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Cardiac troponin I (cTnI) plays a critical role in regulation of cardiac function. Studies have

shown that the deficiency of cTnI or mutations in cTnI (particularly in the C-terminus of

cTnI) results in diastolic dysfunction (impaired relaxation) due to an increased myofibril

sensitivity to calcium. The first clinical study revealing the association between restrictive

cardiomyopathy (RCM) with cardiac troponin mutations was reported in 2003. In order

to illustrate the mechanisms underlying the cTnI mutation caused cardiomyopathy, we

have generated a cTnI gene knockout mouse model and transgenic mouse lines with

the reported point mutations in cTnI C-terminus. In this paper, we summarize our studies

using these animal models from our laboratory and the other in vitro studies using

reconstituted filament and cultured cells. The potential mechanisms underlying diastolic

dysfunction and heart failure caused by these cTnI C-terminal mutations are discussed as

well. Furthermore, calcium desensitizing in correction of impaired relaxation in myocardial

cells due to cTnI mutations is discussed. Finally, we describe a model of translational

study, i.e., from bedside to bench and from bench to bedside. These studies may enrich

our understanding of the mechanism underlying inherited cardiomyopathies and provide

the clues to search for target-oriented medication aiming at the treatment of diastolic

dysfunction and heart failure.

Keywords: myofibrils, troponin, mutation, cardiomyopathy, diastolic dysfunction, animal models

INTRODUCTION

Cardiac cells (myocardium) consist of two filaments: Thick filament and thin filament. The former
contains mainly myosin and myosin bind C-protein and the latter contains actin and troponin-
tropomyosin complex. The so called cross-bridge formation between the thin filament actin and the
thick filament myosin determines the filament movement, i.e., muscle contraction and relaxation.
Whereas, the troponin complex plays an important role in regulation of the filament movement.
Troponin complex consists of three subunit proteins: Troponin C (TnC), troponin T (TnT), and
troponin I (TnI). Among them, TnC is a Ca2+ binding protein, TnT binds with tropomyosin
whereas TnI is an inhibitory subunit that can bind to actin-tropomyosin and prevent muscle
contraction by inhibition of actin-tropomyosin- activated myosin (actomyosin) ATPase activity
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(Greaser et al., 1972; Ohtsuki and Shiraishi, 2002). Many studies
have demonstrated that TnI has an important function in the
regulation of striated muscle contraction and relaxation (Kranias
and Solaro, 1982; El-Saleh et al., 1986; Zot and Potter, 1987;
Solaro and Troponin, 1999; Konhilas et al., 2003).

It is well-known that cardiac muscle movement, i.e.,
contraction and relaxation, is regulated mainly by intracellular
calcium. An increase of intracellular Ca2+ concentration results
in an enhanced cardiac contractility whereas the decreased
Ca2+ concentration can reduce the cardiac contractility. The
concentration of intracellular Ca2+ is regulated by various
calcium handling proteins in myocardium, such as Ca2+ channel
receptors, the SERCA2a calcium ATPase pump, phospholamban,
etc. (Gordon et al., 2000). Recently, a body of studies has
demonstrated that cardiac TnI (cTnI) has unique functions in
control of cardiac muscle contraction and relaxation, especially
in diastolic function (Yasuda et al., 2007; Solaro et al., 2008). PKA-
mediated cTnI phosphorylation causes a decrease of myofibril
sensitivity to Ca2+ or a desensitization of the contractile
apparatus to activation by Ca2+ (Solaro et al., 1976; Rorbertson
et al., 1982; Zhang et al., 1995; Chandra et al., 1997; Solaro,
2001; Metzger and Westfall, 2004; Periasamy and Janssen, 2008).
Using a cTnI gene knockout mouse model that generated by
Huang et al in 1999, we have demonstrated that impaired
relaxation occurs in myocardial cells with a deficiency of TnI
and sarcomere length from these cells is shortened due to an
increased tension even in the absence of calcium, suggesting
that cardiac TnI is critical for cardiac relaxation (Huang et al.,
1999).

Physiologically, TnI plays such a critical role in regulation
of cardiac function, especially the muscle relaxation. In the
following sections, we will discuss the cardiac dysfunction caused
by cTnI C-terminal structural changes, i.e., cTnI mutations, in
the heart under pathological conditions. In addition, the potential
mechanisms underlying the diastolic dysfunction are discussed as
well.

IN VITRO ASSAYS MEASURING THE
EFFECTS OF cTnI MUTATIONS ON
MYOFIBRIL FUNCTION

Many studies have confirmed that the C-terminal half of cTnI
is more conserved than the N-terminal region of the protein
(Wilkinson and Grand, 1978). The C-terminal part of cTnI
contains specific regions that are crucial for the normal activity
of the protein, in particular, cardiac relaxation. In a part of
cTnI, there is an inhibitory region that is the minimum sequence
necessary for inhibition of actomyosin ATPase activity. This
domain includes residues from 147 to 163 and binds strongly to
actin and the N terminal domain of TnC regulating the binding
of Ca2+ to TnC (Rieck and Dong, 2014). The region between
the residues from 168 to 188 in cTnI is a second actin-binding
site that binds specifically to the actin-tropomyosin filament and
is known to contribute to the inhibitory activity of cTnI (Tripet
et al., 1997). The remaining C-terminal domain, 192 to 210 is not
fully characterized, however, some studies indicate that this part

of cTnI plays a role in the stabilization of tropomyosin in the actin
filament upon Ca2+ activation (Galińska et al., 2010).

The integrity of the cTnI molecule is essential for proper
conformation of the troponin complex in the myofilament and
the inhibition of actomyosin ATPase activity. It is of great
importance, both scientifically and clinically, to elucidate the
cellular mechanisms underlying RCM caused by cTnI mutations
in order to identify the cause of cardiomyopathies and heart
failure. The data from analyzing in vitro reconstituted thin
filaments showed that the RCM cTnI mutations had high Ca2+-
sensitizing effects on cardiac muscle force generation (Gomes
et al., 2005; Kobayashi and Solaro, 2006). The reconstituted
filament assays have the advantage of easily obtaining the
mutated proteins and quickly testing the myofilament force
generations. Very recently, this technique has been applied to
explore the role of cardiac troponin I C-terminal mobile domain
and linker sequence in regulating cardiac contraction (Meyer
and Chase, 2016). Some research groups investigated the role
of the mutated troponin in intact cells. Using an acute genetic
engineering technique, Davis et al. transferred the mutant cTnI
genes into cultured rat myocardial cells and found that the
myofibril sensitivity to calcium was increased (Davis et al., 2007,
2008). Numerous mutations in the carboxyl half of the protein
are associated with the development of cardiomyopathies further
confirming the importance of the C terminal domains of cTnI
for proper regulation of cardiac contraction (Chang et al., 2008;
Tachampa et al., 2008). Drastic Ca2+ sensitivity change has been
reported in myofilament with cTnI K178E mutation (Yumoto
et al., 2005). However, most of the RCM mutations in cTnI have
not been incorporated into transgenic models and they have been
just characterized in functional in vitro studies.

CARDIOMYOPATHIES CAUSED BY cTnI
MUTATIONS: TRANSLATIONAL STUDIES

Cardiomyopathies have been considered to represent diseases
that primarily affect cardiac muscle. Based on their morphology
and pathophysiology, three major types of cardiomyopathies are
most prevalent: Hypertrophic cardiomyopathy (HCM), dilated
cardiomyopathy (DCM), and restrictive cardiomyopathy (RCM)
(Rivenes et al., 2000). HCM is characterized by a hypertrophic
heart and DCM is characterized by a dilated ventricle, which
are relatively easier to be recognized clinically. However, RCM,
unlike HCM and DCM, manifests itself as a restricted ventricle
that prevents or reduces the blood return to the heart because
of a stiffened ventricle (Rivenes et al., 2000). Among the three
major types of cardiomyopathies, RCM cases are not as common
as HCM or DCM, but the prognosis is poor and some RCM
patients die in their childhood (Rivenes et al., 2000; Palka et al.,
2003). The clinical features of RCM are described as biatrial
dilation, along with normal left ventricular internal dimension
characterized on echocardiography. A marked elevation of left
ventricular end-diastolic pressure with a restricted left ventricular
filling and decreased cardiac output are often observed in
RCM patients (Ligi et al., 2003; Palka et al., 2003). In the
past, most cardiomyopathy cases were described as idiopathic
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cardiomyopathies, i.e., etiology is unknown (Ammash et al.,
2000; Ligi et al., 2003). Recently with the advancement of
genetic and molecular biological techniques, we know that most
cardiomyopathy cases are heritable and caused by a single gene
mutation (Braunwald, 2008).

The first report on cTnI C-terminal mutations associated
human restrictive cardiomyopathy (RCM) was in 2003
(Mogensen et al., 2003). In that study, six cTnI mutations
(L144Q, R145W, A171T, K178E, D190G, and R192H) have
been found to be associated with RCM. Among them, the two
mutations K178E and R192H have the worst clinical phenotype
(Mogensen et al., 2003).

Our laboratory has participated in the studies to define
the effect of the troponin mutations on the development of
diastolic dysfunction. We have generated transgenic (TG) mice
(cTnI193His) modeling human RCM mutation cTnI R192H
(cTnI R193H in mouse sequence) in the heart. In addition,
our laboratory has created another TG mouse line containing
the RCM cTnI K178E mutation reported by Mogensen et al.
(2003). The transgenic animals (cTnI K179E in the mouse
genome) presented drastic bi-atrial enlargement in the absence
of ventricular hypertrophy and dilation. They presented similar
hemodynamic characteristics to the cTnI193His animals in our
laboratory confirming the development of RCM as a consequence
of cTnI mutation. The cardiac dysfunction was severe in
the animals as most of them died prematurely (Jean-Charles
et al., 2008). The drastic hypersensitivity to Ca2+ observed in
myocardium from our transgenic animal models is very similar
to that reported from the in vitro studies (Yumoto et al., 2005).

We have tried to understand the mechanisms underlying
the development of RCM due to cTnI mutations using the
transgenic mice (cTnI193His) expressing human RCM mutation
cTnI R192H (cTnI R193H in mouse sequence) in the heart.
Histological examination confirms that cTnI193His mice do not
show cardiac hypertrophy or ventricular dilation. The general
morphology of the ventricles from these mice is similar to that
of a wild type heart. However, the enlargement of bi-atria, both
right and left atria, is very dramatic, which is similar to that in
human RCMpatients carrying cTnI R192Hmutation. Functional
measurements on these mice indicate a diastolic dysfunction in
the early stage and a diastolic heart failure in the late stage (Du
et al., 2006). We have demonstrated that impaired relaxation is a
main manifestation in the RCM cTnI transgenic mice (Du et al.,
2008) and cTnI mutation caused myofibril Ca2+ hypersensitivity
is a key factor resulting in a delayed calcium dissociation from the
myofilaments and a delayed relaxation time (Li et al., 2010).

Using this animal model of disease, we have performed a series
of cell-based experiments to determine diastolic dysfunction and
calcium dynamics at a single myocardial cell level. Meanwhile,
we have tried to reveal the cellular mechanisms of myofilament
dysfunction in myocardial cells isolated from RCM mouse
heart with cTnI mutations. Furthermore, we have measured left
ventricular pressure using a Millar catheter in RCM mice to
demonstrate that the increased pressure in restricted ventricles
is due to increased internal tension in the wall of the ventricles
caused by the myofibril hypersensitivity to Ca2+ (Zhang et al.,
2015; Wang et al., 2016). Once we recognized that Ca2+

hypersensitivity was an important factor that is associated with
impaired relaxation in myofibril cells resulting in a diastolic
dysfunction in RCM mice with cTnI mutations, we have
tried to reduce the hypersensitivity to calcium and hoped to
reverse the phenotype in RCM mice. By crossing our cTnI193His

RCM mice with another transgenic mouse line (cTnI-ND) that
expresses the cTnI with N-terminal deleted in the heart, we
discovered that the hyposensitivity caused by cTnI-ND favored
a general balance of myofibril sensitivity to calcium in the
heart and reversed the diastolic dysfunction and rescued RCM
phenotype (Li et al., 2010). Our study has demonstrated that
desensitization of myofibrils to calcium can be a therapeutic
target for restrictive cardiomyopathy with diastolic dysfunction.
Later, another study using a different mouse line also confirmed
that reduction of myofibril sensitivity to calcium was able to
correct diastolic dysfunction in mice suffering from HCM (Alves
et al., 2014).

Another similar example of cTnI C-terminal mutation-
associated diastolic dysfunction and hypersensitivity to Ca2+ is
cTnI R145W mutation. The mutation of cTnI R145W associated
human RCM is first reported by Mogensen (Mogensen et al.,
2003). Transgenic mice modeling human cTnI R145W was
generated. Characterization of these cTnI R145W transgenic
mice (Tg-R145W) has shown that the Tg-R145W myofibers
have a large increase in the Ca2+ sensitivity of both force
development and ATPase (Wen et al., 2009). Recent study using
the recombinant human cardiac sarcomeres containing cTnI
R145W mutation confirms that cTnI R145W mutation induces
an increase in myofilament Ca2+ sensitivity by reducing the
interaction between Helix-C of cTnC and cTnI (Dvornikov et al.,
2016).

Increased Ca2+ sensitivity in myofilaments with cTnI
C-terminal mutations is a key feature in cardiac muscle
pathology. Therefore, it is urgent and necessary to search
and find Ca2+ desensitizers that primarily affect myofilament
sensitivity to Ca2+. So far, compounds with such properties
are very scarce. Myosin inhibitors such as blebbistatin and
2, 3-butanedione monoxime (BDM) may alter myofilament
sensitivity to Ca2+ via their inhibitory effect on actomyosin
cross-bridge formation (Gwathmey et al., 1991; Kettlewell et al.,
2004). Thesemyosin ATPase inhibitors, while useful in functional
studies in vitro and ex vivo, are too toxic for therapeutic use
in live experimental animals or humans (Gwathmey et al.,
1991; Kettlewell et al., 2004; Dou et al., 2007). There is a
great need to develop or find small molecules and chemical
Ca2+ desensitizers that can be used to alter myofibril sensitivity
for Ca2+. Biological agents should be non-toxicity and have
good bioavailability, but there are few Ca2+ desensitizers
possessing such qualities. The catechin, (-)-epigallocatechin-3-
gallate (EGCg) has Ca2+ desensitizing abilities via its interaction
with cTnC (Liou et al., 2008; Robertson et al., 2009). This
compound is the most abundant catechin in green tea and is
credited for the numerous health benefits attributed to green
tea consumption (Robertson et al., 2009). EGCg desensitizes
thin filaments to Ca2+ by forming a ternary complex with the
C-terminal domain of troponin C and the anchoring region
of cTnI (Liou et al., 2008). The affinity of TnC for Ca2+ is
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FIGURE 1 | Model of translational study using transgenic mice as tools to investigate the mechanism of the cTnI mutation caused RCM and to be

used for experimental treatment.

reduced as a result which facilitates cardiac relaxation (Liou
et al., 2008). The ability of EGCg to correct myofilament Ca2+

hypersensitivity and diastolic dysfunction has been demonstrated
in a HCM mouse model confirming the therapeutic potential
of that compound for diastolic dysfunction (Tadano et al.,
2010).

In our recent study, we have reported that diastolic
dysfunction is corrected in RCM mice after the treatment
of EGCg for 3months, suggesting that desensitizer catechin
extracted from green tea is helpful in correcting impaired
relaxation caused by calcium hypersensitivity in cTnI193His RCM
mice (Li et al., 2010). After our study, another group reported
that green tea catechin could normalize the enhanced calcium
sensitivity of myofilaments regulated by a HCM-associated
mutation in human patient (Warren et al., 2015). These data
confirm that desensitizing green extract catechin is able to
reduce the hypersensitivity caused by cTnI mutations and correct
the diastolic dysfunction. So far, we have received these cell-
based and organ-based data from our studies using transgenic
mouse models. It is difficult to obtain these data from human
patient studies. This is a good model of translational study
from bedside to bench as illustrated in Figure 1. The idea is
that the physicians receive the disease information from the
patients and the basic researchers use the information to create
animal models of disease to confirm the clinical discovery
and use the animal models to further explore the cellular
and molecular mechanisms underlying the disorders. The data
from basic research can provide information back to clinical
studies and the treatment of the disease. For example, the
data we have obtained so far could provide us with some
clues for future clinical studies and disease treatment. Recently,
we have collected samples from RCM patients in an out-
patient department at a Children’s Hospital in China. The
data from genetic tests confirm that among five RCM patients,
two patients carry 192 point mutation in cTnI gene and two
carry a point mutation in myosin gene, and one patient with
no detectable myofibril protein mutation. More experimental
treatment data will be collected in this study from more RCM
patients.

CONCLUSIONS

Cardiac troponin plays a critical role in cardiac contraction
and relaxation. cTnI deficiency or mutations are associated with
RCM characterized with a diastolic dysfunction. The discovery of
sarcomeric protein mutations responsible for the development of
the disease helps in identifying the etiology of RCM and allows
for the screening of potential RCM patients. These measures may
facilitate early diagnostic of the disease and proper monitoring
and management of RCM patients. It also paves the way for
the development of transgenic animals with the RCM phenotype
which will contribute greatly to a better understanding and
characterization of the disease. In fact, RCM transgenic animals
may provide a link in the translational study which is from
bedside to bench and from bench to bedside. They will also be
very useful for the trial of potential drugs or devices designed
to correct the diastolic dysfunction associated with RCM. The
lack of effective treatments and the unavailability of drugs that
selectively correct the diastolic dysfunction of the restricted
heart, make the development of new pharmacological agents
an urgent necessity. Desensitizing green tea extract catechin
has been proved to be useful in correcting hypersensitivity and
reversing diastolic dysfunction both in RCM animal studies
and in reconstitute myofilament assays using a cTnI with a
point mutation from HCM patient. It seems promising to apply
desensitizing green tea extract catechin in correcting impaired
relaxation in RCM patients caused by troponin mutations.
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