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research in the past decades has revealed additional physi-
ological activities of the endogenous cellular oxysterols: 
they act as signaling molecules with regulatory impacts on 
diverse aspects of cell biology, including lipid metabolism, 
signal transduction, immune function, developmental pro-
cesses, cell cycle regulation, and apoptosis (5–7). Of the 
oxysterols, 25-hydroxycholesterol (OHC) is the most ex-
tensively studied and has been implicated, among other 
functions, in cell death (8, 9).

Disruption of the normal function of the endoplasmic 
reticulum (ER) causes a stress response known as the un-
folded protein response, initially aimed at compensating 
for the damage (10, 11). ER stress results in the abnormal 
accumulation of unfolded and misfolded proteins due to 
the limited protein-folding capacity of the ER (12, 13). If 
the defensive unfolded protein response fails to deal with 
the misfolded proteins in the ER, ER stress-induced apop-
totic death signaling is activated (14). Oxysterols are de-
rived from cholesterol oxidation and are found in oxidized 
LDLs that act as lipotoxic agents inducing ER stress (15). 
Also, 25-OHC has been reported to induce ER stress and 
apoptosis in macrophages (16).

Oxysterol binding protein was isolated in the 1980s as  
a cytoplasmic high-affinity receptor for several oxysterols 
(17–19). Oxysterol binding protein-related proteins (ORPs) 
comprise a 12-member gene family in mammals (20). 
ORP8 is a member of the ORP family that contains a single 
C-terminal transmembrane domain targeting the protein 
to the ER. Our previous study indicated that ORP8 de-
creases cholesterol efflux in macrophages by suppressing 
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Oxysterols are 27-carbon oxidized derivatives of choles-
terol or by-products of cholesterol biosynthesis. These 
compounds act as intermediates of cholesterol catabolism 
and, when accumulating in pathologic situations, display 
cytotoxic and pro-apoptotic activities (1–4). Importantly, 
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CA). The primers used are shown in supplemental Table S1. 
Relative quantification analysis was performed using the Ct 
method with actin as endogenous control; relative gene expres-
sion was presented as the ratio of the target gene to reference 
control.

Cell proliferation assay by CCK-8
Cells were plated in 96-well plates. After a 24 h culture, cell 

numbers were evaluated by CCK-8 following the manufacturer’s 
protocol. Cell number was calculated by the standard curve 
method, and the averages of at least three independent experi-
ments are presented.

Hoechst 33342 staining analysis
Hoechst 33342 staining was performed to observe the nuclear 

morphological changes in HepG2 or Huh7 cells. The cells were 
collected, washed twice with PBS, and then incubated with Hoechst 
33342 (10 g/ml) for 10 min. Then, the cells were washed with 
PBS and observed by fluorescence microscopy using appropriate 
filters for blue fluorescence.

Annexin V-FITC/propidium iodide staining for apoptotic 
stages

Flow cytometry was performed on the 25-OHC-treated HepG2 
cells to observe the effects of 25-OHC on cell apoptosis with FITC 
annexin V apoptosis detection kit I. The 25-OHC-treated cells 
were cultured, harvested at the indicated times, washed twice with 
cold PBS, and then resuspended in 1× binding buffer at a concen-
tration of 1 × 106 cells/ml. One hundred microliters of the solu-
tion (1 × 105 cells) were transferred to a 5 ml culture tube, 5 l of 
FITC annexin V and 5 l propidium iodide (PI) were added, gen-
tly vortexed, and the cells were incubated for 15 min at room tem-
perature (25°C) in the dark. Then 400 l of 1× binding buffer was 
added to each tube, followed by analysis by flow cytometry within 
1 h.

Western blot analysis
Cells treated under different conditions were washed twice with 

ice-cold PBS, scraped from the dishes, and suspended in lysis buf-
fer [50 mM Tris-Cl (pH 8.0), 150 mM NaCl, 0.5 mM MgCl2, 10% 
glycerol, 1% Triton X-100, 0.1% SDS] with protease inhibitor 
cocktail (Roche Diagnostics, Basel, Switzerland) on ice for 10 min 
before clearing of the lysates by centrifugation for 5 min at 12,000 g.  
Lysates were separated by SDS-PAGE and transferred to PVDF 
membranes. For detection of the proteins, the membranes were 
incubated with anti-phospho-protein kinase RNA-like ER kinase 
(PERK) (catalog number sc-32577, Santa Cruz), anti-PERK (cata-
log number sc-13073, Santa Cruz), anti-phospho-eukaryotic trans-
lation initiation factor-2 (eIF2) (catalog number sc-101670, 
Santa Cruz), anti-eIF2 (catalog number sc-11386, Santa Cruz), 
anti-CCAAT/enhancer-binding protein-homologous protein 
(Chop) (catalog number #895, Cell Signaling), anti-activating 
transcription factor-4 (ATF4) (catalog number 11815, Cell Sig-
naling), and anti--actin (catalog number 3700, Cell Signaling), 
anti-XpressTM (catalog number R910-25, Invitrogen), anti-ORP5 
(catalog number ab127171, Abcam), anti-ORP8 (produced and 
affinity-purified in our laboratory) respectively, and then incu-
bated with HRP-conjugated anti-mouse IgG (catalog number 
7076, Cell Signaling) or HRP-conjugated anti-rabbit IgG (cata-
log number 7074, Cell Signaling). Protein concentrations of the 
lysates were measured by the Bio-Rad (Hercules, CA) Dc assay.

Statistical analysis
Experimental results were analyzed by using the SPSS.21 soft-

ware. The data are presented as mean ± SD. All comparisons  

ABCA1 expression, implying that it may play a role in the 
development of atherosclerotic lesions (21). In hepatic 
cells, ORP8 functions as a negative regulator of intracellu-
lar cholesterol (22). Other roles of ORP8 have been sug-
gested, including the inhibition of cell migration through 
interaction with nucleoporin Nup62 (23), mediation of 
oxysterol interference of the cell cycle through interaction 
with astrin/SPAG5 in HepG2 cells (24), and transport of 
phosphatidylserine at ER-plasma membrane contact sites 
(25). Importantly, OPR8 increases the sensitivity of hepato-
cellular carcinoma (HCC) cells to Fas-mediated apoptosis 
(26). There is evidence that ORP8 acts as an oxysterol bind-
ing protein (21, 27), indicating a possible mechanistic link 
between 25-OHC and ORP8 in cell apoptosis.

In the present study, we provide evidence that 25-OHC 
induces ER stress and cell apoptosis in HepG2 and Huh7 
cells, and that ORP8 may mediate these cellular responses.

MATERIALS AND METHODS

Materials
The 25-OHC, 7-OHC, 4-PBA, and Hoechst 33342 were from 

Sigma-Aldrich. The 27-OHC and 7-ketocholesterol (7-keto) were 
from Santa Cruz. The FITC annexin V apoptosis detection kit I 
was from BD Biosciences. Cell Counting Kit-8 (CCK-8) was from 
Dojindo.

cDNA constructs and transfection
Human ORP8 cDNA (NM_001003712) and truncated ORP8 

cDNA [ORP8 without the C-terminal ligand-binding ORD do-
main (designated ORP8△ORD)] were inserted into the BglII and 
SalI sites of pcDNA4HisMaxC (Invitrogen, Carlsbad, CA) to  
obtain constructs expressing proteins fused with an N-terminal 
Xpress epitope tag. ORP5 cDNA (NM_020896) was inserted into 
the XbaI site of pcDNA4HisMaxC. The primers used are listed in 
supplemental Table S1. Transient transfections of cultured cells 
were carried out using Lipofectamine 2000 (Invitrogen) accord-
ing to the manufacturer’s instructions.

Cell culture
HepG2 cells and Huh7 cells were cultured in DMEM supple-

mented with 10% FBS (pH 7.4), penicillin (100 U/ml), and strep-
tomycin (100 g/ml). Cells were maintained in 5% CO2, 37°C.

RNA interference
One day before transfection, HepG2 or Huh7 cells were seeded 

on 12-well plates at 30–50% confluency and then transfected  
with siORP8, siORP5, or control nontargeting siRNA (siNT) for 
72 h (siORP8, GAGUGGUCUUGCAAAUUAUdTdT; siORP5, 
CCCUGCCCAGCAGCUACCUGAUCdTdT; and siNT, UAGC-
GACUAAACACAUCAAdTdT) by using Lipofectamine 2000 
(Invitrogen).

Quantitative real-time PCR
Total RNA was isolated with TRIzol reagent (Invitrogen; ac-

cording to the manufacturer’s instructions) from HepG2 or 
Huh7 cells. RNA samples were reverse transcribed using random 
hexamer primers in the presence of RNase inhibitor (Takara 
Bio, Shiga, Japan). Quantitative (q)RT-PCR was performed with 
SYBR Premix EX Taq (Takara Bio) using the 7300 sequence de-
tection system (Life Technologies/Applied Biosystems, Carlsbad, 
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cells in the 7-keto-, 7-OHC-, 25-OHC-, and 27-OHC-treated 
specimens. Compared with the control, the results showed 
that the number of apoptotic cells increased in a dose- 
dependent manner upon incubation with all oxysterols 
(Fig. 1C, D). Of note, HepG2 cells and 10 M 25-OHC 
were selected for most of the experiments in this study. 
Even though this concentration induced stimulation of cell 
proliferation, it also had a pronounced pro-apoptotic ef-
fect (apoptosis rate 14.9% vs. 2.4% in the control). If ORP8 
overexpression (see the results below) was combined with 
25-OHC concentrations >10 M, excessive cell death was 
induced, making it difficult to precisely analyze the apop-
totic cell rate (supplemental Fig. S1).

25-OHC induces ER stress and cell apoptosis
A previous report showed that 25-OHC could induce ER 

stress and apoptosis in macrophages (16). To determine 
whether ER stress was induced by 25-OHC in HepG2 and 
Huh7 cells, we first examined the expression of immuno-
globulin heavy chain-binding protein (Bip) and Chop 

between groups were made by unpaired two-tailed Student’s t-test.  
P < 0.05 was considered statistically significant.

RESULTS

Oxysterols enhance cell proliferation and apoptosis in a 
dose-dependent manner

Oxysterols have potent effects on cell growth and death, 
including induction of apoptosis (5, 28). To assess the cyto-
toxicity of oxysterols, the effects of 7-keto, 7-OHC, 25-OHC, 
and 27-OHC on the proliferation of HepG2 and Huh7 cells 
were measured using CCK-8. As shown in Fig. 1A, B, con-
centrations below 10 M of 7-keto, 7-OHC, 25-OHC, and 
27-OHC promoted cell proliferation, while at concentra-
tions above 10 M, oxysterols caused a reduction of cell num-
bers. To further analyze the cytotoxicity of the oxysterols, we 
employed nuclear staining with Hoechst 33342 in HepG2 
and Huh7 cells to determine the proportion of apoptotic 

Fig. 1. Oxysterols induce proliferation and apoptosis in HepG2 and Huh7 cell lines. A, B: HepG2 and Huh7 
cells were incubated for 24 h in the presence of different concentrations of 7-keto, 7-OHC, 25-OHC, and 27-
OHC, and then the proliferation rate was detected using CCK-8. C, D: HepG2 and Huh7 cells were treated 
with different concentrations of 7-keto, 7-OHC, 25-OHC, 27-OHC, and ethanol for 24 h, and then the nuclear 
morphology was observed under a microscope after Hoechst 33342 staining. The data represent mean ± SD 
from three individual experiments (n = 3, *P < 0.05, **P < 0.01, ***P < 0.001).
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ORP8 is required for apoptosis induced by 25-OHC
We have identified that overexpression of ORP8 induces 

an ER stress response in HepG2 cells (26), and ORP8 is 
anchored to ER membranes via its C-terminal transmem-
brane segment (21). To determine whether ORP8 could 
mediate 25-OHC-induced ER stress and cell apoptosis, we 
transfected ORP8 cDNA, ORP8 cDNA lacking the ORD do-
main (ORP8△ORD), or the related ORP5 cDNA into 
HepG2 cells and treated them with 25-OHC, followed by 
analysis of ER stress markers and apoptosis. The results re-
vealed that both 25-OHC treatment and ORP8 overex-
pression increased the Bip and Chop mRNA expression 
(Fig. 4A, B), while ORP8△ORD and ORP5 failed to do so. 
Interestingly, the increase of Bip and Chop mRNA induced 
by 25-OHC was potentiated upon overexpression of ORP8, 
but not ORP8△ORD or ORP5 (Fig. 4B), and the protein 
expression of ER stress markers was in conformity with Bip 
and Chop mRNA levels (Fig. 4C). Analysis of apoptosis by 
annexin V-FITC/PI staining showed, consistent with the 
ER stress results, that both 25-OHC treatment and ORP8, 
but not ORP8△ORD or ORP5 overexpression, induced an 
increased apoptotic cell rate (Fig. 4D). Furthermore, com-
bined 25-OHC treatment and ORP8, but not ORP8△ORD 
or ORP5 overexpression, induced a potentiated increase in 
apoptotic cells (Fig. 4D). Analysis of the cleavage of cas-
pase-9 and -3 by Western blotting further confirmed this 
observation (Fig. 4E).

We next assessed the role of endogenous ORP8 in the 
effect of 25-OHC-induced ER stress and cell apoptosis by 
employing a RNA interference approach. ORP8 knock-
down (Fig. 5A) abolished the increase of Bip and Chop 
mRNA and ER stress protein markers’ expression induced 
by 25-OHC, while knockdown of ORP5 failed to do so 
(Fig. 5B, C). Consistently, annexin V-FITC/PI staining 
and Western blot analysis of cleaved caspase-9 and -3 

mRNAs, central components involved in ER stress re-
sponses (29). qRT-PCR analyses revealed that the Bip and 
Chop mRNAs were robustly induced after 24 h treatment 
of HepG2 and Huh7 cells with 10 M 25-OHC, as com-
pared with the control (Fig. 2A, B). We also examined the 
protein expression of ER stress markers, including ATF4, 
Chop, phospho-PERK, and phospho-eIF2 by Western blot 
analysis. All of these markers significantly increased after 
treatment for 24 h with 10 M 25-OHC, whereas the ex-
pression did not change in cells treated with the vehicle 
(Fig. 2C, D).

To further confirm the role of 25-OHC in ER stress, 
HepG2 cells were pretreated with 4-PBA, a chemical mo-
lecular chaperone, which has been used to improve the 
misfolding and mislocalization of proteins and to reduce 
ER stress-mediated cell damage in vivo and in vitro (30–
32). The results showed that, when treated with 10 M 25-
OHC for 24 h, the increase of Bip and Chop mRNAs 
induced by 25-OHC was significantly reversed (Fig. 3A) in 
the presence of 4-PBA. Expectedly, the ATF4, Chop, phos-
pho-PERK, and phospho-eIF2 protein levels also showed 
a parallel reduction (Fig. 3B). In order to confirm whether 
the ER stress induced by 25-OHC contributes to cellular 
apoptosis, HepG2 cells treated with 25-OHC were sub-
jected to annexin V-FITC/PI double-staining followed by 
flow cytometry. The results showed an increase in apop-
totic cells upon treatment with 25-OHC as compared with 
the control (Fig. 3C), but the apoptotic cell rate was signifi-
cantly reduced when the 25-OHC treatment was combined 
with the addition of 4-PBA (Fig. 3C). We also analyzed the 
cleaved caspase-9 and -3 levels by Western blotting. Cleav-
age of the caspases was clearly enhanced in 25-OHC-treated 
cells, but this response was abolished by addition of 4-PBA, 
suggesting that apoptosis of the 25-OHC-treated cells is in-
duced by ER stress (Fig. 3D).

Fig. 2. The 25-OHC induces ER stress in HepG2 
and Huh7 cells. A, B: HepG2 and Huh7 cells were 
treated with 10 M 25-OHC for 24 h, and relative Bip 
and Chop mRNA levels were measured by qRT-PCR. 
C, D: The expression of ER stress markers, ATF4, 
Chop, phospho-PERK, and phospho-eIF2, were de-
termined by Western blotting. -Actin was used as a 
loading control. The data represent mean ± SD from 
three individual experiments (n = 3, ***P < 0.001).
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high levels of oxysterols act cytotoxic, causing cell death by 
apoptotic or necrotic processes (7).

HCCs are known to undergo metabolic alterations to 
sustain faster proliferation (45, 46). Thus, treatments tar-
geting these metabolic alterations may be a new therapeu-
tic strategy (47). HCCs disturb certain cellular functions of 
the liver and cause pathological alterations in many pro-
cesses including cholesterol metabolism (48, 49). Previously 
published data showed that oxysterols induce cytotoxicity 
and cell death in HepG2 cells (50, 51). Inhibiting ACAT2 
leads to the intracellular accumulation of unesterified oxy-
sterols and suppresses the growth of both HCC cell lines 
and their xenograft tumors (52).

A number of studies have revealed that oxysterols modify 
cell proliferation capacity and cell fate decisions. In human 
monocytic THP-1 cells, the oxysterol, 25-OHC, was shown 
to have dual effects on cell fate: It promoted cell prolifera-
tion at concentrations <10 M, but caused retardation of 
the THP-1 cell cycle at the G2/M phase and eventually in-
duced apoptosis at >10 M (5). Similar observations have 
been made in other cell types (53–55).

In the present study, we found that a low concentration 
of 7-keto, 7-OHC, 25-OHC, and 27-OHC promoted cell 
proliferation, while above the critical 10 M concentra-
tion, all of the oxysterols inhibited cell proliferation. Apop-
tosis is an important biological mechanism that contributes 
to the maintenance of the integrity of the multicellular or-
ganism, and is dependent on the expression of cell-intrinsic 
suicide machinery. In our study, all of the oxysterols induced 

showed a reduced degree of apoptosis in HepG2 cells sub-
jected to ORP8 knockdown, but not ORP5 knockdown 
(Fig. 5D, E). In addition, ORP8 re-overexpression could 
rescue the decreased Bip and Chop mRNA expression 
(Fig. 5B) and cell apoptosis (Fig. 5D) upon ORP8 knock-
down. These results provide mechanistic evidence sup-
porting the view that ORP8 plays a distinct role in 
mediating the 25-OHC-induced ER stress and apoptosis in 
hepatic cells.

DISCUSSION

The human liver is the central organ for cholesterol ho-
meostasis (33). In extrahepatic tissues, oxysterols are derived 
from cholesterol through either enzymatic or nonenzymic 
oxidation (34). Oxysterols exhibit important biological ac-
tivities in the induction of cell apoptosis, inhibition of cell 
growth, and regulation of cholesterol metabolism (35, 36). 
However, excess oxysterols are toxic to cells (37). There-
fore, under physiological conditions, excess oxysterols in 
all extrahepatic tissues are transported to the liver and fur-
ther metabolized by catabolism into bile acids, esterifica-
tion to oxysterol esters, sulfation for excretion, and direct 
efflux from liver cells (34, 38, 39). Oxysterols play a variety 
of regulatory roles in normal cellular processes, but patho-
logical effects of oxysterol accumulation have also been de-
scribed, for instance in atherosclerosis, neurologic diseases, 
and age-onset macular degeneration (40–44). Abnormally 

Fig. 3. ER stress is involved in 25-OHC-induced 
apoptosis. A, B: HepG2 cells were treated with or 
without 2 mM 4-PBA for 1 h, and then incubated 
with 10 M 25-OHC for 24 h, relative Bip and Chop 
mRNA levels were measured by qRT-PCR. ATF4, 
Chop, phospho-PERK, and phospho-eIF2 protein 
levels were analyzed by Western blotting. C: HepG2 
cells were treated with or without 4-PBA and 25-OHC 
as indicated above, stained with annexin V-FITC and 
PI, and analyzed by FCM for cell apoptosis. D: 
Cleaved caspase-9 and -3 protein levels were analyzed 
by Western blotting in the 25-OHC-treated HepG2 
cells. The data represent mean ± SD from three indi-
vidual experiments (n = 3, **P < 0.01, ***P < 0.001).
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FasL upregulation (26). Now we report that ORP8 may be 
involved in mediating hepatocellular apoptosis induced by 
oxysterols. We confirmed that ORP8 overexpression induced 
apoptosis in HepG2 cells. Importantly, the pro-apoptotic 
activity of 25-OHC was aggravated by ORP8 overexpres-
sion, while ORP8 knockdown could dampen the effect of  
25-OHC on apoptosis. These findings suggested that ORP8 
is required for the induction of apoptosis by 25-OHC. How-
ever, the precise molecular mechanism(s) by which oxys-
terols act via ORP8 to induce ER stress remains a subject  
of future study. Incubation with 25-OHC may cause accu-
mulation of 25-OHC fatty acyl esters in the ER due to 
their defective hydrolysis, thereby activating ER stress sig-
naling (16); ORP8 is anchored in the ER via its C-terminal 

HepG2 and Huh7 cell apoptosis in a dose-dependent man-
ner. In order to elucidate the molecular mechanism by 
which oxysterols induced cell death through apoptosis, we 
chose 25-OHC, the most extensively studied oxysterol, 
which has also been described as one of the most toxic spe-
cies (56, 57). We found that HepG2 cells treated with 10 
M 25-OHC displayed increased ATF4, Chop, phospho-
PERK, and phospho-eIF2 protein levels and cell apopto-
sis. Our results further indicated that 25-OHC induced 
HepG2 cell apoptosis through ER stress reponse.

Our previous studies have provided evidence for a novel 
function of ORP8 in the induction of apoptosis in hepa-
toma cells and suggested that overexpression of ORP8 in 
HepG2 cells induces an ER stress response, which results in 

Fig. 4. ORP8 overexpression enhances the 25-OHC effect on ER stress and apoptosis. A: HepG2 cells were 
transfected with ORP8, ORP5, ORP8△ORD cDNA, or empty vector, and the overexpression efficiency was 
assessed by Western blot analysis. B, C: HepG2 cells were transfected with ORP8, ORP5, and ORP8△ORD 
cDNA, and then treated with or without 10 M 25-OHC for 24 h, and relative Bip and Chop mRNA levels were 
measured by qRT-PCR. ATF4, Chop, phospho-PERK, and phospho-eIF2 protein levels were analyzed by 
Western blotting. D: HepG2 cells were treated as indicated above, stained with annexin V-FITC and PI, and ana-
lyzed by flow cytometry for cell apoptosis. E: Cleaved caspase-9 and -3 protein levels were analyzed by Western 
blotting. The data represent mean ± SD from three individual experiments (n = 3, **P < 0.01, ***P < 0.001).
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purified and fully functional ORP8 ligand binding domain 
fusion proteins has thus far hampered detailed biochemi-
cal study of its affinities for different sterols. However, the 
photo-cross-linking by Suchanek et al. (27) suggested that 
ORP8 also binds cholesterol, and more recent findings sug-
gest that it has the capacity to bind and transport phospha-
tidylserine and PtdIns-4-P (25).

Our previous work showed that ORP8 expression is 
downregulated in HCC, which may protect the cancer 
cells from apoptosis (21). In addition to the role in con-
trolling the apoptosis of hepatic cells, it is possible that 
the impact of ORP8 on hepatic cholesterol homeostasis 
could be involved in the carcinogenesis of HCC. Numer-
ous studies have shown increased levels of cholesterol in 
tumors, including HCC, as compared with normal tissue 
(62–64). In most cases, the increased cholesterol in cancer 

transmembrane segment and binds 25-OHC (21). One can 
therefore envision that ORP8 could aggravate the accumu-
lation of 25-OHC esters to enhance the ER stress response. 
Another possible mechanism by which oxysterols may 
evoke ER stress and cytotoxicity is distortion of cellular Ca2+ 
homeostasis (58); severe depletion of ER Ca2+ stores is known 
to induce ER stress responses, and distorted ER Ca2+ fluxes 
cause apoptosis via mitochondrial Ca2+ overload (59–61). 
Thus, another possible mechanism through which ORP8 
might aggravate the oxysterol effect is interference with the 
ER calcium fluxes.

In addition to oxysterols, several ORPs have been shown 
to bind cholesterol and glycerophospholipids. To under-
stand the function of ORP in molecular detail, information 
on its ligand-binding specificity and affinities for different 
lipidous ligands is warranted. However, the lack of highly 

Fig. 5. ORP8 knockdown partly abolishes the 25-OHC effect on ER stress and apoptosis. A: HepG2 cells 
were transfected with siORP8, siORP5, or siNT, and the knockdown efficiency was assessed by Western blot 
analysis. B, C: HepG2 cells were transfected with siORP8, siORP5, or ORP8 cDNA combined with siORP8, and 
then treated with or without 10 M 25-OHC for 24 h, and relative Bip and Chop mRNA levels were measured 
by qRT-PCR. ATF4, Chop, phospho-PERK, and phospho-eIF2 protein levels were analyzed by Western blot-
ting. D: HepG2 cells were treated as indicated above, stained with annexin V-FITC and PI, and analyzed by 
flow cytometry for cell apoptosis. E: Cleaved caspase-9 and -3 protein levels were analyzed by Western blotting. 
The data represent mean ± SD from three individual experiments (n = 3, **P < 0.01, ***P < 0.001).



1852 Journal of Lipid Research Volume 57, 2016

cells was caused by the loss of feedback inhibition of cho-
lesterol biosynthesis, uptake of extracellular cholesterol, 
or efflux of intracellular cholesterol (65–67). We previ-
ously reported evidence suggesting that ORP8 is impor-
tant to maintain the hepatic cholesterol homeostasis by 
negative control of cholesterol biosynthesis (22). Thus, 
one can speculate that downregulation of ORP8, a nega-
tive regulator of intracellular cholesterol, could be re-
quired for an increased level of hepatocellular cholesterol 
in HCC. This represents another mechanism through 
which reduced ORP8 expression could benefit the growth 
of hepatic carcinoma cells.

In conclusion, the present study suggests that ORP8 may 
mediate 25-OHC-induced ER stress and apoptosis in HepG2 
and Huh7 cells. These findings contribute to our under-
standing of the pathophysiology of HCC cell apoptosis, and 
may promote the development of new therapies for HCC.
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