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Abstract: The use of high-throughput omics technologies is becoming increasingly popular in all
facets of biomedical science. The mRNA sequencing (RNA-seq) method reports quantitative measures
of more than tens of thousands of biological features. It provides a more comprehensive molecular
perspective of studied cancer mechanisms compared to traditional approaches. Graph-based learning
models have been proposed to learn important hidden representations from gene expression data and
network structure to improve cancer outcome prediction, patient stratification, and cell clustering.
However, these graph-based methods cannot rank the importance of the different neighbors for a
particular sample in the downstream cancer subtype analyses. In this study, we introduce omicsGAT, a
graph attention network (GAT) model to integrate graph-based learning with an attention mechanism
for RNA-seq data analysis. The multi-head attention mechanism in omicsGAT can more effectively
secure information of a particular sample by assigning different attention coefficients to its neighbors.
Comprehensive experiments on The Cancer Genome Atlas (TCGA) breast cancer and bladder cancer
bulk RNA-seq data and two single-cell RNA-seq datasets validate that (1) the proposed model
can effectively integrate neighborhood information of a sample and learn an embedding vector to
improve disease phenotype prediction, cancer patient stratification, and cell clustering of the sample
and (2) the attention matrix generated from the multi-head attention coefficients provides more useful
information compared to the sample correlation-based adjacency matrix. From the results, we can
conclude that some neighbors play a more important role than others in cancer subtype analyses of a
particular sample based on the attention coefficient.

Keywords: graph attention network; single-cell RNA-seq; patient stratification; cancer outcome
prediction

1. Introduction

Cancer is a complex and heterogeneous disease with hundreds of types and subtypes
spanning across different organs and tissues, originating in various cell types [1,2]. For
example, breast cancer is highly heterogeneous with different subtypes that lead to varying
clinical outcomes, including prognosis, treatment response, and changes in recurrence and
metastasis [3–5]. Hence, cancer subtype prediction and cancer patient stratification have
been the subject of interest to clinicians and patients for many decades. Powered by high-
throughput genomic technologies, the mRNA sequencing (RNA-seq) method is capable
of measuring transcriptome-wide mRNA expressions and molecular activities in cancer
cells [6,7]. Bulk RNA-seq data provide a view of an entire tissue sample’s average gene
expression level instead of differentiating among cell types within the sample. Conversely,
single-cell RNA-seq (scRNA-seq) provides opportunities to explore gene expression profiles
at the single-cell level. These enable predicting the changes in expression level at a large
scale to understand better the biological mechanism that leads to cancer.

The high-throughput RNA-seq datasets show quantitative measures of more than tens
of thousands of mRNA isoforms for a cohort of hundreds or thousands of samples (e.g., pa-
tients, cells). However, due to the unavoidable sample heterogeneity or experimental noise
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in the data, extracting valuable biological information and discovering the underlying
patterns from the data is becoming a serious challenge to computational biologists [8].
While hundreds of computational methods have been developed for cancer subtype pre-
diction/identification [9,10] and patient stratification [11] using RNA-seq data [12,13],
network analysis of sample similarities has largely been ignored in most methods. Recently,
graph-based neural network (GNN) and network-based embedding models have shown
remarkable success in learning network topological structures from large-scale biological
data [14–18]. On another note, the self-attention mechanism has been extensively used in
different applications, including bioinformatics [19–21]. This mechanism allows inputs
to interact with each other and permits the model to utilize the most relevant parts of
the inputs to improve the performance of the deep learning models. The self-attention
mechanism was combined with the graph-structured data by Veličković et al. [22] in Graph
Attention Networks (GAT). This GAT model calculates the representation of each node
in the network by attending to its neighbors, and it uses multi-head attention to further
increase the representation capability of the model [23]. It applies varied attentions to
the neighbors; therefore, it finds the most important neighbors of a sample rather than
giving all of them the same importance. This model has been successfully applied to
various tasks, including text classification [24], node classification [25], social influence
analysis [26], recommendation system [27], etc. The GAT model has also been applied to
bioinformatics applications including drug-target interaction prediction [28], drug–microbe
interaction prediction [29], gene essentiality prediction [30], scRNA-seq data dimensionality
reduction [31], etc.

Inspired by the GAT model for capturing node dependencies in a wide range of
domains, we propose the omicsGAT model and apply it to cancer samples with RNA-
seq data. First, we test omicsGAT on The Cancer Genome Atlas (TCGA) breast invasive
carcinoma (BRCA) data collections [32] and urothelial bladder carcinoma (BLCA) data
collections [33] for cancer subtype prediction and cancer patient stratification, respectively
(Section 2.1). Then, omicsGAT is applied on 2458 cells from six primary diffuse gliomas
with K27M histone mutations (H3K27M) for cell clustering (Section 2.2). Next, we discuss
and interpret the results based on the sample-by-sample attention matrix generated from
the omicsGAT model (Section 3). Finally, we introduce the omicsGAT model in Section 4.

2. Results

We carry out experiments on TCGA RNA-seq datasets and scRNA-seq datasets to
evaluate the performance of omicsGAT in this section. In the first part, we perform
experiments with omicsGAT for cancer outcome prediction on TCGA breast cancer dataset
and cancer patient stratification on TCGA bladder cancer dataset (Section 2.1). In the
second part, omicsGAT is applied on scRNA-seq data of H3K27M-gliomas for single cell
clustering analysis (Section 2.2).

2.1. Experiments on TCGA Cancer Patient Samples
2.1.1. Datasets and Preprocessing

The proposed framework, omicsGAT, is tested on TCGA breast invasive carcinoma
(BRCA) [32] and urothelial bladder carcinoma (BLCA) [33] datasets. The RNA-seq mRNA
expression dataset of each cancer type was downloaded from UCSC Xena Hub [34].
log2(x + 1) transformed mRNA expression is used in the analyses. The clinical infor-
mation of the two cancer studies was downloaded from cBioPortal [35]. The BRCA dataset
consists of 411 patient samples and 20,351 genes for each sample. Similarly, the BLCA
dataset consists of 426 patient samples and 20,531 genes for each sample.

2.1.2. omicsGAT Improved Overall Cancer Outcome Prediction

We design three tasks on TCGA BRCA mRNA expression data to evaluate the perfor-
mance of the omicsGAT Classifier (Section 4.2) on cancer outcome prediction. There are
331 Estrogen Receptor positive (ER+) and 80 ER negative (ER−) samples, 284 Progesterone
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Receptor positive (PR+) and 127 PR negative (PR−) samples, and 65 Triple-negative (TN)
and 346 non-TN samples in the dataset. The three tasks were to predict breast cancer
patients’ ER, PR, and TN statuses. omicsGAT Classifier is compared with SVM, RF, DNN,
GCN, and GraphSAGE. First, the dataset is divided into pre-train and test sets containing
80% and 20% of the total samples. Then, the pre-train set is divided into a training and
validation set containing 80% and 20% samples of the pre-train set. The hyperparameters
of the proposed model used in these two tasks are listed in Supplementary Table S1. They
are selected through a grid search on the validation set. The same validation set is also
applied to select the best model for DNN, GCN, and GraphSAGE. We run omicsGAT
Classifier and baseline methods with the above-mentioned dataset splitting 50 times. The
average AUROC scores for omicsGAT and baseline methods are reported in Table 1. As
can be seen, our proposed model outperforms all the baselines for each of ER, PR, and TN
status predictions. Moreover, the gain in AUROC caused by omicsGAT is significant in
several cases. omicsGAT Classifier also offers a lower standard deviation, which signifies
a more consistent and stable prediction compared to the baselines. The stability of our
proposed model can be pertained to using several heads, which can secure information
from different directions, and the model can effectively combine them by learning distinct
attention parameters for each head.

Table 1. The classification performance on TCGA breast cancer (BRCA) dataset. The mean AUROC
scores and standard deviation (SD) of classifying patients in breast cancer subtypes are reported.
* Denotes the difference between the results of omicsGAT and baseline method to be statistically
significant (p-value < 0.001).

Cancer Subtype Method AUC Score SD

ER

SVM 0.9089 * 0.0414
Random Forest 0.9177 * 0.0408

DNN 0.9498 0.0337
GCN 0.9581 0.0289

GraphSAGE 0.9493 0.0288
omicsGAT 0.9636 0.0215

PR

SVM 0.8199 * 0.0456
Random Forest 0.8475 * 0.0476

DNN 0.8741 * 0.0405
GCN 0.8847 * 0.0441

GraphSAGE 0.8875 0.0450
omicsGAT 0.9065 0.0439

TN

SVM 0.8905 * 0.0614
Random Forest 0.8515 * 0.0609

DNN 0.9419 * 0.0400
GCN 0.9492 0.0269

GraphSAGE 0.9527 0.0243
omicsGAT 0.9611 0.0219

To evaluate the performance of omicsGAT in greater depth, the patient’s overall
survival time and disease-free time are predicted on the breast cancer dataset. The Cox
proportional hazards model with elastic net penalty [36] evaluates the correlation between
the patient’s overall survival time or disease-free time and genomic features (i.e., the
original gene expression) or the omicsGAT learned embeddings. In total, 80% of the
patient samples are applied to train the model and the performance is tested on 20% of
the patient samples. The independent test set’s low and high risk groups were generated
based on the prognostic index [37]. The survival and disease-free prediction are visualized
by Kaplan–Meier plots and compared by the log-rank test. The Kaplan–Meier plots in
Figure 1 illustrate the improved patient survival time and disease-free time prediction on
breast cancer patients using the embeddings generated by omicsGAT compared to the
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original gene expression. The log-rank test p-values clearly demonstrate a strong additional
prediction power of the learned embeddings beyond the gene expression.
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Figure 1. Survival and disease-free time predictions on breast cancer patients with original gene
expression and the embeddings generated by omicsGAT. Kaplan–Meier plots for low (dashed line)
and high (solid line) risk groups generated by (a) original gene expression and (b) omicsGAT learned
embeddings for survival analysis; (c) original gene expression and (d) omicsGAT learned embeddings
for disease-free analysis. The number in the parenthesis indicates the number of samples in the low-
or high-risk group. The p-value is calculated by the log-rank test to compare the overall survival or
disease-free probability of two groups of breast cancer patients.

2.1.3. omicsGAT Improved Cancer Patient Stratification

To evaluate the generalization of our embedding mechanism, we employ omicsGAT
Clustering (Section 4.3) to stratify bladder cancer (BLCA) patients. The dataset consists
of five cancer subtypes, and our task is to cluster the patients into these five categories.
Embeddings are generated following the first step of omicsGAT Clustering, i.e., an au-
toencoder. The hyperparameters stated in Table 2 are used to train the model for this task.
First, the dimensions of the raw gene expression data are reduced using PCA implemented
through sklearn.decomposition.PCA package. The top 400 PCA components are then used as
input in the omicsGAT pipeline, and the generated embeddings are fed to the second step
of omicsGAT Clustering, a hierarchical clustering model which would cluster the samples
into different groups based on their embeddings.

Before clustering the samples into different groups, we first cluster the embeddings
generated by omicsGAT, as illustrated in Figure 2. The patient samples are grouped accord-
ing to their true cancer subtypes. The distinct pattern can be observed for the embeddings
generated for a particular cancer subtype signifying the ability of omicsGAT to effectively
integrate neighborhood information into the embedding for a better predictive signature.
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Table 2. Hyperparameter selection for omicsGAT Clustering. The bolded values are used as defaults.

Hyperparameter Selection Set

No. of PCA components (features) selected [50, 100, 200, 400]
Embedding size of a head [4, 8, 16, 32, 64]

No. of heads [4, 8, 16, 32, 64]
Network density of adjacency matrix [0.02, 0.04, 0.1, 0.2]

No. of FC layers [2, 3, 4]

Figure 2. The embeddings generated by omicsGAT are clustered into the corresponding cancer subtypes.

Next, we compare the performance of omicsGAT Clustering with the five baselines
(Section 4.4.2) for clustering patient samples into cancer subtypes. Hierarchical and k-means
clustering algorithms are applied to the raw gene expression, their 400 PCA components,
and the adjacency matrix. NMI and ARI scores are computed based on the assigned clusters.
The same procedure is followed for the embeddings generated by omicsGAT and the trained
encoders of DNN-based and GCN-based autoencoders. The results are reported in Table 3.
It can be observed that both NMI and ARI scores are highest for omicsGAT Clustering,
followed by that of the adjacency matrix and GCN-based autoencoder. These three methods
consider the relation between the samples, which helps the downstream clustering models
to form better clusters. On the other hand, the scores for the raw gene expression, PCA
components, and the embeddings generated by the DNN-based autoencoder are lower,
which can be attributed to the absence of sample similarity information. omicsGAT uses the
information from the neighbors more effectively by assigning different attention coefficients
to the neighbors of a sample, thereby capturing the hidden relations between samples
in the embeddings. This influx of information caused by the attention mechanism in
embedding generation enables omicsGAT Clustering to outperform all baselines by a
considerable margin.
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Table 3. The clustering performance on TCGA bladder cancer (BLCA) dataset. The NMI and ARI
scores of omicsGAT Clustering and baseline methods are reported in the table. Hierarchical clustering
was computed with ‘Manhattan’ distance and ‘Average’ linkage. Mean NMI and ARI scores with
standard deviation (SD) are reported for k-means clustering (run 10 times).

Input Data (Clustering Method) NMI NMI SD ARI ARI SD

gene expression (hierarchical) 0.0515 - 0.0153 -
gene expression (k-means) 0.4944 0.0171 0.4468 0.0548

PCA components (hierarchical) 0.1222 - 0.0353 -
PCA components (k-means) 0.4883 0.0176 0.4338 0.0388

DNN-based autoencoder (hierarchical) 0.1471 - 0.0380 -
DNN-based autoencoder (k-means) 0.4544 0.0164 0.4879 0.0301

GCN-based autoencoder (hierarchical) 0.1697 - 0.1645 -
GCN-based autoencoder (k-means) 0.5146 0.0164 0.4879 0.0025

adjacency matrix (hierarchical) 0.5448 - 0.5505 -
omicsGAT embeddings (hierarchical) 0.6147 - 0.6698 -

To visualize the clustering performance, tSNE plots (Python seaborn [38] package) are
created on the PCA components and the embeddings generated by omicsGAT, in Figure 3a
and Figure 3b, respectively. Figure 3a illustrates that PCA components cannot properly
separate the five clusters. Although there is some separation among the patient samples
in ‘Basal squamous’, ‘Luminal papillary’, and ‘Luminal infiltrated’ subtypes, the samples
in ‘Luminal’ and ‘Neuronal’ subtypes are randomly scattered on the plot. On the other
hand, Figure 3b shows that omicsGAT Clustering can effectively separate all five clusters,
revealing the meaningful neighborhood information contained within the embeddings.
Moreover, ‘Luminal’ and ‘Neuronal’ are the subtypes with the smallest number of samples,
which means our proposed method particularly excels at clustering rare subtypes.
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Figure 3. tSNE plots of the (a) PCA components generated from the BLCA data and (b) omicsGAT-
generated embeddings for bladder cancer patients stratification.

2.2. Experimentation on Single-Cell RNA-seq Data

Single-cell RNA-seq (scRNA-seq) data reveals heterogeneity at the cell level and
offers a more significant number of samples (i.e., cells) compared to bulk RNA-seq data
(e.g., number of patient samples). We apply omicsGAT Clustering on scRNA-seq data and
cluster cells to evaluate the generalization of our proposed model.

2.2.1. Dataset and Preprocessing

scRNA-seq data from six primary H3K27M-gliomas (H3 lysine27-to-methionine mu-
tations) are used in the following experiment. This type of gliomas (malignant tumors)
primarily arises in the midline of the central nervous system of young children [39]. Early
detection of tumors may improve disease prognosis; hence, stratifying the tumor cells
into the correct gliomas could be very helpful for clinicians. Gene expression and label
information of 2458 cells is used for this experiment. The dataset was downloaded from
the Single Cell Portal [39], which consists of the cells generated from six different gliomas:
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BCH836, BCH869, BCH1126, MUV1, MUV5, and MUV10. log2(x + 1) transformed TPM
(Transcripts-per-million) value is used in the analysis.

2.2.2. Single Cell Clustering

The same omicsGAT Clustering method (Section 4.3) is followed to cluster the cells
with scRNA-seq data. The top 200 PCA components are selected as the input of the
omicsGAT Clustering to generate embeddings. The omicsGAT’s hyperparameters for this
experiment are listed in Supplementary Table S2. The autoencoder is trained following
the same steps as explained in Section 2.1.3. Embeddings generated by the autoencoder
are then fed into the hierarchical clustering model. Hierarchical and k-means clustering
methods on raw gene expression, PCA components, and the embeddings generated by
the DNN-based and GCN-based autoencoders are considered as the baselines, along with
hierarchical clustering on the adjacency matrix. Moreover, SC3s [40], a consensus clustering
method for scRNA-seq data analysis, is also considered as a baseline for better evaluation
of omicsGAT’s performance on single cell clustering. As reported in Table 4, omicsGAT
Clustering outperforms all the baselines, meaning the cluster assignments resulting from
the omicsGAT-generated embeddings are more similar to the true label information. This
result is corroborated by the tSNE plots in Figure 4a,b, which are drawn on the PCA
components and the embeddings generated by omicsGAT, respectively. The tSNE plot for
omicsGAT Clustering shows more separation among the clusters as compared to the PCA
components. Specifically, for the ‘MUV1’ group, our model forms a single cluster containing
all the cells belonging to that type (red circle in Figure 4b), whereas the tSNE plot using
PCA components shows two different clusters for the cells in ‘MUV1’. Based on the results,
we can conclude that in the case of scRNA-seq data analysis, omicsGAT Clustering can
take advantage of the detailed cellular level information and uses the attention mechanism
on the cell-cell similarity network to cluster the samples better.

Table 4. The clustering performance on H3K27M-gliomas scRNA-seq data. The NMI and ARI scores
of omicsGAT Clustering and baseline methods are reported in the table. Hierarchical clustering was
computed with ‘Cosine’ distance and ‘Average’ linkage. Mean NMI and ARI scores with standard
deviation (SD) are reported for k-means clustering (run 10 times).

Matrix Type (Clustering Type) NMI NMI SD ARI ARI SD

gene expression (hierarchical) 0.0055 - 0.0010 -
gene expression (k-means) 0.5052 0.0176 0.4410 0.0145

PCA components (hierarchical) 0.6146 - 0.5339 -
PCA components (k-means) 0.5010 0.0016 0.4640 0.0013

DNN-based autoencoder (hierarchical) 0.6304 - 0.5687 -
DNN-based autoencoder (k-means) 0.6086 0.0226 0.5296 0.0384

GCN-based autoencoder (hierarchical) 0.5366 - 0.4133 -
GCN-based autoencoder (k-means) 0.5110 0.0431 0.3610 0.0568

SC3s 0.6077 - 0.5457 -
adjacency matrix (hierarchical) 0.5757 - 0.3982 -

omicsGAT embeddings (hierarchical) 0.6584 - 0.6366 -
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Figure 4. tSNE plots of the (a) PCA components generated from the ‘H3K27M-gliomas’ scRNA-seq
data and (b) omicsGAT-generated embeddings for cell clustering.

3. Discussion

omicsGAT can successfully integrate the structural information within gene expression
data into sample embeddings, enabling better classification and clustering performance
compared to the original dataset. The self-attention mechanism in omicsGAT contributes
to the stronger predictive ability of the embeddings. A binary adjacency matrix is applied
to define neighborhoods in omicsGAT that includes self-connections to ensure that the
information of a sample itself is also considered in the embedding. The performance
is reduced when we run the same tasks with just the adjacency matrix. The adjacency
matrix is calculated using correlation only, which keeps track of the pairwise linear rela-
tions between samples. However, using the attention mechanism, omicsGAT can capture
complex nonlinear relations by accounting for the importance of neighboring samples on
the classification or clustering of a target sample. The captured relations among samples
are represented in the generated embeddings, enabling the model to perform better on
classification and clustering tasks.

In order to verify the effect of the multi-head attention mechanism, a sample× sample
attention matrix is constructed by extracting the attention coefficients from a trained
omicsGAT model following the method used by Ullah and Ben-Hur [41]. For a target
sample, each of the h heads assigns different attention coefficients to its neighbors, and only
the highest among the h attention coefficients is considered for each neighbor to represent
its relation with the target sample. The same procedure is repeated to generate the full
attention matrix. This process is applied to build the attention matrix for both BLCA and
cell clustering tasks described in Section 2.1.3 and Section 2.2.2, respectively. This attention
matrix reveals the importance of combining the attention mechanism with the network
information received through the adjacency matrix. As seen in Table 5, clustering on the
attention matrix outperforms the clustering on the adjacency matrix for both datasets.
Moreover, the clustermap of the attention matrix obtained from the trained model on BLCA
data, illustrated in Figure 5, shows a distinct pattern of the cancer subtypes specifically for
‘Luminal papillary’ and ‘Basal squamous’ subtypes. From these results, we can conclude
that some neighbors play a more important role than others in classification or clustering
of a sample, and omicsGAT can effectively inject this information into the model along
with the graph structure to generate more meaningful embeddings for better downstream
analyses. An important aspect of omicsGAT is the use of multiple heads. The learnable
weight parameters (W and a) of each head are initialized separately using the xavier normal
library function of Pytorch [42].

For the clustering tasks, the NMI and ARI scores of the baselines are relatively low
with hierarchical clustering, which can be observed in Tables 3 and 4. Therefore, we also
apply k-means clustering on them in order to compare them with omicsGAT. Since the
performance of k-means clustering depends on the initialization of the cluster-centers,
clustering is conducted ten times, and the mean scores along with standard deviations are
reported in the tables.
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Table 5. NMI and ARI scores of the Hierarchical Clustering applied on attention and adjacency matrices.

Dataset Input Matrix NMI ARI

BLCA adjacency matrix 0.5448 0.5505
attention matrix 0.5743 0.6373

H3K27M adjacency matrix 0.5757 0.3982
attention matrix 0.5788 0.4821

Sample
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le

0.0

0.5

1.0

C
o
n
n
ec
ti
o
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Figure 5. Clustermap of the Attention Matrix generated from the trained omicsGAT model on
BLCA data.

To evaluate the clustering performance of omicsGAT in greater depth, it is also applied
on the latest SARS-CoV-2 antibodies scRNA-seq data [43], consisting of 6050 cells. The
hyperparameters used for this experiment are stated in Supplementary Table S3. The
same baselines as mentioned in Section 2.2.2 are used for comparison in this experiment.
The NMI and ARI scores computed on the hierarchically clustered omicsGAT-generated
embeddings along with that of the other baselines are reported in Supplementary Table S4.
omicsGAT surpasses the other models in this scenario as well. This result also generalizes
the applicability of omicsGAT to the domain of other diseases. The respective tSNE plots of
the PCA components and omicsGAT-generated embeddings for this dataset are provided
in Supplementary Figure S1.

4. Methods

In this section, we first introduce our proposed framework, omicsGAT, which gener-
ates embeddings from gene expression data to be used in downstream classification and
clustering. We extend the GAT model [22] to better fit our tasks of disease outcome predic-
tion and subtype stratification. Then, we discuss the baseline models used to compare and
validate the performance of omicsGAT, followed by the details of evaluation metrics used
in this study.
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4.1. Graph Attention Network

The omicsGAT model architecture builds on the concept of the self-attention mecha-
nism. In omicsGAT, embedding is generated from the gene expression data, assuming that
the samples (i.e., patients or cells) with similar features (gene expressions) are expected
to have similar disease outcomes or cell types, and therefore, are connected to each other.
Hence, network information is injected into the model using the adjacency matrix to con-
sider these connections. However, all connected neighbors of a target sample should not
get equal attention in generating the embedding for that sample. A particular neighbor of a
target sample can contribute more to its subsequent prediction or clustering, which simi-
larity metrics cannot accurately apprehend. Therefore, to capture the importance of each
neighbor on a sample, the omicsGAT model automatically assigns different attentions to the
neighbors of that sample for a singular head while generating the embedding. Moreover,
to consider the impact of different types of information secured from the neighbors and
stabilize the learning process, the above procedure is repeated multiple times in parallel
employing several heads (independent attention mechanisms) in a multi-head framework.

The mathematical notations used to explain omicsGAT are summarized in Table 6. Let
n be the number of samples (e.g., patients, cells) and m be the number of features (e.g., genes)
representing each sample. The input feature matrix is given by X = [x1, x2, ..., xn], where
x ∈ R1×m represents a sample vector. Let A be the n× n adjacency matrix (includes self-
connections) built based on the pairwise correlation between the samples. Suppose that the
set of neighbors for a sample xi is denoted by Ni. Depending on the number of neighbors
|Ni| to be kept for a sample, the connections with high correlation scores are kept (assigned
a value of 1), and the others are discarded (assigned a value of 0). The adjacency matrix
is binarized, as it will be used to mask the attention coefficients in later part of the model.
Self-connections are applied to integrate the information from the samples themselves in
their embeddings. While generating the embedding of sample xi, the attention given to it
from its neighbor xj for a single head can be calculated as:

cij = aT [Wxi||Wxj] (1)

where W ∈ Rp×m and a ∈ R2p×1 are learnable weight parameters of a single head, which
are shared across all the samples and p is the embedding size, and || and .T symbols
denote the concatenation and transposition operations of the matrices, respectively. The
calculated attention values are passed through a LeakyReLU activation function. Then, the
structural information of the network is introduced by masking the attention values using
the adjacency matrix. Only the attention values where a connection is present between the
nodes (samples) in the adjacency matrix A are kept, and all the remaining values are made
zero. After that, the attention coefficient for a neighbor xj is calculated using a Softmax
function, which follows the equation below:

αij =
exp(LeakyReLU(aT [Wxi||Wxj]))

∑r∈Ni
exp(LeakyReLU(aT [Wxi||Wxr]))

. (2)

The attention coefficients calculated for all of the neighbors of xi using Equation (2) are
leveraged to calculate its final embedding for a single head:

x′i = σ( ∑
j∈Ni

αijWxj) (3)

where σ is a non-linear activation function. Note that the sample xi is also included in its
neighbors since self-connections are used in the adjacency matrix.
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Table 6. Mathematical notations for omicsGAT.

Name Definition

n number of samples (i.e., patients or cells)
m number of features (i.e., genes)
p embedding size for a single head
h number of heads

X ∈ Rn×m input feature matrix
A ∈ Rn×n correlation-based adjacency matrix of samples

W ∈ Rm×p weight matrix of a single head
a ∈ R2p×1 attention weight matrix of a single head
α ∈ Rn×n attention coefficients of a single head

Z ∈ Rn×ph embedding matrix learned from the model

In a multi-head attention network, each head has a separate attention mechanism
with its own weight matrix W and attention vector a. Outputs generated by all the heads
for one particular sample are concatenated to generate the final embedding vector of that
sample. This is done to stabilize the learning process while generating the embedding. This
is similar to the mechanism used by Vaswani et al. [19] in self-attention. Hence, the output
embedding from the first part of our model for xi is given by:

zi =

∣∣∣∣∣∣∣∣h
k=1

σ( ∑
j∈Ni

αk
ijW

kxj) (4)

where h is the number of heads. The output projected in the embedding space is represented
by Z ∈ Rn×ph, and embedding for one sample is z ∈ R1×ph. The generated embeddings are
then used in separate models for classification and clustering tasks. The overall framework
of our proposed pipeline is illustrated in Figure 6.

4.2. omicsGAT Classifier

omicsGAT Classifier is a unified model that passes the embedding Z generated from
the first part of our pipeline described in Section 4.1 through a fully connected (FC) layer
followed by a Softmax function. Let the number of classes for the classification task be
c. The FC layer transforms Z ∈ Rn×ph into Ycls ∈ Rn×c, where Ycls = [ycls1 , ycls2 , ..., yclsn ]
represents the classification outcomes. It can be formulated as:

Zcls = Softmax(WclsZin + bcls) (5)

where Zcls and Zin are the output and input matrices, Wcls is the learnable weight, and bcls
is the bias vector of the FC layer.

Let the ground truth labels for n samples be Y = [yin1 , yin2 , ..., yinn ]. In order to calculate
the overall loss of the model, the Negative Log Likelihood (NLL) loss function is applied,
formulated as follows:

Lcls = −
n

∑
i=1

log(Likelihood(yclsi
|yini )). (6)

where Lcls is minimized to train the unified omicsGAT Classifier framework.
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Figure 6. Workflow of omicsGAT. For a sample x1, based on the input feature matrix and adjacency
matrix, each head calculates the attention given to x1 from its neighbors separately. The embeddings
produced by all heads are concatenated together to generate the final embedding z1 for x1, which is
then used for classification or clustering of x1.

4.3. omicsGAT Clustering

For clustering, we propose a two-step omicsGAT Clustering framework. The first
step is an autoencoder that generates the gene expression embedding in an unsupervised
approach, and the second step is a hierarchical clustering model. omicsGAT described in
Section 4.1 serves as the encoder in the autoencoder architecture whereas a four layers fully
connected neural network is constructed as the decoder. The output Z ∈ Rn×ph from the
omicsGAT encoder is fed into the first layer of the decoder. The output of the consecutive

FC layers are Zclr1 ∈ Rn× ph
2 , Zclr2 ∈ Rn×m

4 , Zclr3 ∈ Rn×m
2 , and Yclr ∈ Rn×m, respectively.

Each layer can be formulated as:

Zclr = σ(WclrZin + bclr) (7)

where Zclr and Zin are the output and input matrices, Wclr is the learnable weight, and bclr
is the bias vector of a particular layer of the decoder. For the first three layers, σ denotes
the activation function ReLU, and no activation function is used in the final layer.
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The output, projected back to the input feature space by the decoder, is given by
Yclr = [yclr1 , yclr2 , ..., yclrn ]. The mean squared error (MSE) is employed to calculate the
reconstruction loss as follows:

Lclr =
n

∑
i=1

(xi − yclri
)2. (8)

where Lclr is minimized to train the autoencoder, and an embedding is generated as output
from the trained encoder. The embedding is then fed into the second step of omicsGAT
Clustering, a hierarchical clustering model implemented using the scikit-learn package [44].
It stratifies the input samples into a defined number of clusters by assigning each sample to
a group based on the similarity of the generated embedding with that of the other samples
in the group.

4.4. Baseline Models Used for Comparison
4.4.1. Baselines for Classification Tasks

Support Vector Machine (SVM), Random Forest (RF), Deep Neural Network (DNN),
Graph Convolutional Network (GCN) [45], and GraphSAGE [46] are used as baselines to
evaluate and compare the performance of the omicsGAT Classifier. The baselines are built
using several Python open-source library packages, including Scikit-learn [44], PyTorch [42],
and PyTorch Geometric [47].

SVM and RF are two of the most widely used machine learning models. In this
study, ‘rbf’ kernel is applied for SVM. Hyperparameters for RF, including the number
of trees, split criterion, maximum depth of the tree, and maximum number of features
considered for split, are also tuned. The Deep Neural Network model consists of three
fully connected linear layers, with the first two of them followed by the ReLU activation
function. For better evaluation of our model by comparing it to similar graph-based deep
learning models, we follow the GCN proposed by Kipf and Welling [45] and GraphSAGE
(SAmple and aggreGatE) proposed by Hamilton et al. [46]. Both models are composed of
a GCN/GraphSAGE layer followed by two FC layers. The correlation-based adjacency
matrix A is used as neighborhood information in these models. The hyperparameters for
all of these models are tuned on the validation set using grid search.

4.4.2. Baselines for Clustering Tasks

The performance of embeddings generated by omicsGAT for the downstream cluster-
ing task is evaluated against embeddings generated by a DNN-based autoencoder and a
GCN-based autoencoder. The encoder part in the autoencoders consists of the respective
model, and the decoder part comprises three FC layers. Hierarchical or k-means cluster-
ing is employed on the embeddings generated by the trained encoders of the baselines.
Furthermore, to get a better understanding of the improvements made by omicsGAT, clus-
tering of the raw features (gene expression), their PCA components, and adjacency matrix
are compared with omicsGAT-generated embeddings. In addition to the aforementioned
models, an efficient clustering method targeted for scRNA-seq data named SC3s [40] is
used as a baseline for the single-cell clustering task.

4.5. Evaluation Metrics

In this section, we define three evaluation metrics used in this study implemented us-
ing the scikit-learn library of Python. The Area Under the Receiver Operating Characteristic
Curve (AUROC) is used for the comparison of the classification models. It is defined as
the area under the curve plotted using True Positive Rate (precision) along the y-axis and
False Positive Rate (1-specificity) along the x-axis. The Normalized Mutual Information
(NMI) and Adjusted Rand Index (ARI) are applied to evaluate the clustering methods, both
ranging from 0 to 1, where 1 means perfect clustering and 0 means totally random.
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5. Conclusions

Powered by high-throughput genomic technologies, the RNA-seq method is capable of
measuring transcriptome-wide mRNA expressions and molecular activities in cancer cells.
Hundreds of computational methods have been developed for cancer outcome prediction,
patient stratification, and cancer cell clustering. Some of these methods consider sample-
sample similarities in the analysis, and some of them do not. These sample similarity-based
methods cannot distinguish the importance of the neighbors for a particular sample in the
downstream prediction or clustering tasks. Therefore, we introduce omicsGAT in this study,
which leverages a self-attention mechanism consisting of multiple heads to assign proper
attention weights to the neighbors of a sample in the network. Experiments on cancer
subtype analyses show the superior performance of the model in every aspect compared
to the baseline methods. We also show the generalization of omicsGAT’s performance on
both bulk RNA-seq and scRNA-seq data. As a future objective, we would like to extend
omicsGAT to include metapath selection, which would consider the best paths in a network
to perform a certain task on a particular sample.
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