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Abstract

Background

Climate change has implications for human health and productivity. Models suggest that

heat extremes affect worker health, reduce labor capacity, and commodity supply. Chronic

health conditions are on the rise internationally. However there is a paucity of direct empirical

evidence relating increasing temperatures to both agricultural worker health and productivity.

Methods and findings

We evaluated the relationship between temperature exposure, kidney function, and two

measures of productivity—tons of commodity produced and job attrition, of 4,095 Guatema-

lan sugarcane cutters over a 6-month harvest. We used distributed lag non-linear models

to evaluate associations between wet bulb globe temperature (WBGT) and productivity of

workers with normal or impaired kidney function. The cumulative effect of exposure to a

max WBGT of 34˚C was 1.16 tons (95% CI: -2.87, 0.54) less sugarcane cut over the next

five days by workers with impaired kidney function, compared to exposure to 29˚C. Impaired

kidney function was associated with premature workforce attrition. Workers starting the har-

vest season with impaired kidney function were more than twice as likely to leave employ-

ment (HR: 2.92, 95% CI: 1.88, 4.32).
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Conclusions

Heat extremes may be associated with loss of agricultural worker productivity and employ-

ment, especially among those with impaired kidney function. Agricultural workers who

develop health conditions, such as kidney disease, are particularly vulnerable in the face of

climate change and increasing heat extremes. The resultant loss of employment and pro-

ductivity has significant implications for global commodity supplies.

Introduction

One of the most pressing challenges facing the world is the increasing impact of climate

change on human health and productivity [1,2]. Rising temperatures will reduce labor capacity

[3]. The decline in world economic productivity will disproportionately affect developing

countries located in warm, tropical climates [4]. Decreased production in these major food

producing regions will threaten food supplies worldwide [5] at a time when global demand for

agricultural production in developing countries will rise by an estimated 77% [6].

There is emerging evidence that the adverse effects of increasing global temperatures may

already be affecting worker productivity [7]. Multiple studies have demonstrated how worker

productivity declines as heat increases [4,8–10]. However only a few studies have examined

the meteorological effect on productivity in an agricultural setting, and those have focused on

only healthy workers [7,11]. Less is known about how heat’s impact on agricultural worker

health [12] contributes to productivity loss, although theoretical models predict negative

effects of increasing temperatures on both worker health and performance [13].

For agricultural workers, occupational exposure to hot environments has been identified as

a major climate related concern [12,14]. For example, the pandemic of Chronic Kidney Dis-

ease of unknown origin (CKDu) among sugarcane cutters and other workers in Central Amer-

ica [15,16], Sri Lanka [17], Egypt [18], and India [18] has been attributed, in part, to heat stress

and resulting recurrent dehydration [2,12,19]. A small pilot study has suggested a relationship

between agricultural worker productivity and reduced kidney function [20], but no study to

date has examined how heat exposure and kidney function are associated with drop out from

the workforce, despite the potential implications of attrition on agricultural production. There

is an urgent need to understand the implications of heat exposure in agricultural workers

internationally, given the global increase in disease and disability, including kidney disease

[21].

To assess the relationship between worker health, heat exposure, and productivity, we eval-

uated daily, averaged agricultural worker productivity of 4,095 Guatemalan sugarcane cutters

over a six-month harvest season. We identified those who met the definition of impaired kid-

ney function at the start of the harvest season, and related these findings to local heat condi-

tions. We hypothesized that there would be a direct inverse relationship between temperature

exposure, measured as the wet bulb globe temperature (WBGT), and the amount of sugarcane

produced. Furthermore, we hypothesized that the productivity of workers with impaired kid-

ney function would be more highly affected by temperature exposure. Finally, we hypothesized

that workers with impaired kidney function would be more likely to leave the workforce prior

to the end of the six-month harvest season. To our knowledge, this is the first study to directly

investigate the relationship between kidney function, heat, and agricultural productivity.
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Methods

Population and study design

To explore the relationship between kidney insufficiency, increased heat exposure, and agri-

cultural productivity, we examined a cohort of sugarcane cutters who were employed by a

large agribusiness in southwest Guatemala. Guatemala is a recognized hotspot for chronic

kidney disease [22], has a large agrarian workforce [23], and is at risk of experiencing more

extreme heat days due to climate change [24].

After a one-week acclimatization period in November, during which employees work

shorter days and cut fewer tons of sugarcane, workers typically work eight-hours during a

ten-hour shift in six-day blocks before receiving one rest day. Cutting sugarcane is considered

very heavy work involving swinging a machete to cut the stalk a few centimeters above ground

level, followed by lifting, trimming and stacking the cane (Fig 1).

Workers receive a base wage regardless of the amount of sugarcane harvested. Since 2009,

the agribusiness has been promoting hydration, rest, and shade use for the cane cutters,

aligned with U.S. Occupational Safety and Health Administration (OSHA) recommendations

[25]. This includes instructing cane cutters to drink 16 L of water and 2.5 L of an electrolyte

solution (composition per liter: 4.6 g NaCl, 34 g carbohydrates (26 g sucrose) and 2 g KCl) and

Fig 1. Demonstration of sugarcane cutting in practice. Photo credit: Amanda Walker. (Left) Sugarcane cutter using a machete to cut

sugarcane. (Right) Cut sugarcane being collected and stacked.

https://doi.org/10.1371/journal.pone.0205181.g001
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take three 20-minute breaks and one 60-minute lunch break in the provided shade during the

work shift. Water and electrolyte solution are provided daily by the agribusiness.

Our population was drawn from a cohort of workers employed by the agribusiness for the

November 2015 to May 2016 harvest season. Per company protocol, the employer screened

5,138 sugarcane workers from August to November 2015, prior to the start of the six-month

sugarcane harvest. This pre-employment screening included a 1) medical exam (blood

pressure, heart rate, height, and weight), 2) survey that collected information about each indi-

vidual’s demographics, lifestyle behaviors, and occupational and medical history, and 3) veni-

puncture to examine serum creatinine, a measure of kidney function. Company policy was to

either not hire or place workers in lighter duty jobs if their pre-employment serum creatinine

was 1.45 mg/dL or more. In 2015, 107 workers (2.5%) were excluded due to high creatinine.

To be included in our analyses, workers must have worked the first week of the harvest, had

pre-employment serum creatinine measurements, and had completed the pre-employment

survey. Per company protocol, all workers must have been at least 18 years of age at the start of

the harvest. Ethics review and approval for our evaluation of these data were received from the

Colorado Multiple Institution Review Board (COMIRB). This was a secondary evaluation of

de-identified data historically collected by the agribusiness and deemed non-human subjects

research. Consent was not required.

Measures of productivity. We considered two measures of productivity: average daily

tons cut per work day and worker attrition. We calculated average daily tons cut per work day

using the average of all workers for each day of the harvest. We calculated this measure for all

workers combined, as well as stratified on kidney function. Worker attrition was defined if a

worker did not work through all 28 weeks of the harvest. The company was able to provide de-

identified productivity information for 4,873 cane cutters hired for the 2015–2016 harvest.

Wet bulb globe temperature. The primary predictor of interest was wet bulb globe tem-

perature (WBGT) which is a composite measure that combines ambient temperature, humid-

ity, solar radiation, and wind speed and is commonly used in studies where workers are

exposed to direct sunlight [7,8,11]. Meteorological observations from the Cengicaña weather

station (14.33˚ N, 91.05˚ W, 300 meters above sea level) were used to compute the WBGT at

15-minute intervals. The observations required for the WBGT computations included ambient

near-surface air temperature (Ta), relative humidity (RH), incident solar radiation at the sur-

face (S), and wind speed (U). The WBGT is calculated for outdoor conditions with a solar load

using the equation proposed by OSHA [26]:

WBGT ¼ 0:7Twb þ 0:2Tg þ 0:1Ta; ð1Þ

Where Twb is the wet bulb temperature, Tg is the black globe temperature, as measured by a

thermometer inserted in the center of a copper globe painted matte black [27], and Ta is the

station-observed ambient air temperature as noted above (all temperature units are in ˚C). Twb
is estimated from Ta and RH using the empirical equation of Stull, 2011 [28], which has a

mean absolute error< 0.3˚C for the range of temperatures encountered in this study. It is

noteworthy that the method of Stull, 2011 [28] yields the psychrometric web bulb temperature

(as opposed to the natural wet bulb temperature) which is required for the WBGT approach

we employ that follows Dimiceli et al., 2011 [27], and Weatherly and Rosenbaum, 2017 [29], as

described next. While Tg can be directly measured with proper instrumentation, it is not com-

mon to do so because of the expense, and therefore Tg is usually estimated using other weather

variables. Tg was computed following the physically-based formulation of Dimiceli et al., 2011

[27], which requires observed Ta, RH, S, U, and the station coordinates as inputs. Several

parameters are also required; we employed identical parameters to those used by Weatherly
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and Rosenbaum, 2017 [29], who also used the Dimiceli et al., 2011 [28] equations. Three addi-

tional modifications were made. First, we directly used the observed incident solar radiation

(S), whereas Weatherly and Rosenbaum, 2017 [29] estimated S because they did not have

measurements. Second, we found that the equation for Tg becomes unstable at very low solar

zenith angles—i.e., at sunrise each day when the sun is low on the horizon and the solar zenith

angle is between 85–90˚–and therefore solar zenith angles > 85˚ were set to 85˚. Third, we set

a minimum wind speed, U, of 1 m s-1 following the approach of Lemke and Kjellstrom, 2012

[30], which accounts for the fact that airflow will rarely be zero relative to the skin of humans

working outdoors.

For each day, we computed the distribution of the 15-minute WBGT measurements during

the working hours of 07:00 to 17:00. We then selected the 95th percentile value as the WBGT95

measurement for that day. This approach allowed us to examine high values of daily WBGT

exposure that may be the most important contributors to worker heat-related health effects

[14] while protecting against values so high that they may be considered outliers. Additionally,

we calculated the mean work-shift WBGT (WBGTmean) that workers were exposed to during

typical working hours (07:00–17:00).

Kidney function. We were interested in determining whether kidney function at the start

of the harvest modified the relationship between WBGT exposure and worker productivity.

Serum creatinine was used to calculate the estimated Glomerular Filtration Rate (eGFR) using

the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation [31] for each

worker. All workers were male and race was considered “non-black” for all participants in the

CKD-EPI equation. We dichotomized workers based on eGFR at or above 60 ml/min/1.73 m2,

defined as having functioning kidneys, and below 60 ml/min/1.73 m2, defined in this analysis

as having impaired kidney function, since this is a commonly agreed upon cut-off for defining

CKD Stage 3 [32].

Statistical analysis

Building upon studies that have shown temperature and health do not follow a linear trend

[33, 34], we chose to use distributed lag non-linear models as a flexible way to model the rela-

tionship between temperature exposure and productivity. Additionally, distributed lag non-

linear models allowed us to also address the potentially important lagged effect of temperature

exposure [35, 36] by estimating the effect on productivity in each future day following an expo-

sure to increased WBGT.

When the effect of an exposure on the outcome may not be limited to the period when it is

observed, lags can be used to determine the effect of the exposure at different times over the

course of an event [33]. To model the initial exposure as well as the lag dimension, distributed

lag non-linear models can be used [33]. Distributed lag non-linear models are based on the

concept of a cross-basis, which is the joint modeling of two bases. In the framework of a dis-

tributed lag non-linear model, the two bases that the cross-basis is comprised of represent the

exposure, as well as the lag. The cross-basis is then used as a predictor in a typical regression

model to relate the exposure and lags simultaneously to the outcome. The complete theoretical

framework for distributed lag non-linear models can be found in Gasparrini, et al 2010 [33].

For each of our outcomes, WBGT95 and WBGTmean, fit a linear regression model for the

relationship between the cross-basis of temperature exposure and lagged temperature expo-

sure, with average tons produced. Each model was then stratified on eGFR categories (<60

ml/min/1.73 m2 vs.�60 ml/min/1.73 m2).

To calculate the cross-basis, the relationship between temperature exposure and average

daily tons produced was modelled with natural splines with four degrees of freedom. The
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degrees of freedom were selected by plotting the smoothed relationship between WBGT and

average daily tons while varying the degrees of freedom. To determine the number of lags to

be included in the analysis, we examined the cross-correlation between both WBGT95 and

WBGTmean with average daily tons. The cross-correlation suggested that five lags were appro-

priate. Five lags were also a theoretically appropriate number of lags to use, since a typical

work week is six days long. We modeled the lagged relationship of temperature exposure

and average daily tons produced with three strata. The effect on average tons produced was

assumed constant within each stratum. The dlnm package [37] in R version 3.4.3 [38] was

used to fit these models.

As a sensitivity analysis we re-ran the distributed lag non-linear models with the exclusion

of the months November and May. This allowed us to account for effects that may be due in

part to the seasonality of productivity, where production is naturally slower in the start of the

season when they are in the acclimatization phase, as well as the end of the season when there

is less sugarcane to harvest.

Cox proportional hazard models were run to assess differences in worker attrition between

eGFR categories. Proportional hazard assumptions were visually checked using the log-nega-

tive log plot of the Kaplan Meier estimated survival curves. The dataset was stratified for those

who dropped out prior to week 11 and those who dropped out during or after week 11 due to

violations of the proportional hazards assumption. To account for the potential confounding

effect of age, age was included as a continuous covariate in the Cox proportional hazard mod-

els. To perform demographic comparisons between eGFR categories (<60 ml/min/1.73 m2 vs.

�60 ml/min/1.73 m2), t-Tests with Satterthwaite approximations were used for continuous

variables and Chi-square tests were used for categorical variables. These analyses were done

using SAS version 9.4 (Cary, NC).

Results

There were 4,095 (80%) hired cane cutters who met inclusion criteria. All cane cutters who

met inclusion criteria were male. As shown in Table 1, 77 (2%) of the hired cohort had

impaired kidney function at the time of pre-employment screening. The average worker was

30 years (SD: 9), had worked 7 previous harvests (SD: 7), and had a Body Mass Index (BMI)

of 23 (SD: 3). The average amount of sugarcane cut per day was 5.9 tons (SD: 3.4). Workers

with impaired kidneys were unable to cut as much sugarcane per day compared to those with

higher kidney function; this amounted to an average of 5.62 (SD: 2.67) tons per day compared

to 5.76 (SD: 2.72) tons per day, respectively. Workers with impaired kidney function were sig-

nificantly less likely to complete the harvest, 42% (N: 32) of workers left before the end of the

season compared to 25% (N: 1,019) (Table 1).

The median WBGT95 was 32.13˚C (IQR: 1.84˚C; Range: 29.11˚C to 35.94˚C). The median

WBGTmean was 29.07˚C (IQR: 1.42˚C; Range: 26.84˚C to 31.42˚C). The maximum values

Table 1. Univariate relationship between kidney function at the start of the 2015–2016 harvest and variables of interest.

eGFR < 60

(N = 77)

Mean (SD) or %

eGFR� 60

(N = 4018)

Mean (SD) or %

p-value

Age 38.37 (11.29) 29.78 (9.16) <0.0001

Body Mass Index 23.10 (3.00) 23.11 (2.92) 0.9729

Previous harvests worked 10.07 (10.26) 7.03 (6.66) 0.0116

Average tons cut per day worked 5.62 (2.67) 5.76 (2.72) <0.0001

Attrition 32 (41.56%) 1019 (25.36%) 0.0013

https://doi.org/10.1371/journal.pone.0205181.t001
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WBGT95 occurred in November. Temperatures appear to decline from December through

January and begin to rise again through March, at which time they appear to stabilize through

the end of the harvest (Fig 2).

The use of a distributed lag non-linear model allowed us to assess the cumulative effect on

productivity over future days following exposure to an increased WBGT [33]. In this case, lags

up to five days were included in the model, thus providing us with the overall cumulative effect

on the average productivity over the next five days given an increase in WBGT exposure (Fig

3, Tables 2 and 3). The cumulative effect on tons of sugarcane cut for workers with impaired

kidney function who experienced exposure to a WBGT95 of 34˚C is estimated to be a loss of

1.16 (95% confidence interval (CI): -2.87, 0.54) tons over the next five days compared to if they

were exposed to a WBGT95 of 29˚C. The estimated cumulative effect on tons of sugarcane cut

by workers with functioning kidneys was 0.59 tons (95% CI: -2.05, 0.87) less under the same

circumstances. The general trend for WBGT95 was that as the temperature of exposure

increased, the cumulative reduction in the amount of sugarcane cut over the next five days was

more pronounced. The cumulative effect on productivity in the WBGT95 model was greater

for those with impaired kidney function, although not statistically different than those with

functioning kidneys. There was no evidence to suggest that exposure to increased WBGTmean

influenced cumulative productivity for either group. Lag specific estimates for a range of tem-

perature exposures can be found in S1 Fig.

Periods of lower productivity occurred at the start of the season during the acclimatization

phase, as well as the end of the season when production is wrapping up. These natural periods

of lower productivity corresponded with increased temperatures (Fig 2). To assess the stability

of our estimates, we performed the analysis with data from November and May removed.

Interestingly, the effect on productivity of increased WBGT exposure became more pro-

nounced in this analysis (Fig 4, Tables 4 and 5). For those with impaired kidney function, the

cumulative effect on productivity was estimated to be 1.41 tons (95% CI: -3.04, 0.22) less over

five days for an exposure to WBGT95 of 34˚C compared to an exposure of 29˚C. For those

Fig 2. The daily mean WBGT along with average daily tons produced, through the 2015–2016 sugarcane harvest.

https://doi.org/10.1371/journal.pone.0205181.g002
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with functioning kidneys, the cumulative effect on productivity was estimated to be 0.80 tons

(95% CI: -2.12, 0.52) less under the same circumstances. The most noticeable difference was

in the estimates of the effect of WBGTmean on cumulative productivity. For both the impaired

and functioning groups, there was a statistically significant effect of exposure to WBGTmean

of 31˚C compared to 27˚C on cumulative productivity. The impaired group was estimated to

Fig 3. Cumulative association and 95% confidence interval over five-day lag between temperature and average daily tons produced. (Top)

Temperature was defined using the 95th percentile of WBGT during the work-shift with a reference of 29˚C (Bottom) Temperature was defined

using the mean work-shift WBGT with a reference 27˚C. (Left) Impaired kidney function: eGFR< 60 ml/min/1.73 m2. (Right) Functioning

kidneys: eGFR� 60 ml/min/1.73 m2.

https://doi.org/10.1371/journal.pone.0205181.g003

Heat, kidney function, and agricultural productivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0205181 October 5, 2018 8 / 15

https://doi.org/10.1371/journal.pone.0205181.g003
https://doi.org/10.1371/journal.pone.0205181


produce 1.28 tons (95% CI: -2.38, -0.18) less over five days, while the functioning group was

estimated to produce 1.13 tons (95% CI: -2.03, -0.23) less.

Productivity can be adversely affected in two ways: reduced daily tons produced and pre-

mature workforce attrition. We observed a notable difference in job attrition between those

with impaired kidney function and those with functioning kidneys (Fig 5). Table 6 summarizes

the estimated hazard ratios for those who left the workforce before week 11 of the 28-week har-

vest compared to those who left during week 11 or later. Workers who started the season with

kidney impairment were more likely to leave the workforce before the harvest season was over,

even after controlling for age. There was no effect of kidney function on attrition prior to week

11. However, kidney function was related to attrition on or after week 11. The likelihood of

leaving the workforce during week 11 or later for those with impaired kidney function was

2.92 (95% CI: 1.88, 4.32) the likelihood for those with functioning kidneys after adjusting for

age.

Discussion

In this study, we evaluated the health and daily productivity of 4,095 sugarcane workers in

Guatemala to address the hypothesis that there would be a direct inverse relationship between

temperature exposure and the amount of sugarcane produced with the greatest impact being

on those with impaired kidney function at the start of the harvest. While not definitive, our

analyses suggest that increases in daily maximum WBGT negatively affected productivity over

the next five days. This was more apparent in the impaired kidney function group, although

not statistically significant, when compared to those with an eGFR> 60 ml/min/1.73 m2 at the

start of the harvest. This study provides initial field evidence for the link between impaired kid-

ney function, increased heat exposure, and agricultural worker productivity.

Our data suggest that as exposure to heat increases, agricultural production may decrease.

This supports findings from other studies on heat and productivity [4,10]. Other investigators

have estimated that there is a 0.57% reduction in direct work time [8] and 5% reduction in

Table 2. Overall cumulative association between WBGT95 and tons of sugarcane produced accounting for five day lagged effects. All estimates are calculated relative

to a reference WBGT of 29˚C.

95th percentile WBGT exposure All workers

Cumulative effect

(95% CI)

eGFR < 60

Cumulative effect

(95% CI)

eGFR� 60

Cumulative effect

(95% CI)

30 0.22 (-0.79, 1.24) -0.09 (-1.28, 1.09) 0.23 (-0.78, 1.24)

31 0.30 (-1.27, 1.87) -0.25 (-2.08, 1.58) 0.31 (-1.26, 1.88)

32 0.13 (-1.24, 1.49) -0.49 (-2.08, 1.10) 0.14 (-1.22, 1.50)

33 0.03 (-1.33, 1.39) -0.50 (-2.08, 1.09) 0.04 (-1.32, 1.40)

34 -0.60 (-2.06, 0.86) -1.16 (-2.87, 0.54) -0.59 (-2.05, 0.87)

https://doi.org/10.1371/journal.pone.0205181.t002

Table 3. Overall cumulative association between WBGTmean and tons of sugarcane produced accounting for five day lagged effects. All estimates are calculated rela-

tive to a reference WBGT of 27˚C.

Mean WBGT exposure All workers

Cumulative effect

(95% CI)

eGFR < 60

Cumulative effect

(95% CI)

eGFR� 60

Cumulative effect

(95% CI)

28 0.71 (-0.40, 1.81) 0.55 (-0.72, 1.82) 0.71 (-0.39, 1.81)

29 0.79 (-0.12, 1.70) 0.67 (-0.38, 1.72) 0.79 (-0.12, 1.70)

30 0.09 (-0.95, 1.12) -0.20 (-1.39, 0.99) 0.09 (-0.94, 1.13)

31 -0.03 (-1.08, 1.01) -0.08 (-1.29, 1.12) -0.03 (-1.08, 1.01)

https://doi.org/10.1371/journal.pone.0205181.t003
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work output of rice harvesters [7] with increases in WBGT. Conversely, one study found only

limited evidence of an effect of WBGT on declined tree fruit harvest [11] although the authors

point out that it was conducted in a more moderate climate than that found in Central Amer-

ica. Estimates show that in parts of Central and South America, up to 10–15% of annual day-

light hours are so hot that productivity is lost [14]. Under heavy work conditions, regular rest

Fig 4. Cumulative association and 95% confidence interval over five-day lag between temperature and average daily tons produced.

November and May removed. (Top) Temperature was defined using the 95th percentile of WBGT during the work-shift with a reference

of 29˚C (Bottom) Temperature was defined using the mean work-shift WBGT with a reference 27˚C. (Left) Impaired kidney function:

eGFR< 60 ml/min/1.73 m2. (Right) Functioning kidneys: eGFR� 60 ml/min/1.73 m2.

https://doi.org/10.1371/journal.pone.0205181.g004
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is recommended when the WBGT exceeds 26˚C [14]. There is evidence that workers with

impaired kidney function cut less sugarcane per day than do those with functioning kidneys.

Our data suggest that the productivity of workers with impaired kidney function may be more

greatly impacted by exposure to increase heat extremes. It is important to consider the role of

Table 4. Overall cumulative association between WBGT95 and tons of sugarcane produced accounting for five day lagged effects. All estimates are calculated relative

to a reference WBGT of 29˚C. November and May removed.

95th percentile WBGT exposure All workers

Cumulative effect

(95% CI)

eGFR < 60

Cumulative effect

(95% CI)

eGFR� 60

Cumulative effect

(95% CI)

30 0.01 (-1.01, 1.02) -0.54 (-1.79, 0.71) 0.02 (-1.00, 1.03)

31 -0.02 (-1.50, 1.47) -0.86 (-2.69, 0.97) 0.00 (-1.48, 1.48)

32 -0.06 (-1.30, 1.18) -0.85 (-2.37, 0.68) -0.05 (-1.28, 1.19)

33 -0.12 (-1.53, 1.28) -1.05 (-2.78, 0.68) -0.11 (-1.51, 1.30)

34 -0.81 (-2.13, 0.51) -1.41 (-3.04, 0.22) -0.80 (-2.12, 0.52)

https://doi.org/10.1371/journal.pone.0205181.t004

Table 5. Overall cumulative association between WBGTmean and tons of sugarcane produced accounting for five day lagged effects. All estimates are calculated rela-

tive to a reference WBGT of 27˚C. November and May removed.

Mean WBGT exposure All workers

Cumulative effect

(95% CI)

eGFR < 60

Cumulative effect

(95% CI)

eGFR� 60

Cumulative effect

(95% CI)

28 -0.62 (-1.60, 0.36) -0.94 (-2.13, 0.26) -0.62 (-1.60, 0.36)

29 -0.32 (-1.11, 0.46) -0.67 (-1.62, 0.28) -0.32 (-1.10, 0.46)

30 -0.92 (-1.82, -0.03) -1.28 (-2.37, -0.18) -0.92 (-1.81, -0.02)

31 -1.13 (-2.03, -0.23) -1.28 (-2.38, -0.18) -1.13 (-2.03, -0.23)

https://doi.org/10.1371/journal.pone.0205181.t005

Fig 5. Kaplan Meier estimated survival curves for attrition stratified by kidney function. (Impaired kidney

function) eGFR< 60 ml/min/1.73 m2 represented by the dashed lined. (Functioning kidneys) eGFR� 60 ml/min/1.73

m2 represented by the solid line.

https://doi.org/10.1371/journal.pone.0205181.g005
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acute and chronic health conditions on worker productivity in future projections of climate’s

effect on worker productivity.

Additionally, we have shown that workers with impaired kidney function have more than

twice the risk of not finishing a harvest, resulting in fewer days worked. This is consistent with

the estimate that global labor capacity has decreased 5.3% from 2000 to 2016 due to tempera-

ture change [1]. Productivity, economic output, pay, and family income are all reduced as a

result of an injured worker’s natural inclination to slow down work or limit working hours

[14]. In low- and middle- income countries that are dependent on manual labor, the health

and welfare of workers are of paramount importance for sustained industrial growth [10].

Thus, our data illustrate the inherent conflict between preserving health and maintaining pro-

ductivity that workers and employers must address [14]. This challenge is particularly urgent

in the case of CKDu, in light of evidence implicating high energy expenditure during tempera-

ture extremes as a potential contributor to kidney insufficiency [12,19,39].

Our data demonstrate that lost productivity in agricultural workers with impaired kidney

function is reflected by the likelihood that workers will drop out of the workforce as well as

how much of a commodity is produced. These findings, taken in context with the body of

evidence suggesting a relationship between work in hot climates and the epidemic of CKDu

[2,12,39] leads us to propose a ‘two-hit’ hypothesis for how heat exposures impact worker pro-

ductivity and health. Multiple studies have implicated high intensity work in hot climates as

contributors to the global epidemic of CKDu [2]. In turn, we have provided evidence suggest-

ing that sugarcane workers with kidney insufficiency are more vulnerable, suffering greater

impact on their productivity and employment as temperature exposure increases. Our data

provide initial empirical support that climate can directly impact commodity production [40].

Taken together, published models and our data suggest that the extent of food insecurity is

being underestimated when climate models of our world’s food supply neglect heat’s effect on

worker health and workforce sustainability. Our findings reinforce the need to better under-

stand the role of heat in the development of both acute and chronic health conditions, such as

chronic kidney disease, especially as the global burden of kidney disease and disability contin-

ues to rise [21].

This study carries a few limitations. We evaluated the effect of heat on productivity of only

hired workers during a single season in a single large agribusiness, thus results are not neces-

sarily generalizable to all agricultural workers. Measurements of WBGT were calculated using

data from a weather station in proximity to the fields where the sugarcane cutters were work-

ing. The station is at a higher altitude than most of the fields, thus providing us with relatively

lower temperature readings. While this provided us with a conservative estimate of WBGT,

we acknowledge that the estimated impact of heat on productivity is likely an underestimate.

Additionally, we related average daily productivity to aggregate measures of WBGT during

work hours. By doing so we were limited in our ability to determine how heat progression

throughout the work day impacted productivity as well as our ability to determine the effect of

temperature exposure outside of work hours. As shown in Fig 2, week 11 is around the time

that the seasonal temperatures begin to rise. Consequently, we have fewer observations on the

Table 6. Age adjusted hazard ratio estimates for leaving the workforce before the end of the season (attrition)

before and after week 11.

eGFR < 60 versus eGFR� 60

Hazard Estimate 95% CI

Attrition prior to week 11 0.56 (0.24, 1.11)

Attrition during or after week 11 2.92 (1.88, 4.32)

https://doi.org/10.1371/journal.pone.0205181.t006
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productivity of impaired kidney function workers at higher values of WBGT, making estimates

for those workers at increased temperatures less stable and making relationships between tem-

perature exposure and productivity harder to detect for those workers. In this analysis we did

not temporally decompose long-term trends in productivity, which may explain some of the

observed association between increased temperature exposure and decreased productivity.

In conclusion, this study provides support for connecting heat extremes to productivity of

agricultural workers, which is more apparent in those experiencing impaired kidney function.

In light of the rise in the global burden of non-vector borne, chronic illness [21,41], the epi-

demic of work-related chronic illnesses that have been related to heat, including CKDu [2],

and evidence of chronic kidney disease in Central American agricultural communities [15,16],

we call for further research and interventions that help address this public health crisis. There

is an urgent need to identify how these relationships impact productivity, labor loss, income,

food accessibility, and most importantly, health and economic outcome disparities among vul-

nerable workers and their families.

Supporting information

S1 Fig. Lag specific effects on average daily tons produced estimated at three different

WBGT exposures. (Top) Temperature was defined using the 95th percentile of WBGT during

the work-shift with a reference of 29˚C (Bottom) Temperature was defined using the mean

work-shift WBGT with a reference 27˚C. (Left) Impaired kidney function: eGFR< 60 ml/

min/1.73 m2. (Right) Functioning kidneys: eGFR� 60 ml/min/1.73 m2.
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