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ABSTRACT: The inhibition efficiency of cationic surfactants such as 1-ethyl-4H-
benzo[d][1,3]thiazin-1-ium bromide (BTB) and N-ethyl-N,N-dioctyloctan-1-aminium bro-
mide (DAB) for X-65 type carbon steel in oil well formation water under a H2S environment
has been studied using potentiodynamic polarization and electrochemical impedance
spectroscopy measurements. Fourier transform infrared and nuclear magnetic resonance
spectroscopy techniques were used to confirm the chemical structures of BTB and DAB. The
novelty of this work lies in modifying the long chains in the inhibitor, which leads to high
efficiency. These surfactants act as good inhibitors, which inhibit both cathodic and anodic
routes by adsorption on the electrode surface, which is compatible with the critical micelle
concentration parameters, together with a slight positive change in the corrosion potential
(Ecorr). The IE% reached 93.4% for compound BTB and 84% for compound DAB at 250
ppm. The equivalent circuit was used to analyze the model of the corrosion inhibition
process. The atomic force microscopy image shows the morphology of the adsorbed layer
formed on the steel alloy. Finally, a suitable inhibition mechanism was proposed.

1. INTRODUCTION

In petroleum fields, carbon steel has been used in many
applications.1,2 These applications, for the most part, incite
genuine destructive impacts on types of gear, tubes, and
pipelines made of iron and its alloys.3,4 Subsequently, the
counteractive action of metals used in the petroleum field and
modern applications from consumption is indispensable, which
must be managed, particularly in corrosive media. Cationic
surfactants as a branch of surfactants play a vital role in many
industrial processes such as food processing, oil recovery, and
in petroleum additives like corrosion inhibitors.5−17

The inhibition efficacy is directly proportional to the
inhibitor concentration and contact time with the metal
surface. Many industrial processes generate gases like carbon
dioxide, ammonia, and hydrogen disulfide. This latter gas
contains sulfide ions, which react with many heavy metals. H2S
is a pale gas with an offensive odor suggestive of rotten eggs. It
is a weak reducing acid and is readily soluble in water with
subsequent ionic dissociation.
H2S forms black metallic sulfide suspensions and/or deposits

induced by corrosion. H2S enters the matrix of many alloys,
resulting in brittleness in these alloys and stress corrosion
cracking miscarriage particularly due to the high-strength
steel.18−26 The novelty of this work lies in modifying the long
chains in inhibitors, which leads to high efficiency. The current
research aims to prepare novel cationic surfactants, 1-ethyl-4H-

benzo[d][1,3]thiazin-1-ium bromide (BTB) and N-ethyl-N,N-
dioctyloctan-1-aminium bromide (DAB), and evaluate their
efficiency as corrosion inhibitors for X-65 type carbon steel in
oil well formation water in a hydrogen sulfide environment
using different techniques.

2. RESULTS AND DISCUSSION

2.1. Potentiodynamic Polarization Study. Existence of
hydrogen sulfide in the solution forms ferrous sulfide. The high
concentration of gas results in failure of the protective layer as
shown in eq 2. Corrosion potential (Ecorr), corrosion current
density (icorr), cathodic and anodic Tafel slopes (βc and βa),
and polarization resistance (Rp) as electrochemical parameters
were calculated.
From the polarization curves shown in Figure 1a,b, it was

observed that icorr reduced with increasing dose of compounds
BTB and DAB compared to the blank. The following equations
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are used for calculating the degree of surface coverage (θ) and
the inhibition efficacy ratio (η%):

θ = − i
i

1
0 (1)

η = −
i
k
jjjjj
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{
zzzzz

i
i

% 1
0 (2)

where i0 and i are the corrosion current densities in the
absence and presence of the inhibitor, respectively.
A good evaluation of the cathodic curve showed that the

Tafel lines became more negative and so certain opportunities
for both anodic and cathodic cycles, individually, comparative
with the clear. This implies that the chose intensifies goes
about as a blended kind inhibitor, that is, empowering block of
both anodic and cathodic release responses. We notice that the

Figure 1. Polarization plots of the steel electrode in formation water
containing various concentrations of (a) BTB and (b) DAB inhibitors.

Table 1. Corrosion Parameters Obtained from Polarization Curves for BTB and DAB Inhibitors

inhibitor concentration (ppm) βa (mV dec−1) βc (mV dec−1) Ecorr (mV vs SCE) icorr (μA cm−2) θ IE%

blank 000 193.7 −150.9 −804.2 9.312
BTB 50 109.4 −142.1 −779.7 3.433 0.6313 63.13

100 79.7 −156.9 −643.5 2.405 0.7417 74.17
150 103.9 −192.7 −617.6 1.357 0.8542 85.42
200 104.9 −153.4 −741.8 0.855 0.9081 90.81
250 103.4 −193.3 −567 0.638 0.9314 93.14

DAB 50 75.8 −139 −711.4 2.9143 0.6870 68.70
100 110.6 −124.5 −739 2.87 0.6917 69.17
150 109.1 −159.1 −745.5 1.942 0.7914 79.14
200 102.3 −169.7 −728.5 1.854 0.8009 80.09
250 71.2 −155.7 −742.1 1.499 0.8390 83.90

Figure 2. Nyquist plots for the carbon steel electrode in formation
water with and without various concentrations of (a) BTB and (b)
DAB inhibitors.
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slopes of both the anodic and cathodic Tafel shapes were the
same. This means that the selected inhibitor does not affect the
metal dissolution mechanism. icorr was reduced with the
increase in the dose.27 The obtained results summarized in
Table 1 indicate that the i values are significantly lower in the
presence of corrosion inhibitors compared to blank solutions.
The corrosion current density decreases. The data obtained
from the polarization curves are plotted and listed in Table 1.
From the polarization curves, it is observed that η% of the

compound BTB is more than that of the accumulated DAB.

This could be attributed to the pπ−dπ connections between
the inhibitor particles and the empty orbital of Fe.28−30

2.2. Electrochemical Impedance Spectroscopy (EIS).
Figures 2 and 3 show the Nyquist and bode plots of carbon
steel immersed in the solution (blank) in the absence and
presence of BTB and DAB, respectively.
It is clear that there is a depressed capacitive loop along the

x-axis. The size of the loop increased on increasing the
inhibitor concentration. This behavior indicated that the
corrosion process was controlled by the polarization resistance
according to the following equation23

= + +R R R Rp s f ct (3)

Figure 4 shows the equivalent circuit Rs, film resistance Rf,
charge-transfer resistance Rct, constant phase elements CPEf
and CPEcd as obtained from the EIS analyzer program, and the
obtained impedance data can be explained according to the
following equation24

=Z Y jw1/ ( )n
cpe 0 (4)

where Y0 represents the admittance, j = −1, and w is the
angular frequency.
It is obvious from Table 2 that both Cdl and Cf decrease with

an increase in the concentration of BTB and DAB.
This is evidence for the adsorption of the inhibitor

molecules on the carbon steel surface, forming the required
protective layer. According to the following two equations31

∑ ∑=C dSe/dl

0

(5)

=C F RTSe/4f
2

(6)

where d is the thickness of the adsorbed layer, Se is the
electrode surface exposed to the aggressive solution, ∑0 is the
permittivity of the vacuum, ∑ is the local dielectric constant,
and F is Faraday’s constant.
Figure 3a,b shows that the phase angle increased with

increasing inhibitor concentration for carbon steel (CS)
immersed in media of an corrosive environment in the
presence of various doses of the two chemicals used (BTB and
DAB), which shows different trends compared to the blank

Figure 3. Bode plots for the carbon steel electrode in formation water
with and without various concentrations of (a) BTB and (b) DAB
inhibitors.

Figure 4. Equivalent circuit model for the impedance data.
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solution. It is clear from the variation of log Z with F that the
impedance values increase with increasing concentration. Also,
it is clear that the variation of phase angle increases with the
increasing inhibitor concentration. The shift of the phase angle
from the value of 90° is evidence for the deviation from the
ideal capacitive behavior. This behavior confirms the obtained
data from Nyquist plots. The inhibitive ability, which is

reflected by η%, markedly improved as the inhibitor
concentration increased.32−34

2.3. Atomic Force Microscopy (AFM) Surface Study.
An atomic force microscope is an instrument used to
discriminate the shallow design of geography since it is
equipped for giving pictures. AFM investigated the extent of
inhibition of CS after immersion in a destructive acid
solution.35 Figure 5 shows the 3D AFM morphologies for
the dissolution of CS in a corrosive solution of deep oil
formation water in the absence and the presence of 250 ppm of
the compound. The root mean square (RMS) of unpleasant-
ness (Rq) is the normal deviance that decides the normal lines
and normal harshness (Ra), clarifying the mean deviance of all
harshness pictures. The AFM image of CS in a destructive
medium alone in oil well formation water shows extraordinary
consumption and more harshness. Interestingly, a lesser
number of sites attack when using the compounds because
of the shape of the adsorbing films that shield the CS surface
from its current circumstance. The %IE obtained from
electrochemical measurements upheld and was consistent

Table 2. Impedance Parameters Obtained from the EIS Curves for BTB and DAB Inhibitors

inhibitor concentration (ppm) Rf (Ω) QF (μF/cm
2) n1 Qdl (μF/cm

2) Rct (KΩ/cm2) n2 θ IE %

BTB 0 52.6 + 2 132.1 + 1.1 0.87 + 0.02 538.1 1.659 + 0.10 0.83 + 0.05
50 128.9 + 3 87.3 + 0.9 0.92 + 0.03 40.90 3.112 + 0.017 0.88 + 0.03 0.4669 46.69
100 286.2 + 5 63.7 + 0.8 0.94 + 0.01 56.45 3.995 + 0.015 0.91 + 0.02 0.5847 58.47
150 423.3 + 6 52.6 + 0.7 0.96 + 0.04 23.41 4.905 + 0.014 0.92 + 0.01 0.6617 66.17
200 560.7 + 4 46.8 + 0.8 0.97 + 0.01 4.641 11.03 + 0.013 0.93 + .01 0.8495 84.95
250 592.5 + 7 37.2 + 0.4 0.98 + 0.01 143.9 25.51 + 0.012 0.93 + 0.01 0.9349 93.49

DAB 50 117.8 + 2 76.8 + 0.8 0.88 + 0.03 228.8 2.474 + 0.016 0.85 + 0.05 0.3294 32.94
100 187.5 + 4 58.1 + 0.6 0.89 + 0.01 315.5 2.541 + 0.017 0.87 + 0.07 0.3471 34.71
150 238.1 + 6 49.6 + 0.5 0.90 + 0.04 109.3 2.609 + 0.013 0.89 + 0.02 0.3641 36.41
200 302.7 + 7 39.5 + 0.4 0.92 + 0.02 43.77 4.096 + 0.012 0.90 + 0.01 0.5949 59.49
250 327.9 + 8 27.4 + 0.3 0.92 + 0.01 100.1 4.446 + 0.011 0.90 + 0.01 0.6268 62.68

Figure 5. AFM images of (a) the CS samples before immersion in oil well formation water alone (blank) and (b) CS surface immersion in oil well
formation water for 1 day using 250 ppm of the compound BTB.

Table 3. AFM Measurements of CS Samples in the Presence
and Absence of Doses (250 ppm) of Compound BTB in
Deep Oil Well Formation Water for 7 Days at 298 K

sample

average
roughness
(Ra), nm

RMS
roughness
(Rq), nm

CS alloy surface immersed in deep oil well
formation water in the absence of inhibitor
molecules

260.4 318.2

CS alloy surface immersed in 0.1 oil well
formation water after immersion in 250 ppm
of BTB

95.3 112.6
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with the deliberate harshness information. Table 3 shows the
understanding of Ra and Rq esteems. In an overall perspective
on harshness, the metal surface is smoothed and turns out to
be delicate because of the presence of an emphatically
adsorbed layer through the dynamic community position of
the inhibitor.
2.4. Surface Tension Characteristics. The critical micelle

concentration of the prepared compounds was determined at
different concentrations by adjustment of the slope of the
plotted information of external strain surface tension (γ) versus
the natural logarithm of the solute molar concentration, ln
concentration, as presented in Figure 6. Table 4 summarizes
the surface tension characteristics.
The critical micelle concentration (CMC) is a vital factor

which turns out to be thermodynamically positive for
surfactant atoms with respect to the structure totals (micelles)
to limit the collaboration of either their head gatherings or
their tail bunches with the dissolvable condition. Table 5
summarizes the standard free energy of micellization (ΔG0

mic)
and adsorption (ΔG0

ads), which showed that compound BTB
favors micellization rather than adsorption compared to
inhibitor DAB with imported benzene ring and long chains.

This demonstrates that compound BTB has the most
grounded adsorption layer on the CS surface and hence the
greatest inhibition efficiency, which stresses that the inhibition
efficacies of the integrated compound expansion in the
accompanying request as anticipated by the various methods:
Tafel polarization and EIS . Using the following equation, it
was found that the standard free energy of micellization
(ΔG0

mic) of compound DAB was lower than that of compound
BTB for the synthesized surfactants:

Δ =G RT ln CMC0
mic (7)

The free energy of adsorption standard (ΔG0 ads) for the
synthesized surfactants is shown in the following equation:

Δ = −G RT Kln0
ads ads (8)

where Kads is the adsorption equilibrium constant. These
results reveal that BTB with a longer alkyl chain possesses
stronger adsorption affinity onto the CS surface and thus
exhibits a better inhibition behavior.36

2.5. Inhibition Mechanism of Surfactants. The
inhibition effecting for the deterioration of CS in oil well
formation water was explored utilizing the examined
surfactants BTB and DAB. The interference cycle depends
on numerous factors like focus, the quantity of active areas and
their charge densities, atomic mass, and their stability in their
environments.37 In fact, the heterogeneity of surfactants with
uncommon nucleophilicity, electrons and charge of heter-
oatoms (N, O, and S particles) will in general limit the
utilization of the metal surface. The barrier depends upon the
adsorption of the surfactants on the CS surface and hindering
their active centers.38 Figure 7 shows the advancement of the

Figure 6. Surface tension vs log C of compound BTB and DAB.

Table 4. Surface Tension Characteristics of BTB and DAB

inhibitor CMC, mole/dm3 γcmc, mN/m Γ max × 10−7, mol/m2 Amin, n m2 Π CMC ΔG0
mic, kJmol−1 ΔG0

ads, kJ mol−1

BTB 7.47 × 10−4 36 9.48 × 10−11 175 36.5 −18.13 −21.96
DAB 2.49 × 10−4 33 1.38 × 10−10 119.5 39.3 −20.9 −23.7

Table 5. Standard Free Energy of Micellization (ΔG0
mic)

and Standard Free Energy of Adsorption (ΔG0
ads)

inhibitor
free energy of micellization

ΔG0
mic (kJ mol−1)

free energy of adsorption
ΔG0

ads (kJ mol−1)

BTB −18.13 −21.96
DAB −20.9 −23.7

Figure 7. Corrosion inhibition mechanism of BTB.
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fused surfactant compounds containing heads and tails. The
head hordes of the surfactants (polar part) were in rich
electronically unique utilitarian social affairs, which share in the
adsorption association with unfilled d-orbitals of the CS,
through the relocation of adsorbed water particles from the CS
by heteromolecules that can give the electron chemisorption
bonding.39

The hydrophobicity chain (tail) of the surfactant causes the
relocation of the surfactants from the game plan mass to
associate, and these hydrophobic tails work as a resistance film
to keep the metal away from reacting with its present situation.
The adsorption collaboration depends on the tendency of the
CS toward electron densities that work with better surface
coverage.40

3. EXPERIMENTAL SECTION
3.1. Chemical Structure of the X-65 Type CS

Electrode. An unused petroleum pipeline was cut into X-65
type CS specimens. The chemical composition (weight %) of

the CS electrode was carbon, 0.09; silicon, 0.22; Mn, 1.52; P,
0.01; S, 0.05; Ni, 0.04; Cr, 0.02; Mo, 0.004; vanadium, 0.002;
copper, 0.02; and aluminum, 0.04; and the rest was Fe.

3.2. Deep Oil Well Formation Water. The reservoir rock
contains deep oil well formation water. This water contains
different organic and inorganic salts. The elements present are
Na, Ca, Mg, Cl, HCO3, and SO4. The chemical composition of
this water and its physical properties are summarized in Tables
6 and 7.

3.3. Testing Solution. The testing solution is the oil well
formation water containing the abovementioned specific
chemical compositions. The reaction of sodium sulfide (3.53
mg L−1) with acetic acid (1.7 mg L−1) generates hydrogen
sulfide gas. This is called the simulation solution, which is
similar to actual media in oil wells. This work facilitates
preparation inhibitors as semi-industrial or industrial of
inhibitors.

3.4. Synthesis of the Inhibitors. The cationic surfactant
BTB based on benzothiazole was prepared as illustrated in

Table 6. Physical Properties of the Testing Solution

total dissolved solids (TDS) 9650 mg/L density@60 F 1.06 g/mL
salinity (as NaCl) 95,556 mg/L specific gravity 1.06
alkalinity (as CaCO3) 320 mg/L pH@25 °C 6.8
total hardness (as CaCO3) 14,455 mg/L conductivity 12.02 × 10−2 mhos/cm@21.6 °C

resistivity 0.0832 Ohm m@21.6 °C

Table 7. Chemical Composition of the Testing Solution

cation mg/L meq/L anion mg/L meq/L

lithium 48.9 7.056 fluoride 76.71 4.038
sodium 30760.9 1337.485 chloride 57912.87 1631.405
ammonium 186.85 10.357 bromide 252.62 3.163
potassium 945.24 24.179 nitrate 38.17 0.616
magnesium 947.95 78.007 nitrite 1.84 0.040
calcium 4225.67 210.861 phosphate nil nil
strontium 78.08 1.783 sulfate 640.54 13.342
barium 1.30 0.019 hydroxide nil nil
iron nil nil carbonate nil nil
copper nil nil bicarbonate 390.40 6.399

Scheme 1. Synthesis of the Cationic Surfactant (BTB)

Scheme 2. Synthesis of the Cationic Surfactant (DAB)

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c02005
ACS Omega 2021, 6, 19559−19568

19564

https://pubs.acs.org/doi/10.1021/acsomega.1c02005?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c02005?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c02005?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c02005?fig=sch2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c02005?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Scheme 1. This process was carried out using the
quaternization reaction. Benzothiazole (50 mM) and 1-
bromooctadecane (50 mM) were charged exclusively in a
250 mL round flask with (CH3)2CO (100 mL) as a dissolvable
solvent. The resulting mixture was refluxed by mixing for 18 h,
and then, the resulting mixture was maintained at room
temperature. The earthy colored suspension was filtered with a
filter paper, washed well twice with diethyl ether, and then
recrystallized using (CH3)2CO to obtain clear product results
of the synthesized compounds. The products of the earthy
colored precious stone items went somewhere in the range of
78−86%.
The cationic surfactant DAB based on tri-n-octyl amine was

prepared as illustrated in Scheme 2. This process was carried
out using the quaternization reaction. Tri-n-octyl amine (50
mM) and 1-bromooctadecane (50 mM) were transferred
separately in a 250 mL round flask with (CH3)2CO (100 mL)
as a dissolvable solvent. The resulting mixture was refluxed by
mixing for 18 h, and afterward, the resulting blend was cooled
to room temperature. The earthy colored suspension was
filtered with a filter paper, washed well twice with diethyl ether,

and afterward recrystallized from (CH3)2CO to bear the cost
of the white gem results of the cationic surfactants. The
products of the earthy colored precious stone items ran
somewhere in the range of 80−90%.

3.4.1. Fourier Transform Infrared (FTIR) Spectroscopy
Analysis. FTIR spectra of the prepared inhibitors (BTB and
DAB) contain two peaks at 3365 and 3280 cm−1, which are
ascribed to N−H in both inhibitors, and peaks at 2925 and
2856 cm−1 corresponding to CH3 and CH2, in addition to a
peak at 1057 cm−1 and a fingerprint peak at 724 cm−1 assigned
to the asymmetric and symmetric stretching quaternary
nitrogen atom (N+−C) as shown in Figure 8a,b.

3.4.2. 1H NMR Spectroscopy. The chemical change at ∂

(1.41) for 1H proton (a) −CH3, the substance shift ∂ (4.07)
for 1H protons (b) −CH2 related to alkyl collection, this
compound shift at ∂ (4.13) for 1H protons (c) −CH2 of alkyl
group alpha. The substance moves between ∂ (8.9) for 1H
protons (g) and (h) of aryl ring. All the overhead substance
changes affirm that compound BTB was effectively synthe-
sized.

Figure 8. (a, b) FTIR spectrum of the synthesized inhibitors: (a) BTB and (b) DAB.
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Figure 9. Chemical structure characterization of the inhibitor, (a) 1H-NMR BTB and (b) 1H-NMR DAB.
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The chemical shift ∂ (0.88) to 1H proton (a) −CH3, the
synthetic ∂ (3.22) for 1H Protons (b) −CH2 related to alkyl
group, the compound shift at ∂ (3.28) for 1H Protons (c)
−CH2 of alkyl group neer, N−C. inhibitor moves between ∂

(1.26−1.7) for 1H protons (g) and (h) of the alkyl bunch. The
above substance shifts confirm that DAB was effectively
synthesized. The information of 1H NMR spectra confirmed
the normal hydrogen proton dispersion in the combined
surfactant as shown in Figure 9a,b.
3.5. Electrochemical Measurements. 3.5.1. Potentiody-

namic Polarization Measurement. Potentiodynamic polar-
ization was carried out in an electrochemical glass cell
containing a platinum electrode as an auxiliary electrode and
saturated calomel electrode (SCE) as a reference electrode in
addition to a working electrode with 1 cm2 surface area. The
used instrument was VoltaLab 80 (Tacussel radiometer
PGZ402) with Voltamaster 4 as software for the instrument,
and the results were recorded at a scan rate of 1 mVs−1 after
immersion of the test solution in a three-electrode system for
60 min in the absence and presence of a fixed inhibitor
concentration.
3.5.2. Electrochemical Impedance Spectroscopy. Electro-

chemical impedance spectroscopy (EIS) measurements were
carried out in the same electrochemical cell at OCP in the
frequency range from 100 kHz to 20 mHz at an amplitude of
10 mV.
3.6. Surface Tension Measurements. The surface

tension (γ) was measured using a Krüss K6 tensiometer
type, a direct surface tension measurement, using the ring
method for various concentrations of the investigated
surfactants.
3.7. Surface Examination. In order to record the surface

micrographs, the designed samples were immersed in the test
solution in the absence and presence of 250 ppm of the
inhibitor; after 24 h, the samples were removed from the test
solution, cleaned, washed with distilled water, and dried, and
the samples were analyzed by AFM conducted using an AFM
Nanosurf-Flex-Axiom FlexAFM 5 scan head specifications with
a C3000 controller operating in the dynamic force mode at 25
°C.

4. CONCLUSIONS

Newly synthesized surfactants BTB and DAB can be used as
effective inhibitors for the dissolution of CS in deep oil well
formation water. These surfactants were characterized using
FTIR and 1HNMR spectroscopy techniques. The values of the
parameters from potentiodynamic polarization measurements
of the prepared surfactants show that they act as dual-type
inhibitors. AFM micrographs confirm the formation of a good
protective film that isolates the surface from the corrosive
environment. The synthesized surfactants showed high
inhibition efficiency against CS in the formation water.
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