With
a similar approach, we identified a combination of lipid species that when analyzed with the NN
algorithm (structure of the neural network is shown in Figure S2b) could differentiate control patients
from those with PDAC with an AUC of 0.98, 88% sensitivity and 100% specificity. These lipids, also
described in Table S1, included PCs, two specific Cer, DG and TG species, plus the total levels of Cers,
cholesteryl esters, the total levels of DGs and a phosphatidylinositol (Figure 6b). As reported above,
we also performed a metabolomic analysis using an 'H-NMR platform and a detailed evaluation of
the BAs profile. Therefore, we tested whether the inclusion of these data sets in our machine-learning
pipeline could improve the performance of the model. However, the incorporation of this information
in the analysis did not provide any advantage and neither did the inclusion of serum CA 19-9 levels [55].
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Figure 6. Lipid species present in bile that better predict the presence of malignant stenoses associated
with CCA (a) or PDAC (b) according to machine-learning analyses. Values of AUC are indicated.

2.5. Proteomic Analysis of Bile

Next, we performed two independent LC-MS based proteomic analyses of selected bile samples.
Two sets of samples were used, one obtained from control patients with benign cholangiopathy
(n =5) and CCA patients (n = 5), and another set from a second group of control patients with benign
cholangiopathy (n = 5) and from patients with PDAC (1 = 5). In the first experiment we identified a
total of 2042 proteins, most of them of intracellular origin: nucleus, cytoplasm and plasma membrane
(Figure 7a). Of these proteins, 387 were found upregulated and 243 were downregulated in samples from
CCA patients compared to controls (Figure 7b and Table S3). Ingenuity pathway analysis (IPA) of the
differentially represented proteins in bile from patients with benign conditions and from CCA patients
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allowed their preferential classification in certain biological processes (Figure 7c). In agreement with
previous proteomic studies [3,9,24,43,64], the canonical pathways enriched in our IPA analysis identified
categories such as inflammation (acute phase response and complement), metabolic regulation by
nuclear receptors of BAs and sterols, glucose metabolism, tissue architecture (cell-cell interactions),
oxidative stress and cell signaling. The identity of many of these proteins, both upregulated and
downregulated (Table S3), is consistent with previously published observations [9,21,43,64—-66]. When
we analyzed bile samples from patients with benign cholangiopathy and PDAC, we identified a
total of 1115 proteins. The cellular distribution was similar to that observed in the previous analysis,
although the proportion of proteins of cytoplasmic origin was reduced while that of proteins belonging
to the extracellular space was increased compared to bile samples from CCA patients (Figure 8a).
Among these proteins, 410 were upregulated in bile samples from PDAC patients, while 123 were
downregulated (Figure 8b, Table S4). IPA analysis of the differentially expressed proteins identified
a series of enriched canonical pathways that overlapped to a great extent with those found in the
analysis of bile samples from benign conditions and CCA (Figure 8c). A significant number of the
proteins identified in our study (Table S54) were consistent with previous reports that analyzed the bile
proteome from patients with PDAC-related stenoses [3,21,42,67,68].
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Figure 7. Proteomic analysis of bile from patients with benign stenoses and patients with CCA.
(a) Pie chart showing the classification of proteins according to their cellular localization. (b) Volcano
plot (—log10 [p-value] and log?2 [fold-change]) of the proteins found in bile from patients with CCA
compared with patients with benign stenoses. (c) Ingenuity pathway analysis (IPA) of the differentially
represented proteins between control and CCA bile samples identifying the top enriched categories of
canonical pathways.
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Figure 8. Proteomic analysis of bile from patients with benign stenoses and patients with PDAC.
(a) Pie chart showing the classification of proteins according to their cellular localization. (b) Volcano
plot (—log10 [p-value] and log?2 [fold-change]) of the proteins found in bile from patients with PDAC
compared with patients with benign stenoses. (c) Ingenuity pathway analysis (IPA) of the differentially
represented proteins between control and PDAC bile samples identifying the top enriched categories
of canonical pathways.

2.6. Application of Machine-Learning Methods to Bile Proteomic Data to Differentiate between Benign and
Malignant Stenoses

For the analysis of the proteomic data and to identify proteins that could discriminate malignant
stenoses we followed the same approach depicted in Figure 5. As found in the lipidomic study,
unsupervised PCA analysis did not discriminate between controls and patients with CCA-related
stenoses (Figure S3a). Next, we performed a supervised DAPC analysis that allowed the selection of a set
of features, proteins, which contributed most to the separation between groups (each of them explaining
at least 2% of the variability between groups of samples). Their identity, up or downregulation,
magnitude of change between control and CCA samples and contribution to inter-group variability
according to the DAPC analysis are summarized in Figure S3b. An equivalent analysis was performed
with the proteomic data obtained from a different set of bile samples from control and patients with
PDAC-related malignant stenoses. Unsupervised PCA analysis was not able to discriminate between
groups (Figure S3c). As for the CCA samples, the application of DAPC analysis selected a set of
proteins that contributed most to the separation between groups. Their identity, variations in control
vs. PDAC bile samples and contribution to intergroup variability are presented in Figure S3d.

The great majority of the proteins selected in the DAPC analysis have been previously detected
in human bile [22,38], and many of them are also known to be altered in hepatobiliopancreatic
malignancies. For instance, alpha-2-macroglobulin (A2M) and alpha-4-actinin (ACTN4), both selected
among the upregulated proteins in our analysis of CCA bile, are known to be increased in bile [43] and
tissues [69] from CCA patients, respectively. Phosphoglycerate kinase 1 (PGK1), an essential enzyme
in aerobic glycolysis elevated in tumors and serum from cancer patients [70], has not been previously
found in bile. However, sucrase-isomaltase (SI), an intestinal mucosa x-glucosidase [71] was previously
detected in human bile [21] but not related to cancer. Among the downregulated proteins we detected
carboxypeptidase M (CPM), 5’'-nucleotidase (NT5E), myeloperoxidase (MPO), lactotransferrin (LTF)
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and desmoplakin (DSP), all of them previously found in human bile [22,38] with the exception of LTF.
Interestingly, in the proteomic analysis of bile from patients with PDAC the DAPC analysis identified
a different set of discriminant proteins. Some of them, such as albumin (ALB) and apolipoprotein
B-100 (APOB), have also been previously reported as more abundant in bile from PDAC patients [43].
Mucin 5B (MUC5B), a little-characterized secretory type of mucin previously found in human bile and
overexpressed in PDAC tissues [22,72], was also selected. Interestingly, two other proteins identified in
this analysis were the PC transporter ABCB4 (MCP3) and the angiotensin converting enzyme 2 (ACE2),
both known to be upregulated in PDAC tissues [73,74]. Finally, among the proteins selected by the
DAPC analysis that were less abundant in bile from these patients were pancreatic alpha-amylase
(AMY2A), previously found in bile [38], ectonucleotidase pyrophosphatase/phosphodiesterase 7
(ENPP?7), also known as alkaline sphingomyelinase (alk-SMAse), which is less abundant in bile from
patients with pancreatobiliary malignancies [75], and protocadherin fat 4 (FAT4), a presumed tumor
suppressor gene frequently mutated and silenced in solid tumors [76].

Altogether, the DAPC analysis identified potential candidate proteins to discriminate between
patients with benign and malignant pathologies. Nevertheless, and as stated before, to build robust
predictive models larger cohorts of patients together with algorithms that identify inner data patterns
and interrelationships are necessary. Therefore, we implemented the same machine-learning approach
used for the lipidomic analysis (Figure 5). After synthetic data was generated we applied on it three
different reduction approaches for feature selection: DAPC, RF and AUC analysis. Next, and as
indicated in Figure 5, the three lists of features selected, including the best three to ten variable
combinations, were used to train three different machine-learning algorithms: BGLM, C5.0 and NN.
We identified a combination of five proteins (features) that when analyzed with the NN algorithm
(structure of the neural network is shown in Figure S4a) and validated with the real data set performed
best. It permitted us to differentiate between patients with benign cholangiopathy and CCA with an
AUC of 1, 100% sensitivity and 100% specificity (Figure 9a). Similarly, five proteins were identified
that when analyzed with the NN algorithm (structure of the neural network is shown in Figure S4b)
allowed the discrimination between control and PDAC patients with an AUC of 1, 100% sensitivity
and 100% specificity (Figure 9b). As observed before for the lipidomic study, the features identified by
the DAPC analysis of the real data also overlapped to some extent with those selected by the DAPC
analysis of the synthetic data.
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Figure 9. Identity of the proteins present in bile that better predict the presence of CCA (a) or PDAC
(b) malignant stenoses. Values of AUC are indicated.

3. Discussion

In our lipidomic analysis were able to identify more than 45 molecular species of PC in human
bile. In agreement with previous studies, the most abundant PC species had a 16:0 moiety in the sn-1
position and an unsaturated acyl chain (18:1, 18:2, 20:4) in the sn-2 position, and these species were
followed by those with a sn-1 18:0 moiety [15,16,77]. The relative composition of PC species found
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in normal human serum, as we previously described using this same analytical platform [47], was
similar. Our findings confirm previous studies indicating the selection of the least hydrophobic types
of lecithins from the hepatic pool for biliary secretion [16,77]. Regarding SMs, we identified up to
18 species in bile, with an enrichment in d18:1/16:0 SM, the least hydrophobic molecular species, as
previously reported for rat bile [17]. As observed for PCs, the most abundant SM species in bile were
also found among the most abundant in serum. Observations in experimental and in vitro models
indicate that the presence of d18:1/16:0 SM in bile may contribute to canalicular bile formation [17,78].
Our findings suggest that the relatively high abundance of d18:1/16:0 SM may also contribute to bile
formation in humans. There is little information available on the presence and function of Cer in bile.
Cer are biosynthetically related to both SMs and PCs, and are widely recognized as potent active
lipids controlling many aspects of cell biology, from survival and proliferation to the regulation of
metabolism [79,80]. We identified 12 different species of Cer. At variance with the relative conservation
of PCs and SMs species between bile and serum, the relative abundance of Cer types was more
diverse. Interestingly, the most abundant Cers in bile (almost 50% of total Cer) were Cer (d18:1/24:1),
Cer(d18:2/24:0) and Cer(d18:1/16:0), which can be produced by the action of sphingomyelinases, such as
alk-SMase present in human bile [81,82], on SM(d18:1/24:1), SM(d18:2/24:0) and SM(d18:1/16:0), which
in turn are the most abundant SMs in bile. Our findings on the levels of the most abundant SMs and
Cers in bile and serum are generally in agreement with a recent study that analyzed these metabolites
in human serum [83]. Very long chain Cer species, such as Cer(d18:1/24:1) and Cer(d18:2/24:0), have
been reported to display cytoprotective properties [84]. Their relative enrichment in bile could have a
protective role towards the biliary epithelium.

Next, we compared the relative contents of the major types of lipids present in bile samples from
patients with benign stenoses and from patients with CCA or PDAC. In agreement with previous reports,
we observed a reduction in the total levels of PC in patients with malignant stenoses [13,35,85,86].
This was accompanied by a reduction in total MGs and TGs levels. The reason for reduced PC
concentrations in bile from patients with malignant strictures is not well understood. Malnutrition,
often present in patients with biliopancreatic tumors, could account for the reduced contents of PC
and glycerolipids, and indeed the PNI, an index of nutritional status [87], was slightly lower in CCA
and PDAC patients. However, cholesterol levels were not different among groups, and DG contents
tended to be higher in PDAC patients. Impaired secretion of PC into bile has been proposed as
a potential explanation [13,35]. PC secretion is dependent on the hepatocyte membrane flippase
multidrug resistance protein 3 (MDR3, ABCB4 gene) [88]. Decreased expression of ABCB4 has been
found associated with liver inflammation [89]. The inflammatory environment that accompanies
hepatobiliary tumorigenesis [90] could hypothetically result in downregulation of ABCB4 expression,
as occurs for other hepatocellular membrane transporters [91], however this contention needs to
be directly addressed. Interestingly, the presence of high SM levels in the canalicular membrane of
hepatocytes seems to be essential for optimal MDR3 function and PC efflux [92]. We found that the
levels of SMs, along with those of Cer, were also lower in bile from patients with neoplastic disease. In
view of the positive influence of SM on PC secretion, reduced SM availability in parenchymal cells
might also contribute to impaired PC release into bile. Alternatively, increased hydrolysis of PC by
phospholipases has been proposed as a possible mechanism [36], which would be consistent with
the enhanced metabolism of choline phospholipids in cancer tissues [93]. However, the reduction
in SM contents might not be attributable to its enhanced degradation, as the levels of alk-SMase are
markedly downregulated in bile from patients with pancreatobiliary malignancies [82], as we also
found. Levels of ether glycerophospholipids, both plasmanyles and plasmenyles, were also lower in
bile from patients with CCA and PDAC. Plasmenyles, also known as plasmalogens, were particularly
reduced. Plasmalogens are secreted from the liver in lipoproteins. Due to their reactivity with free
radicals, and in a process that entails their degradation, these lipid species play an antioxidant role in
plasma [94]. The presence of plasmalogens in bile suggests that they could also have an antioxidant
role in this fluid. On the other hand, the lower levels of plasmalogens in bile from patients with CCA
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and PDAC might be due in part to the pro-oxidative and inflammatory conditions associated with
neoplasia [3,37].

Our study included the analysis of BA levels in bile. We found a significant reduction in the total
concentrations of BAs in patients with malignant stenoses. In healthy adults the majority of BAs in bile
are conjugated with glycine and taurine in a proportion close to 3:1 [56]. In agreement with previous
reports [15,56], our data were consistent with this concept. Furthermore, we observed a reduction in
the total concentrations of BAs in patients with malignant disease, which was mainly due to a decrease
in glycine-conjugated species. Contrary to our findings, other works have reported an increase in
glycine-conjugated BAs levels in bile from CCA patients [13,86]. The reason for this discrepancy is
not known. It could be related to the fact that the patients included in those studies might be at
more advanced stages of the disease than those in our cohort. Reduction in bile constituents has been
associated with biliary obstruction, an increase in the back pressure on the liver during cholestasis and
enhanced regurgitation into serum of bile constituents, such as BAs and bilirubin [11,36]. However,
in our CCA and PDAC patients, we did not find any inverse correlation between levels of BAs in bile
and bilirubin in serum. The reduction in biliary BAs in these patients could be related to mechanisms
more specifically associated with the neoplastic process. For instance, it is known that the expression
of the canalicular export pumps MRP2 and the bile salt export pump (BSEP) is markedly reduced by
inflammatory cytokines, including tumor necrosis factor o« (TNFo) [91], which are abundant in the
malignant biliary microenvironment [3,4].

The 'H-NMR analyses partially confirmed our previous LC-MS-based findings on the reduced
levels of glycine-conjugated BAs and PC in bile from patients with malignant strictures. Furthermore,
we identified a series of hydrophilic small molecules such as acetate, phosphocholine, valine and
creatine/creatinine, with concentrations reduced mostly in bile from PDAC patients. Some of these
differences may indeed be attributed to the presence of an ongoing malignant process. For instance,
tumor cells have been shown to capture acetate as a carbon source to sustain growth [95]. In addition,
the turnover and usage of choline metabolites like phosphocholine, branched chain amino acids such
as valine, and energy-storing molecules like creatine are known to be markedly altered in neoplastic
tissues [96,97]. Similarly, the rise in formate levels detected both in CCA and PDAC patients can be
linked to the hyperactivity of a myriad of metabolic pathways related to one carbon metabolism which
are essential for cell growth, such as polyamine and purine synthesis, in which formate is produced
in excess and can be released from cells [98]. Taken together, these changes in bile metabolome
may represent the microenvironmental footprint of the profound rewiring of metabolism that drives
tumorigenesis [99,100]. Most interestingly, and only in PDAC patients, we also detected a significant
increase in the levels of glucose. This finding was somehow puzzling, as tumor cells avidly uptake
glucose from the extracellular milieu [100]. However, previous reports described an association
between disturbances in glucose metabolism in the absence of a history of diabetes and the presence of
PDAC [101,102]. Consistently, we found that the serum levels of HbAlc, a marker of glycemic status,
were selectively elevated in PDAC patients. These findings suggest that elevated glucose levels in bile
may be associated with the presence of pancreatic malignancies.

The second aim of this work was to select molecular features (metabolites and proteins) identified
in bile that could be applied for the discrimination between patients with benign and malignant
strictures. However, on one hand, clinical samples tend to show high complexity and variability in
their molecular composition even among same groups of patients, and on the other hand, “omics”
studies are still costly to perform, a factor that limits the availability of data. It is likely that these
circumstances have hampered the identification of robust biomarkers with diagnostic value for many
diseases, including the discrimination between benign and malignant biliary strictures addressed in
our study. To circumvent these issues, first we implemented a relatively new multivariate method
known as DAPC, until now mostly used in the field of genetics, that can detect hidden and non-trivial
biological patterns and define groups or clusters of individuals [59]. This analysis identifies the features
(metabolites or proteins in our case) that mainly contribute to the separation (variability) between
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groups with great accuracy. In spite of this, given the high variability commonly found in clinical
samples, the direct quantitation of these features may not be sufficient for their precise adscription
to a specific group, i.e., healthy or diseased. However, the complex and nonlinear relationships that
exist between features may give rise to additional patterns that may be used to generate models with
predictive capacity when applied to new sets of data. These patterns can be detected by implementing
machine-learning approaches [48]. However, the majority of machine-learning methods require data
sets that are orders of magnitude larger than those gathered in “omics” studies with limited number of
patients. This is why we decided to augment our data set with computer-generated and artificially
noised data to train different deep learning algorithms [48,51]. Using this approach with bile lipidomic
data we selected two sets of features, lipid species, that when analyzed with NN allowed a very good
separation between control patients and those with CCA or PDAC-related strictures. Interestingly, the
lipids selected by our DAPC and NN algorithm as the most sensitive biomarkers were not among the
most abundant species present in bile, or those that experienced the most dramatic changes. A similar
observation has been recently made in a machine-learning-driven lipidomic study analyzing serum
sphingolipids to define markers of cardiovascular disease. The best performing biomarker panel
identified mainly comprised the less abundant SMs and Cers present in serum [52].

Our proteomic analyses also implemented an equivalent synthetic data generation approach,
DAPC-based selection of features and machine-learning pipeline. We have identified a reduced
panel of proteins that upon NN analysis provided accurate separation between patients with benign
and malignant stenoses. As mentioned before, the identity and nature of the alterations (up or
downregulation) of some of these proteins could have biological significance regarding the evolution
of the malignant processes. For instance, LE, which is downregulated in bile from CCA patients, has
been described as a cytoprotective factor for cholangiocytes, and therefore its reduction may contribute
to cell injury, death and inflammation [103]. Conversely, ACTN4, which was upregulated in bile from
CCA patients, has been reported as a crucial factor for the progression of a variety of solid tumors [104].
Similarly, MUC5B, more abundant in bile from PDAC patients, has been described to contribute to the
survival and migration of pancreatic cancer cells [72]. However, FAT4, which is reduced in bile from
these patients, is a cadherin-related protein identified as a tumor suppressor in gastric cancer [105].
Altogether, these findings may provide new mechanistic insights into pancreatobiliary carcinogenesis.
Nevertheless, similar to our findings in our lipidomic study, it is worth noticing that the proteins
selected here as biomarkers were not among those proteins that underwent major changes in their
relative abundance between controls and patients with malignant disease. These observations further
attest to the potential of machine-learning tools for biological data mining and the selection of clinically
informative patterns.

4. Materials and Methods

4.1. Patient Population and Samples Collection

A cohort of 129 patients prescribed to undergo ERCP with a diagnosis of bile duct stenosis
(n = 104) or choledocholithiasis (n = 25) was prospectively accrued for the study from January 2017 to
December 2019 at the Navarra University Hospital Complex. All patients were older than 18 years
and provided written informed consent for the examination of their samples and the use of their
clinical data. Patients with clinical or analytical data of cholangitis at the time of ERCP were excluded.
The study protocol was approved by the Ethics Committee of the Navarra University Hospital Complex
(protocol # 2016/91).

The tumoral origin of the biliary stenosis was obtained after a pathological diagnosis (1 = 76)
or, failing that, after a clinical diagnosis (n = 17), which was established in the presence of imaging
tests of a mass that strictures the bile duct without the presence of acute cholangiopathy, together
with a clinical or radiological progression after 12 months of follow-up or death related to neoplastic
disease, as described in other related studies [33]. A total of 11 patients with biliary stenosis presented
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a resolution or stability of the same after more than 12 months of clinical and radiological follow-up.
The cause of these biliary stenoses was related to benign cholangiopathy (1 = 9) or chronic pancreatitis
(n = 2). The demographic and clinical characteristics of the patients are summarized in Table 1.
Patients were fasted overnight and ERCPs were conducted in a specific room by highly experienced
endoscopists. During standard ERCP procedure, after cannulation of the bile duct, and in most cases
before contrast injection (Omnipaque, iohexol), a bile sample of 2 to 6 mL from each patient was
aspirated through the sphincterotome. In cases of biliary stenosis, the sample was taken from the bile
duct proximal to biliary stenosis and in cases of choledocholithiasis, the sample was taken when the
tip of sphincterotome was in the lower third of the common bile duct, which was confirmed under
fluoroscopy. After collection bile samples were maintained at 4 °C, centrifuged for 10 min (4 °C) at
3500 g and stored in aliquots at —80 °C in our biobank facility. All the process was performed in less
than 2 h. Serum samples from all patients were also obtained at the time of ERCP and stored at —80 °C.

4.2. Lipidomic Analyses

4.2.1. Lipid Extraction and Uhplc-Ms Analysis

Bile samples were mixed with sodium chloride (50 mM) and chloroform/methanol (2:1) in
1.5 mL microtubes at room temperature. The extraction solvent was spiked with metabolites not
detected in unspiked human bile samples [SM(d18:1/6:0), PE(17:0/17:0), PC(19:0/19:0), TG(13:0/13:0/13:0),
Cer(d18:1/17:0) and ChoE(12:0)]. After brief vortex mixing, the samples were incubated at —20 °C
for 1 h. After centrifugation at 16,000 g for 15 min, the organic phase was collected and dried under
vacuum. Dried extracts were then reconstituted in acetonitrile / isopropanol (1:1), centrifuged (18,000 g
for 5 min) for analysis.

Extracts were analyzed by ultra-high-performance liquid chromatography (UHPLC)-time of flight
(ToF)-mass spectrometry (MS). Chromatographic and spectrometric conditions were as previously
described [46,47]. This analysis provided coverage over glycerolipids, cholesterol esters, sphingolipids
and glycerophospholipids.

4.2.2. Lipidomics Data Analysis

Data were pre-processed using the TargetLynx application manager for MassLynx 4.1 software
(Waters Corp., Milford, CT, USA). Metabolites were identified prior to the analysis. Peak detection,
noise reduction and data normalization were performed as previously described [106].

4.3. Analysis of BAs

BA concentrations in bile were measured by the 3x-hydroxysteroid dehydrogenase method.
Bile acids were extracted and analyzed by high performance liquid chromatography-tandem mass
spectrometry (HPLC-MS/MS) using a 6420 Triple Quad LC/MS (Agilent Technologies, Santa Clara, CA,
USA) as we previously reported [107,108].

4.4. H-NMR Analysis

4.4.1. Sample Preparation

Frozen bile samples were placed on ice and allowed to thaw for 5 min. Then, 600 uL of
chloroform/methanol (2:1, v/v) at 4 °C was added. Samples were homogenized with a vortex and
incubated on ice for 10 min. Then, samples were centrifuged at 10,000 g for 30 min at 4 °C to allow phase
separation. The aqueous phase was transferred to a different tube and lyophilized overnight to remove
water and methanol. Samples were stored at —80 °C until NMR sample preparation and measurement.

At the time of 'H-NMR analysis, samples were placed on ice and allowed to thaw for 5 min.
600 puL of deuterated water containing 0.5 mM trimethylsilylpropionic acid-d4 sodium salt (TSP), as
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internal standard, were added to the samples. The samples were vortexed and then centrifuged at
10,000 g for 5 min and 550 pL of the supernatant was transferred into a 5 mm NMR tube for analysis.

4.4.2. H-NMR Experiments and Metabolite Quantification

NMR measurements were acquired using an NMR Bruker AVANCE-TM 600 MHz Spectrometer
with a 5 mm BBI probe, the acquisition temperature was set at 37 °C. A one-dimensional (1D) NOESY
pulse sequence [109] was collected for each sample with 256 scans and 65 K data points over a spectral
width of 20 ppm. A 4-s relaxation delay was included between free induction decays (FIDs). Finally,
all spectra were automatically phased, baseline corrected, and referenced to the methyl group signal of
TSP at 0.00 ppm using TopSpin 3.5 (Bruker Biospin, Rheinstetten, Germany).

For metabolite quantification, after acquisition, NMR signals were integrated and quantified using
NMRProcFlow v.1.2.28 [110]. NMRProcFlow is an open source software for data processing prior to
multivariate statistical analysis, including, among other tools, solvent signal suppression, internal
calibration, phase, baseline and misalignment corrections, bucketing and normalization. Briefly, spectra
were binned into 0.01 ppm wide rectangular buckets. The residual water and Omnipaque signal regions
were excluded from further analyses to avoid interferences. Spectra were then aligned, normalized to
the total area of the corresponding spectra and by probabilistic quotient normalization (PQN) [111].
Metabolites of interest were assigned using Bruker NMR Metabolic Profiling Database BBIOREFCODE
2.0.0 database (Bruker Biospin), in combination with other existing public databases [112,113]. All
detectable NMR signals were integrated for further analysis.

4.5. Proteomic Analyses

4.5.1. Sample Preparation

Protein digestion in the S-Trap™ filter (Protifi, Huntington, NY, USA) was performed following
the manufacturer’s procedure with slight modifications. Briefly, 30 uL of bile was first mixed with 5%
SDS and 5 mM TCEP (final concentrations), reduced at 37 °C for 60 min, followed by addition of 1 uL
of 200 mM cysteine-blocking reagent MMTS (SCIEX) for 10 min at room temperature. Afterwards,
12% phosphoric acid and then seven volumes of binding buffer (90% methanol; 100 mM TEAB) were
added to the sample (final phosphoric acid concentration: 1.2%). After mixing, the protein solution
was loaded to an S-Trap™ filter in two consecutive steps, separated by a 2 min centrifugation at 3000 g.
Then the filter was washed 3 times with 150 uL of binding buffer. Finally, 1.5 ug of MS-grade trypsin
was added to a 100 mM TEAB solution and spun through the S-Trap prior to digestion. Flow-through
was then reloaded to the top of the S-Trap™ column and allowed to digest o/n at 37 °C. To avoid
liquid leakage from the S-Trap™ column, a customized yellow tip with 9 Empore 3M C18 disks
(Sigma-Aldrich, St. Louis, MO, USA) was placed at the bottom tip of the S-Trap column during
digestion. To elute peptides, two step-wise buffers were applied (1) 40 uL of 25 mM TEAB and 2) 40 uL
of 80% acetonitrile and 0.2% formic acid in H,O), separated by a 2 min centrifugation at 3000 g in each
case. Eluted peptides were pooled and vacuum centrifuged to dryness.

4.5.2. LC-MS Analysis

Digested samples were cleaned-up/desalted using SEP-PAK C18 cartridges (Waters, Milford, MA,
USA). After desalting, peptide concentration was carried out by Qubit™ Fluorometric Quantitation
(Thermo Fisher Scientific, Waltham, MA, USA). A 1 ug aliquot of each digested sample was subjected to
1D-nano LC-ESI-MS/MS analysis using a nano liquid chromatography system (Eksigent Technologies
nanoLC Ultra 1D plus, SCIEX, Foster City, CA, USA) coupled to high speed Triple TOF 5600 mass
spectrometer (SCIEX, Foster City, CA, USA) with a Nanospray III source. The analytical column used
was a silica-based reversed phase Acquity UPLC® M-Class Peptide BEH C18 Column, 75 pm X 150 mm,
1.7 um particle size and 130 A pore size (Waters). The trap column was a C18 Acclaim PepMap™
100 (Thermo Scientific), 100 pm X 2 cm, 5 pm particle diameter, 100 A pore size, switched on-line
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with the analytical column. The loading pump delivered a solution of 0.1% formic acid in water at
2 pL/min. The nano-pump provided a flow-rate of 250 nL/min and was operated under gradient elution
conditions. Peptides were separated using a 250 min gradient ranging from 2% to 90% mobile phase B
(mobile phase A: 2% acetonitrile, 0.1% formic acid; mobile phase B: 100% acetonitrile, 0.1% formic
acid). Injection volume was 5 pL.

Data acquisition was performed with a TripleTOF 5600 System (SCIEX, Foster City, CA, USA).
Data were acquired using an ion-spray voltage floating (ISVF) 2300 V, curtain gas (CUR) 35, interface
heater temperature (IHT) 150, ion source gas 1 (GS1) 25, declustering potential (DP) 100 V. All data
were acquired using information-dependent acquisition (IDA) mode with Analyst TF 1.7 software
(SCIEX). For IDA parameters, 0.25 s MS survey scan in the mass range of 350-1250 Da were followed
by 35 MS/MS scans of 100 ms in the mass range of 100-1800 (total cycle time: 4 s). Switching criteria
were set to ions greater than mass to charge ratio (m/z) 350 and smaller than m/z 1250 with charge state
of 2-5 and an abundance threshold of more than 90 counts (cps). Former target ions were excluded for
15 s. IDA rolling collision energy (CE) parameters script was used for automatically controlling the CE.

4.5.3. Data Analysis and Quantification

The mass spectrometry data obtained were processed using PeakView® 2.2 Software (SCIEX
Foster City, CA, USA) and exported as mgf files. Proteomic data analyses were performed by using 4
search engines (Mascot Server v.2.6.1, OMSSA, X!Tandem and Myrimatch) and a target/decoy database
built from sequences in the Homo sapiens proteome at Uniprot Knowledgebase. All search engines were
configured to match potential peptide candidates to recalibrated spectra with mass error tolerance of
10 ppm and fragment ion tolerance of 0.02 Da, allowing for up to two missed tryptic cleavage sites and
a maximum isotope error (13C) of 1, considering fixed MMTS modification of cysteine and variable
oxidation of methionine, pyroglutamic acid from glutamine or glutamic acid at the peptide N-terminus.
Score distribution models were used to compute peptide-spectrum match p-values [114], and spectra
recovered by a false discovery rate (FDR) < 0.01 (peptide-level) filter were selected for quantitative
analysis. Differential regulation was measured using linear models [115], and statistical significance
was measured using g-values (FDR). All analyses were conducted using software from Proteobotics
S.L. (Madrid, Spain). Functional analyses were performed with Ingenuity Pathway Analysis, IPA
(Qiagen, Hilden, Germany). The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium (http://proteomecentral. proteomexchange.org) via the PRIDE partner
repository [116] with the ID PXD019924.

4.6. Data Analysis and Machine Learning

4.6.1. Descriptive and Inferential Statistics

Most of the clinical and analytical data were not normally distributed, and even when several
transformation techniques were applied the homogeneity of variance requirement was rarely met.
On the other hand, non-parametric statistics were also not applicable, as the groups rarely followed
the same distribution and it often was very complex (multimodal). For that reason, p-values were
calculated using permutation techniques [117,118]. Permutation techniques, as classical statistical
tests, assume that the null hypothesis (Hy) is true, in other words, there are no differences between
groups and thereby the labels (individual conditions: Control, CCA or PDAC) are exchangeable.
The algorithm makes all possible rearrangements of labels on the data and then computes how many
times the differences between the groups are equal or more extreme than the observed ones, that
translated into probability, is the definition of p-value. This technique avoids also the unbalanced
design of our experiment. Data are expressed as means =+ SD.
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4.6.2. Machine-Learning Pipeline

Multivariate Analysis

Multivariate analyses, including principal component analysis (PCA) [119] and discriminant
analysis of principal components (DAPC) of metabolomic and proteomic data were performed as
previously described [59,119].

Data Imputation

Data derived from metabolomic and proteomic studies were used to carry out artificial intelligence
to uncover possible patterns that may help in the diagnosis of these pathologies. To this end, first,
missing data must be deleted or imputed. The sample size was not large enough to delete the missing
data, so data was imputed using R software Version 3.6.2 [120] package VIM Version 5.1.1 [121],
as previously described in similar studies [122].

Synthetic Data Generation

Once the analytical data were generated, using the mean, standard deviation and correlation
information, the synthetic data was generated with MASS package v7.3-51.4 [62]. At this point no
distribution-based methods were used regarding artificial intelligence methods, for that reason, the
modification of the media or the shape of distribution does not affect the outcome. Integer data was
generated for proteomic analysis, whereas decimal data was generated for metabolomic data. Scripts
for synthetic data generation can be accessed at: https://github.com/HepatologiaCIMA/Urman_and_
Herranz_etal_2020.

Feature Selection

Three methodologies were used for feature selection, AUC, Random Forest (RF) and DAPC. In the
case of AUC, AUC was computed for every variable using CARET package Version 6.0-86 [123] for the
synthetic data. The CARET package was also used for RF analyses. AUC, RF and DAPC methodologies
were independently used to select the minimum number of features (within a range of 3 to 10 variables)
that best explained the separation between groups.

Artificial Intelligence Analysis

The sets of features (variables) were imputed into four algorithms from the CARET package
(v6.0-86), neural networks (NN) [124-126], Bayesian general linear model [127], C5.0 and RF [128].
In the feature selection step, RF is used to select features, whereas in the training step it is used as a
classification algorithm. We have included RF as a typical algorithm used when the dimensionality
of the data is extremely large compared to the measures. The algorithm with highest AUC was then
statistically tested. Five types of custom tests to evaluate the prediction capacity of our model were
applied. Test 1, aimed at calculating the probability of randomly obtaining the same result, consists of
reordering the labels (identity of the samples) of the real data to obtain the probability of getting the
same result by chance. It can be interpreted as the chance of randomly predicting the data as good as
the model does. In our analyses it revealed that this probability was negligible, even for proteomic data
with a low number of samples, and always showed a value of p < 0.001. Test 2, aimed at computing the
importance of each variable for that specific model, randomly reorders thousands of times its values
across the whole cohort of patients and then applies the model. The probability of getting a result as
good or better than the original one is computed if that variable is random. It can be interpreted as
how an error in the analytical measurement of a variable can affect the prediction. The application
of this test indicated that more features needed to be selected for the model to perform robustly in
the lipidomic analysis than in the proteomic analysis. Test 3, aimed at computing the fitness of the
model, randomly reorders all the variables to count how many times the model can achieve a result as
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good or better than original one with unstructured data. It can be interpreted as noise prediction or
background prediction. This test demonstrated with a p < 0.001 that the data was structured in both
the lipidomic and proteomic sets. For Test 4, some of the variables can be very predictive, so reordering
only one of them may be compensated by the others. The aim of this test is to compute, in the selected
model, the importance of a single variable in the prediction of the outcome, reordering all the other
variables randomly. It can be interpreted as the capacity of the variable to predict the outcome in the
presence of noise. We found that none of the selected features alone were able to accurately classify
the samples. In Test 5, the synthetic data generated is more abundant than the validation set and
considering that we used sample measures to simulate population data, one may think that we are
overfitting the model for a given sample and that the prediction will have nothing to do with the
reality of the data [129]. This test randomly shuffles the labels and then it computes synthetic data and
subsequently tries to elaborate a predictive model for shuffled data. Then, using permutations test,
we evaluate the differences in shuffled vs. real data AUCs. Through this approach we can assess the
tendency of the synthetic data to overfit the model. The graphic representation of our NN analyses
was made using the NeuralNetTools package as previously described [126]. Scripts for the built NN
models (for the selected features) and the trained NN models described in this study are available in
this link: https://github.com/HepatologiaCIMA/Urman_and_Herranz_etal_2020.

5. Conclusions

The etiological diagnosis of biliary strictures is still a clinical challenge. Bile, collected during
the little invasive ERCP procedure, may be a good source of biomarkers to identify the presence
of neoplastic disease. Over the past fifteen years several studies have performed high-throughput
metabolomic and proteomic studies of bile obtained from patients with biliary obstruction and different
cholangiopathies. Although some potential biomarkers, i.e., lipid species and proteins, have been
identified, the high variability among samples, together with the high cost of performing “omic”
analyses in large cohorts of patients, have hindered the identification of robust biomarkers. In this
work, we have revisited the metabolome and proteome of human bile from patients with benign
cholangiopathies and malignant biliary strictures. We are aware of some limitations affecting this
study, including its preliminary nature, its case-control and single-center design, and the lack of an
independent validation cohort for our features and algorithm combinations. Furthermore, we did not
include in our study bile samples from patients with primary sclerosing cholangitis, a predisposing
condition for CCA development. Given the heterogeneity of both benign and malignant biliopancreatic
conditions, future “omic” studies should focus on more homogeneous groups of patients. For instance,
a recent quantitative proteomic analysis of bile included only patients with extrahepatic CCA and
controls without biliary disease [66]. Targeted analyses of the lipids and proteins selected in this study,
rather than shotgun lipidomics and proteomics, may also provide additional robustness to our model.
Despite these considerations, here we have performed what we believe is the most comprehensive
characterization of the human bile lipidome reported so far. The analyses that have been carried
out, together with our complementary 'H-NMR study, identified alterations in metabolites that may
be linked to the biliary and pancreatic malignant processes. Similarly, the proteomic profile used
here also identified changes in protein levels that may capture molecular alterations evolving in
tumor cells. Nevertheless, looking at the complexity of the complement of metabolites and proteins
present in bile, and their interindividual variability, we understood that more complex analytical
tools would be needed to expose useful biomarkers. Thus, we decided to implement alternative
methods, including machine-learning approaches for the generation of synthetic data to enlarge our
experimental data set, tested different alternative methods for biomarker selection (DAPC, AUC and
RF analyses), and assayed different algorithms to unravel the complex patterns and interrelations
existing among metabolites or proteins that may be the key for sample discrimination. We came up
with a combination of lipids and proteins (features) that when analyzed with NN provided a predictive
model for the eventual classification of patients with biliary strictures. Our present findings lend
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further support to the potential of machine intelligence for the development of predictive models in the
analysis of complex biological samples such as human bile. Nevertheless, the accuracy of the specific
biomarkers identified here using artificial intelligence tools will need to be validated with real data
from independent cohorts of patients. Finally, in future studies it would also be interesting to test the
combined performance of bile proteomic and metabolomic biomarkers for patient classification in the
context of biliopancreatic diseases.
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S3: PCA and DAPC analyses of bile proteomics data, Figure S4: Graphical representation of neural network
analysis of selected proteomic biomarkers, Table S1: Heatmap of the lipidomic analysis of bile, Table S2: AUC,
sensibility and specificity of metabolites selected by DAPC analysis of lipidomic data, Table S3: List of differentially
represented proteins in bile from control and CCA patients, Table S4: List of differentially represented proteins in
bile from control and PDAC patients.
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