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Abstract

High-throughput data generation platforms, like mass-spectrometry, microarrays, and sec-

ond-generation sequencing are susceptible to batch effects due to run-to-run variation in

reagents, equipment, protocols, or personnel. Currently, batch correction methods are not

commonly applied to microbiome sequencing datasets. In this paper, we compare different

batch-correction methods applied to microbiome case-control studies. We introduce a

model-free normalization procedure where features (i.e. bacterial taxa) in case samples are

converted to percentiles of the equivalent features in control samples within a study prior to

pooling data across studies. We look at how this percentile-normalization method compares

to traditional meta-analysis methods for combining independent p-values and to limma and

ComBat, widely used batch-correction models developed for RNA microarray data. Overall,

we show that percentile-normalization is a simple, non-parametric approach for correcting

batch effects and improving sensitivity in case-control meta-analyses.

Author summary

Batch effects are obstacles to comparing results across studies. Traditional meta-analysis

techniques for combining p-values from independent studies, like Fisher’s method, are

effective but statistically conservative. If batch-effects can be corrected, then statistical

tests can be performed on data pooled across studies, increasing sensitivity to detect dif-

ferences between treatment groups. Here, we show how a simple, model-free approach

corrects for batch effects in case-control microbiome datasets.

This is a PLOS Computational BiologyMethods paper.

Introduction

Data generated by high throughput methods like mass-spectrometry, second-generation

sequencing, or microarrays are sensitive to experimental and computational processing [1, 2].

This sensitivity gives rise to ‘batch effects’ between independent runs of an experiment. Even
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when different research groups adhere to the same methodologies, these effects can arise due

to slight differences in hardware, reagents, or personnel [3]. Thus, it is inappropriate to make

direct, quantitative comparisons of uncorrected data across studies.

Several tools for reducing batch effects in RNA microarray data have been developed. For

example, surrogate variable analysis (SVA) estimates a set of inferred variables (eigenvectors)

that explain variance associated with putative batch effects [4]. These inferred variables are

then incorporated into a linear model to correct downstream significance tests. The limma

package employs a similar linear correction to account for batch effects prior to statistical anal-

ysis [5]. SVA and limma are part of a family of linear batch-correction methods that use differ-

ent varieties of factor analysis, singular value decomposition, or regression [4–7]. The most

relied upon method to date [8], called ComBat, uses a Bayesian approach to estimate location

and scale parameters for each feature within a batch [9]. All of these models are most effective

when batch effects are not conflated with the true biological effects [1]. Furthermore, most

batch correction methods make certain parametric assumptions.

Unfortunately, models that often work well for many types of ‘omics data may not be

appropriate for microbiome datasets. In microbiome studies, batch effects are often diffuse

and conflated with biological signals [10–12]. The microbiome field has also struggled with

finding appropriate parametric models for bacterial abundance distributions and for dealing

with zeros. This is especially true for low-biomass samples in microbiome sequencing studies,

like samples taken from the built environment [13], where populations are under-sampled, the

biological signal is relatively weak, and batch effects can be quite large [14]. One way to get

around this issue is to calculate statistics within a given batch, and then compare significant

features across batches using classic meta-analysis techniques for combining p-values, like

Fisher’s and Stouffer’s methods [15, 16]. These meta-analysis techniques are robust to batch

effects across independent studies, but have less statistical power and ability to detect subtle

differences than directly pooling data across studies.

Here, we describe a model-free data-normalization procedure for controlling batch effects in

case-control microbiome studies that enables pooling data across studies. Case-control studies

include a built-in population of control samples (e.g. healthy subjects) that can be used to normal-

ize the case samples (e.g. diseased subjects). For every feature (i.e. bacterial taxon), the case abun-

dance distributions can be converted to percentiles of the equivalent control abundance

distributions (Fig 1). Study-specific batch effects present in the case samples will also be present in

the control samples, and by converting the case data into percentiles of the control distribution

these effects are mitigated. Upon conversion to percentiles of the within-study controls, percentile-

normalized samples from multiple studies with similar case-control definitions can be more appro-

priately pooled for statistical testing (Fig 1). We show that this approach effectively controls batch

effects in microbiome case-control studies and we compare this method to pooling ComBat- or

limma-corrected data, and to Fisher’s and Stouffer’s methods for combining independent p-values.

Methods

Datasets

We used a collection of case-control datasets obtained from the MicrobiomeHD database [17]

to validate our batch-normalization method. We focused our analyses on studies spanning five

diseases: colorectal cancer (CRC) [18–21], Crohn’s Disease (CD) [22–25], Ulcerative Colitis

(UC) [23–25], obesity (OB) [18, 26–35], and Clostridium difficile induced diarrhea (CDI) [33,

36]. For a subset of three CRC studies [18–20], we were able to obtain sequence data from the

same region of the 16S gene (V4) so that these data could be processed together. The remain-

ing MicrobiomeHD case-control datasets were previously processed using the same pipeline
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(see below), and then Operational Taxonomic Units (OTUs) were summarized at the genus

level for comparison across studies.

Sequence data processing

To perform OTU-level analyses across the CRC studies, we downloaded the raw data from all

of the MicrobiomeHD datasets that sequenced the V4 region of the 16S gene. We quality fil-

tered and length trimmed each V4 dataset as described in Duvallet et al. (2017) and

concatenated these raw, trimmed FASTQ files into one file. We removed any unique

sequences that did not appear more than 20 times and clustered the remaining reads with

USEARCH [37] at 97% similarity. We assigned these OTUs taxonomic identifiers using the

RDP classifier [38] with a cutoff of 0.5.

For genus-level analyses, OTU tables and metadata were acquired from the MicrobiomeHD

database (https://doi.org/10.5281/zenodo.569601). Raw data were downloaded from the origi-

nal studies and processed through our in-house 16S-processing pipeline (https://github.com/

thomasgurry/amplicon_sequencing_pipeline) as described previously [17]. Each study’s OTU

table was converted to relative abundance by dividing each sample by its total number of reads

and collapsed to genus level by summing all OTUs with the same genus-level annotation.

To plot data in ordination space, Bray-Curtis distances were calculated from relative abun-

dance data using Scikit-learn (sklearn.metrics.pairwise.pairwise_distances; metric = ‘braycur-

tis’) [39]. Non-metric multidimensional scaling (NMDS) coordinates were calculated for two

axes based on Bray-Curtis distances using Scikit-learn (sklearn.manifold.MDS; n_compo-

nents = 2, metric = False, max_iter = 500, eps = 1e-12, dissimilarity = ‘precomputed’).

Percentile normalization

In this procedure, control feature distributions are percentile-normalized against themselves

(resulting in a uniform distribution between 0 and 100) and case feature distributions are

Fig 1. Percentile-normalization procedure converts case and control values into percentiles of the control distribution, which allows for pooling of normalized

data across studies. Conceptual plot shows theoretical feature (OTU 1) abundance distributions for control samples and case samples from two independent studies.

Converting a control distribution into percentiles of itself naturally gives rise to a uniform distribution (represented by flat blue distributions in central panels), while

converting the case distribution into percentiles of the control distribution produces a non-uniform distribution when these two distributions differ (represented by

skewed orange distributions in central panels). The right-most panel shows the result of pooling percentile distributions from study 1 and study 2. Percentile-

normalization places data from separate studies onto a standardized axis that allows for cross-study comparison. Each simulated case and control distribution was

produced by randomly sampling 100 times from a lognormal distribution. Study 1 control parameters: μ = 0.1 and σ = 0.7. Study 1 case parameters: μ = 0.8 and σ = 0.5.

Study 2 control parameters: μ = 1.5 and σ = 0.2. Study 2 case parameters: μ = 1.75 and σ = 0.13.

https://doi.org/10.1371/journal.pcbi.1006102.g001
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converted into percentiles of their equivalent control features. Treating our controls as null-

hypotheses is motivated by the idea that healthy patients should be treated as similar across

datasets, even though we understand that they will differ due to biological as well as technical

batch effects. Relative abundance distributions were converted to percentiles using the SciPy v

0.19.0 [40] stats.percentileofscore method (kind = ‘mean’). In order to avoid rank pile-ups due

to the presence of many zeros, we replaced zeros with pseudo relative abundances drawn from

a uniform distribution between 0.0 and 10−9 (i.e. a set of random values smaller than the lowest

possible relative abundance in any dataset). Due to the zero-replacement step, p-values can

shift slightly upon re-analysis with a different random draw, which can lead to the loss or gain

of significance for features very near the significance threshold. Within each study, control dis-

tributions for each individual OTU or genus were converted into percentiles of themselves

and case distributions were converted into percentiles of their corresponding control distribu-

tion. We have written a python script that performs percentile-normalization given an OTU

table, a list of case sample IDs, and a list of control sample IDs as inputs (https://github.com/

seangibbons/percentile_normalization). A QIIME 2 (https://qiime2.org) plugin for running

percentile-normalization is also available (https://github.com/cduvallet/q2-perc-norm).

ComBat

For each disease, we applied ComBat [8] to the case-control datasets analyzed in this study.

Relative abundances (OTUs in the CRC analysis or OTUs collapsed to the genus level in the

genus-level analysis) were log-transformed prior to running ComBat (default settings), adding

a pseudo relative abundance of half the minimal frequency (across the entire feature table) to

replace zeros. ComBat-corrected data were then transformed back from log-space (i.e. expo-

nential transformation) prior to downstream analyses.

limma

In addition to ComBat, we applied a linear batch correction method from the limma package

in R [5]. Relative abundances (zeros replaced with pseudo relative abundances equal to half the

minimal frequency across the entire feature table) were log-transformed as described above

and then a linear model was fit to subtract batch effects using the removeBatchEffect function

(default settings). The limma-corrected data were then transformed back from log-space (i.e.

exponential transformation) prior to downstream analysis.

Statistical analysis

To calculate statistical significance, we restricted our statistical tests to OTUs/genera that

occurred in at least one third of control or one third of case samples in order to reduce our

multi-test correction penalty. We used the Wilcoxon rank-sum test, as implemented in SciPy

v0.19.0 (sicipy.stats.ranksums) [40], to determine significant differences between independent

groups of samples. Wilcoxon tests were run either within or across studies. In order to calcu-

late statistics across studies, normalized case and control samples from multiple studies of the

same disease were combined together into the same OTU table. Hereafter, combining datasets

is referred to as ‘pooling.’ P-values were multiple-test corrected using the Benjamini-Hochberg

False Discovery Rate (FDR) procedure, as implemented in StatsModels v 0.8.0 (statsmodels.

sandbox.stats.multicomp.multipletests) [41]. Differences in overall community structure were

assessed using the Permutational Multivariate Analysis of Variance (PERMANOVA) test in

R’s vegan package [42] as implemented in scikit-bio (skbio.stats.distance.permanova). Fisher’s

and Stouffer’s methods for combining p-values were performed using SciPy v0.19.0 (scipy.

stats.combine_pvalues; method = ‘fisher’ or method = ‘stouffer’). For Stouffer’s method,
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weights for each study were calculated as the square root of the number of cases plus the num-

ber of controls. OTUs/genera with significant responses in opposing directions across studies

were excluded from Fisher and Stouffer analyses.

in silico experiments

We ran an in silico titration experiment using the OTU-level data to simulate pooling of con-

trol samples from different datasets before calculating significant differences. Healthy samples

from one study were mixed with healthy samples from another study at different proportions

prior to calculating significant differences in OTU frequencies between cases and controls.

Case and control groups were subsampled to 40 samples each. Control samples were substi-

tuted by randomly selected samples from another study along a fractional gradient (0–100%

control samples from another study). We calculated significant differences between case and

control groups using the Wilcoxon rank-sum test and applied an FDR correction. OTUs with

q-values� 0.05 were considered significant. The titration experiment was rerun 20 times, and

the results were averaged.

Similar to the titration experiment, we ran an OTU-level analysis of how batch-correction

methods might impact false-positive rates by randomly selecting 40 control samples from the

Baxter et al. (2016) study as artificial ‘controls’ and 40 control samples from the Zeller et al.

(2014) study as artificial ‘cases’ (across 20 iterations) for each data type (i.e. raw, percentile-

normalized, limma-corrected, and ComBat-corrected). We then calculated significant differ-

ences between these artificial ‘case’ and ‘control’ groups as outlined above to generate p-values

for each OTU.

Results

Batch effects at OTU-level resolution

To minimize possible biases across data sets, we identified three colorectal cancer (CRC) stud-

ies that sequenced the same region of the 16S gene (V4). We reprocessed the raw sequence

data from each study in the same quality filtering and OTU picking pipeline to obtain bioin-

formatically-standardized results. OTUs that occurred in at least one third of case or one third

of control samples (i.e. within individual studies) were retained for all downstream statistical

analyses. Despite standardizing the bioinformatic processing of these data, we saw significant

batch effects in healthy patients across studies (PERMANOVA p< 0.001; Fig 2). The similarity

between samples from the Baxter et al. (2016) and Zackular et al. (2014) studies is due to the

fact that they were sourced from the same patient cohort (although samples were processed

separately), making this comparison a good pseudo-negative control for batch effects [18, 20].

There was an apparent reduction in the batch effect after applying ComBat, although differ-

ences between batches remained weakly significant (PERMANOVA p = 0.008, Fig 2) [8]. Due

to the non-independence between the Baxter and Zackular patient cohorts, we removed the

smaller of the two studies (Zackular) from all downstream analyses. Out of a total of 1,021

OTUs that passed our abundance filter, 681 differed significantly in uncorrected relative abun-

dance between the Baxter and Zeller healthy controls (FDR q� 0.05).

We ran an in silico titration experiment to simulate pooling of control samples from differ-

ent datasets before calculating significant differences. Healthy samples from one study were

mixed with healthy samples from another study at different proportions prior to calculating

significant differences in OTU frequencies between cases and controls (see conceptual outline

in Fig 3). For non-normalized data, the number of significant OTUs greatly increased due to

batch effects as more control samples were substituted in from another study. This result high-

lights the danger of pooling raw data across batches. ComBat- and limma-corrected data

Batch effects in microbiome studies
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performed better than uncorrected data, but still showed many spurious results as the propor-

tion of control samples from another study increased (Fig 3). Percentile-normalization showed

Fig 2. Batch effects between healthy controls from different studies can be reduced by ComBat and percentile-normalization. Non-metric multidimensional

scaling (NMDS) plot showing the distribution of healthy controls from three colorectal cancer studies in ordination space (Bray-Curtis distances of relative

abundance OTU-level data). Despite standardized bioinformatic processing, healthy patients differed significantly in their gut microbiomes across studies

(PERMANOVA p< 0.001; batch accounts for 6.342% of the total variance). Studies were still significantly different after applying ComBat, an established batch-

correction method (PERMANOVA p< 0.01). However, percentile-normalization did a better job of stabilizing the variance across studies and removed any apparent

batch effect (PERMANOVA p> 0.5).

https://doi.org/10.1371/journal.pcbi.1006102.g002

Fig 3. Pooling non-normalized samples from different studies can give rise to many spurious associations. The control group from one study is gradually

substituted with randomly chosen control samples from another study (non-normalized, percentile-normalized, limma-corrected, and ComBat-corrected), keeping the

total number of case and control samples fixed at n = 40 (see conceptual illustration on the left). Mixing in non-normalized control samples from another study gave

rise to spurious results due to batch effects (blue lines). ComBat- and limma-corrected data showed fewer spurious associations (green and red lines). Percentile-

normalization showed no increase in spurious results along the titration gradient (orange lines).

https://doi.org/10.1371/journal.pcbi.1006102.g003
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no increase in spurious results over the titration gradient (Fig 3). Although we do see several

significant CRC-associated OTUs in the full dataset (see below), these were not detected in the

titration experiment due to the loss of statistical power when reducing case and control groups

to only 40 samples each.

We ran a second in silico experiment to determine whether the false-positive rate was

impacted by our different batch-correction methods. We randomly selected 40 samples from

the Baxter healthy controls as artificial ‘controls’ and 40 samples from the Zeller healthy con-

trols as artificial ‘cases’ for each data type (i.e. non-normalized, percentile-normalized, limma-

corrected, and ComBat-corrected) and calculated significant OTU-level differences between

these groups. We repeated this process twenty times to generate a set of p-value distributions.

We found that the fraction of p-values� 0.05 can be as high as ~70% for the non-normalized

data (Fig 4). This result matches with our finding that 681 out of the 1,021 OTUs in this dataset

differed significantly across Baxter and Zeller controls (q� 0.05). Each normalization tech-

nique drastically reduced the number of false positives, but percentile-normalization gave the

best results (Fig 4). When low-abundance OTUs were included in the analysis, ComBat and

limma showed highly skewed p-value distributions, giving rise to a larger number of false posi-

tives than the non-normalized data (S1 Fig).

We next assessed the performance each cross-study analysis method by comparing OTU-

level results across two independent CRC datasets. In the Baxter study, there were 172 healthy

(control) samples and 120 CRC (case) samples, with 14 OTUs (from Fusobacterium, Coprococ-
cus, Butyricicoccus,Gemmiger, Faecalibacterium, Roseburia, Parvimonas, Haemophilus, Por-
phyromonas, Peptostreptococcus, Streptophyta, Bacteroides and Clostridium XIVa genera)

showing significant differences in abundance between cases and controls (FDR q� 0.05). For

Zeller, there were 71 control and 40 case samples, with 18 OTUs (from Butyricicoccus,

Fig 4. False positive rates are reduced by batch-correction methods. Random sets of 40 Baxter controls and random

sets of 40 Zeller controls were selected for null case-control comparisons (20 iterations). Smaller points show the

fraction of p-values� 0.05 within a given iteration, while larger dots show the average value across all 20 iterations.

Within each category, smaller points are randomly jittered along the x-axis for better visualization. The fraction of p-

values� 0.05 is highly inflated for non-normalized data (red dashed line shows the null-expectation for p-values).

Only abundant OTUs (detected in at least a third of case or control samples) were included in this analysis.

https://doi.org/10.1371/journal.pcbi.1006102.g004
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Butyricimonas, Fusobacterium, Closridium XIVa, Streptococcus, Parabacteroides, Alistipes,
Anaerostipes, Parvimonas, Peptostreptococcus, Blautia, Dialister, and Bacteroides genera) that

differed significantly across cases and controls (FDR q� 0.05).

In the absence of batch effects, pooling data across datasets of the same disease should

increase sensitivity to detect significant cross-study associations. We pooled percentile-nor-

malized, limma-corrected, and ComBat-corrected data, respectively, across Baxter and Zeller

studies to look for OTUs that differed significantly across cases and controls. These pooled

results were then compared to classic methods for combining p-values from each dataset’s

individual results (above). For the percentile-normalized data, we found 39 OTUs that differed

significantly between cases and controls (FDR q� 0.05), 21 of which overlapped with the

within-study results. The pooled limma-corrected and ComBat-corrected data resulted in 37

and 36 significant OTUs, respectively. 35 of the OTUs identified as significant by ComBat

were also significant in the limma results. 30 of the limma results and 29 of the ComBat results

were also significant in the percentile-normalization results, respectively. Fisher’s method

identified seven significant OTUs from Clostridium XIVa, Streptococcus, Fusobacterium, Parvi-
monas, Peptostreptococcus, and Anaerostipes genera, which were also found in the percentile-

normalized results. Stouffer’s method identified the same seven OTUs found using Fisher’s

method. Overall, the pooling methods improve statistical power to detect significant OTUs

over traditional meta-analysis methods. For example, particular OTUs from Desulfovibrio and

Parabacteroides genera were identified as significantly enriched in CRC patients in the pooled

results (ComBat, limma, and percentile-normalized), but not in the within-study results or in

the Fisher and Stouffer results. Pooled analysis of percentile-normalized data also identified on

Enterobacter OTU enriched in cancer patients, two OTUs from the Lachnospiraceae family

that were enriched in controls and one Lachnospiraceae that was enriched in cases, which were

missed by the within-study analyses. In all, 18 OTUs were identified in the pooled, percentile-

normalized results that were missed by the within-study analyses (Fig 5). These additional tax-

onomic associations (e.g. Desulfovibrio, Costridium XIVa, and Lachnospiraceae) are consistent

with prior meta-analyses of CRC microbiome studies [17, 43]. It is important to visualize the

data being fed into statistical tests to determine whether significant associations are being

driven by outlier studies or by other artifacts. The associations identified in Fig 5 appear to be

biologically meaningful due to the overall consistency of the effect directions across studies.

Batch effects at genus-level resolution across multiple diseases

In order to assess the performance of different meta-analysis techniques across a larger set of

studies and diseases, we summarized OTU abundances at the genus level for five diseases

across 18 studies—Clostridium difficile induced diarrhea (CDI), Crohn’s disease (CD), ulcera-

tive colitis (UC), obesity (OB), and CRC. There were a total of 306 unique genera detected

across studies. There were two CDI case-control studies: Schubert et al. (2014) had 154 control

and 93 case samples [33]; Vincent et al. (2013) had 25 control and 25 case samples [36]. There

were four inflammatory bowel disease (IBD) studies that included CD patients and three that

also included UC patients: Papa et al. (2012) had 24 non-IBD control samples, 23 CD samples,

and 43 UC samples [23]; Morgan et al. (2012) had 18 control, 61 CD and 47 UC samples [24];

Willing et al. (2010) had 35 control, 16 UC and 29 CD samples [25]; Gevers et al. (2014) had 16

non-IBD control and 146 CD samples, with no UC samples [22]. There were eleven studies

with lean and obese (OB) cohorts: Turnbaugh et al. (2009) had 33 controls and 102 cases [26];

Goodrich et al. (2014) had 428 controls and 185 cases [30]; Escobar et al. (2014) had 10 con-

trols and 10 cases [27]; Zhu et al. (2014) had 16 controls and 25 cases [44]; Jumpertz et al.

(2011) had 12 controls and 9 cases [34]; Ross et al. (2015) had 26 controls and 37 cases [29];

Batch effects in microbiome studies
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Zupancic et al. (2012) had 96 controls and 101 cases [28]; Baxter et al. (2016) had 125 controls

and 47 OB cases [18]; Schubert et al. (2014) had 68 controls and 34 OB cases [33]; Wu et al.

(2011) had 59 controls and 9 cases [32]; and Zeevi et al. (2015) had 567 controls and 151 cases

[31]. There were four independent CRC studies, including the Baxter and Zeller studies listed

in the OTU-level analysis (see above for sample sizes). The remaining two CRC studies are

Wang et al. (2012), which had 54 control and 44 case samples [45], and Chen et al. (2012),

which had 22 controls and 21 cases [21].

Most genera that differed significantly within a given study were not significant in other

studies of the same disease. For example, of the 36 unique genera that showed significant dif-

ferences within any given OB study, none were found to be significant in all studies (I = 0;

Table 1). Indeed, there were no genera that were significant across all studies in the majority of

diseases studied (I = 0; Table 1). CDI only had two studies, and of the 38 significant results,

only six were shared across both datasets. Overall, few genera were significant within two or

more studies (2N� 6; Table 1).

The number of genera that differed significantly across pooled cases and controls changed

depending on how the data were batch-corrected (Table 1 and S1 Table). For every disease,

percentile-normalization yielded the largest number of significant genera when compared to

other methods. Overall, ComBat- and limma-corrections resulted in many fewer significant

genera, especially for CD, UC, and CRC (Table 1 and S1 Table). Half of the IBD (CD and UC)

studies included non-IBD patients with inflammatory symptoms as controls rather than clini-

cally healthy patients. These biologically relevant differences in inflammatory symptoms

between control cohorts were conflated with batches and were likely smoothed out by ComBat

and limma corrections. Fisher’s and Stouffer’s methods consistently identified fewer

Fig 5. OTUs significant across CRC studies, but not within a given study. Pooling data provides greater statistical power to detect subtle, yet consistent differences

in OTU abundances across sample groups. 18 OTUs are labeled by their most resolved taxonomic annotation. Each OTU in this plot was not found to be significant

within either Baxter or Zeller studies, but became significant after pooling the percentile-normalized datasets (q� 0.05).

https://doi.org/10.1371/journal.pcbi.1006102.g005
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significant associations than percentile-normalization (Table 1 and S1 Table). Pooling data

prior to running a statistical test is a more sensitive technique than combining independently

calculated p-values [46]. Thus, percentile-normalization increases the statistical power to

detect differences across studies while controlling for false positives and batch effects.

To better assess how percentile normalization impacted the pooled results, we looked at

genera that were significant within a single-study but not across studies after pooling. There

were 12 genera that were significant within a subset of CRC studies, but not after pooling (Fig

6). Gemmiger, Bacteroides, and Roseburia showed variable responses across studies, sometimes

enriched in controls and other times enriched in cases. The remaining genera showed weak

Table 1. Normalization methods impact the number of significant genus-level associations between cases and

controls across multiple diseases.

number of significant genera

disease method pooled within

CDI (N = 2) percentile 37 U = 38 / 2N = 6

Fisher 12

Stouffer 12

ComBat 36

limma 36

CD (N = 4) percentile 19 U = 13 / I = 0 / 2N = 2

Fisher 6

Stouffer 6

ComBat 2

limma 1

UC (N = 3) percentile 10 U = 17 / I = 0 / 2N = 1

Fisher 4

Stouffer 4

ComBat 5

limma 5

CRC (N = 4) percentile 12 U = 20 / I = 0 / 2N = 3

Fisher 9

Stouffer 6

ComBat 5

limma 5

OB (N = 11) percentile 18 U = 36 / I = 0 / 2N = 6

Fisher 4

Stouffer 6

ComBat 13

limma 15

Numbers of genera that differ significantly between cases and controls for five diseases. In the ‘disease’ column, CDI

= Clostridium difficile induced diarrhea, CD = Crohn’s Disease, UC = Ulcerative Colitis, CRC = Colorectal Cancer,

and OB = obesity. ‘N = ‘ shows the number of studies included in each meta-analysis. The method column indicates

how the data were processed prior to running significance tests (percentile-normalized, Fisher’s method for

combining p-values, Stouffer’s method for combining p-values, ComBat-corrected, or limma-corrected). The

significance threshold used was q � 0.05 (FDR). The ‘pooled’ column shows the total number of genera that were

found to be significantly different across pooled studies for a given disease. The ‘within’ column shows the total

number of unique (non-redundant) genera that were identified as significantly different within each study

(U = union), the number of genera that were significant in all individual studies (I = intersection), and the number of

significant genera that were consistently significant in at least two studies (2N; 2N = = I for CDI).

https://doi.org/10.1371/journal.pcbi.1006102.t001
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associations within one or two studies, but did not differ significantly across studies (i.e.

q� 0.05). These genera that show weak or inconsistent responses across batches may not be

reliable disease biomarkers. However, by including larger numbers of CRC studies in future

meta-analyses it is likely that some of these genera could pass the significance threshold. Two

genera—Lactobacillus and Desulfovibrio—were not significantly different between cases and

controls within an individual study, but became significant after pooling (Fig 7). These genera

showed weak, but largely consistent enrichment in cancer patients and demonstrate the utility

of pooling datasets to detect subtle differences.

While prior work has suggested that there may not be consistent associations between the

gut microbiome and obesity [35], we observed six genera in a recent meta-analysis that dif-

fered significantly across two or more (out of five) independent obesity studies [17]. Of these

six genera, four (Roseburia, Clostridium IV,Oscillobacter, and Pseudoflavonifractor) were also

found to be significant in the pooled, percentile-normalized results (S1 Table; S2 Fig). The two

remaining genera not found to be significant in the percentile-normalized analysis (Mogibac-
terium and Anaerovorax) showed highly irregular responses across the 11 obesity studies ana-

lyzed in this study (S3 Fig). Despite the irregular behavior of these genera, Fisher’s and

Stouffer’s methods both identified Mogibacterium as significantly associated with obesity (S1

Table).

Discussion

Batch effects are unavoidable when working with high-throughput data generation platforms.

The RNA microarray community has been proactive in the development of tools for dealing

with these effects [1, 8]. However, these tools are not as effective when batch effects are con-

founded with biological signals or when parametric assumptions do not apply, which is often

the case in microbiome case-control studies. Therefore, model-free methods are needed for

correcting batch effects across microbiome datasets. Fortunately, case-control studies can be

internally normalized by their own control samples. Any study-specific batch effects in the

case samples will be present in the control samples, and by converting the case data into per-

centiles of the control distribution these effects are attenuated without making parametric

assumptions.

Relative abundance, limma-corrected, and ComBat-corrected data—but not percentile-

normalized data—quickly yielded a large number of spurious results when cases from one

study were tested against controls from another (Fig 3). Additionally, when control popula-

tions from different batches were compared to one another, non-normalized data yielded a

much larger number of false positives than batch-corrected data (Fig 4). Our percentile-nor-

malization approach was much more effective than limma and ComBat in controlling false

positives (Fig 4), especially in the presence of low-abundance taxa (S1 Fig).

Because pooling datasets increases statistical power, it is tempting to pool these data even in

the absence of suitable batch-correction methods. Consequently, pooling non-normalized data

from different batches has been common practice in the microbiome field [27, 29, 35, 47–55].

In this paper, we demonstrate why this practice is highly inadvisable. Pooling batch-corrected

data from multiple studies allowed us to detect significant differences that were not found

within a given study (Figs 5 and 7), while removing associations that were weak or inconsistent

across studies (Figs 6 and S3). Percentile-normalized results often identified significant differ-

ences between cases and controls that were missed by other normalization methods (Table 1).

For CDI, percentile-normalized results identified about the same number of significant hits as

the other batch-correction methods (Table 1), which was likely due to the fact that the biologi-

cal signal associated with diarrhea is very strong [17]. In cases where the biological signal is
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strong, results should be robust to the types of analyses employed. For UC and CD studies

(IBD), percentile-normalization identified several significant genera that limma and ComBat

did not (Table 1). The reduced number of significant hits from limma- and ComBat-corrected

data for IBD was likely due to heterogeneous control cohorts across these studies (i.e. healthy

patients vs. non-IBD patients), which likely smoothed-out inflammation-associated signals.

This result highlights the importance of having consistent definitions for case and control

cohorts across studies.

We compared percentile-normalization and pooling to Fisher’s and Stouffer’s methods for

combining independent p-values. Stouffer’s method is similar to Fisher’s, but includes weights

for each p-value based on the number of samples in a study. Percentile-normalization

Fig 6. Genera that show a significant difference between CRC cases and controls within a given study, but not after pooling. 12 genera showed

significant differences between cases and controls within a study (q� 0.05), but not after pooling across CRC studies.

https://doi.org/10.1371/journal.pcbi.1006102.g006

Fig 7. Genera that do not show a significant difference between CRC cases and controls within a given study, but do after pooling. Two genera did not

show significant differences between cases and controls within a study, but became significant after pooling across CRC studies (q� 0.05).

https://doi.org/10.1371/journal.pcbi.1006102.g007
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consistently identified a larger number of significant hits than Stouffer’s and Fisher’s methods,

confirming that pooling data increases sensitivity (i.e. reducing putative false negatives). Meth-

ods for combining p-values from independent studies are quite robust and should probably be

considered as a safe alternative to pooling (i.e. lower chance of false positives). However, in the

case of our obesity analysis, Fisher’s and Stouffer’s methods identified Mogibacterium as signif-

icant despite its apparent inconsistency across studies (S3 Fig).

In conclusion, we present a robust, model-free procedure for transforming each feature in a

microbiome case-control dataset into percentiles of its control distribution (Fig 1). The main

conditions for applying this method are that 1) each batch must have a sizeable number of con-

trol samples (i.e. the density of the control distribution limits the resolution of the percentile-

transformation of the case samples), and 2) case and control populations should be consis-

tently defined across batches (i.e. same definition of ‘healthy’ or ‘diseased’ groups). Given these

caveats, percentile-normalized features can be pooled across studies for univariate statistical

testing (whichever test a researcher prefers—ideally non-parametric), alleviating the batch

effect problem. This model-free procedure could also be applied to other types of ‘omics data-

sets with consistently defined internal controls. We find that this procedure allows us to iden-

tify differences between cases and controls that are often missed by more conservative meta-

analysis techniques. Methods developed for batch-correction in microarray data, like limma

and ComBat, can partially reduce batch effects in microbiome studies (Figs 2–4), but appear to

obscure real patterns if batch effects are not independent of biological signals or if the paramet-

ric assumptions of these models are not valid. We suggest that methods like limma and Com-

Bat are useful for studies lacking case and control groups. However, when studies have

consistently defined internal controls, percentile-normalization should be the preferred batch

correction approach. Future work should focus on developing parametric models specifically

for batch correction in microbiome datasets, which could further improve sensitivity to detect

subtle biological differences across studies.

Supporting information

S1 Table. Excel file containing tabs for each disease analyzed in this study: each tab con-

tains information on significant genera from Table 1.

(XLSX)

S1 Fig. False positive rates are reduced by percentile-normalization, but not by ComBat or

limma, in the presence of low-abundance OTUs. Random sets of 40 Baxter controls and ran-

dom sets of 40 Zeller controls were selected for null case-control comparisons (20 iterations).

Smaller points show the fraction of p-values� 0.05 within a given iteration, while larger dots

show the average value across all 20 iterations. Within each category, smaller points are ran-

domly jittered along the x-axis for better visualization. The fraction of p-values� 0.05 is highly

inflated for all methods except percentile-normalization (red dashed line shows the null-expec-

tation for p-values). All OTUs were included in this analysis (i.e. no abundance filter prior to

running tests). ComBat and limma show highly skewed p-value distributions when including

low-abundance OTUs.

(TIFF)

S2 Fig. 18 genera significantly different (q� 0.05) between obese and healthy patients

based on pooled percentile-normalized analysis (from Table 1). Gray points show data

pooled from all 11 obesity studies. Other colors show individual obesity studies. Studies listed

in order from left to right: Zhu et al. (2014), Zeevi et al. (2015), Wu et al. (2011), Baxter et al.

(2016), Schubert et al. (2014), Zupancic et al. (2012), Ross et al. (2015), Jumpertz et al. (2011),
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Turnbaugh et al. (2009), Goodrich et al. (2014), Escobar et al. (2014). X symbols indicate the

average control percentiles, while + symbols indicate the average case percentiles.

(TIFF)

S3 Fig. Two genera that were significant (q� 0.05) in at least two obesity studies in Duval-

let et al. (2017), but were not significant in the pooled, percentile-normalized analysis.

Gray points show data pooled from all 11 obesity studies. Other colors show individual obesity

studies. Studies listed in order from left to right: Zhu et al. (2014), Zeevi et al. (2015), Wu et al.

(2011), Baxter et al. (2016), Schubert et al. (2014), Zupancic et al. (2012), Ross et al. (2015),

Jumpertz et al. (2011), Turnbaugh et al. (2009), Goodrich et al. (2014), Escobar et al. (2014). X

symbols indicate the average control percentiles, while + symbols indicate the average case per-

centiles.

(TIFF)
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