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Abstract
Stereotactic body radiotherapy (SBRT) has excellent local control and low toxicity for spinal metastases and is widely per-
formed for spinal oligometastases. However, its additional survival benefit to standard of care, including systemic therapy, is 
unknown because the results of large-scale randomized controlled trials regarding SBRT for oligometastases have not been 
reported. Consequently, the optimal patient population among those with spinal oligometastases and the optimal methodology 
for spine SBRT remain unclear. The present review article discusses two topics: evidence-based optimal patient selection and 
methodology. The following have been reported to be good prognostic factors: young age, good performance status, slow-
growing disease with a long disease-free interval, minimal disease burden, and mild fluorodeoxyglucose accumulation in 
positron emission tomography. In addition, we proposed four measures as the optimal SBRT method for achieving excellent 
local control: (i) required target delineation; (ii) recommended dose fraction schedule (20 or 24 Gy in a single fraction for 
spinal oligometastases and 35 Gy in five fractions for lesions located near the spinal cord); (iii) optimizing dose distribution 
for the target; (iv) dose constraint options for the spinal cord.
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Introduction

In 1995, Hellman and Weichselbaum hypothesized that oli-
gometastasis (≤ 5 extracranial metastases) is an intermediate 
state along the spectrum between local and systemic dis-
eases [1]. According to this hypothesis, oligometastases are 
pathophysiologically similar to local disease and may benefit 
from local treatment. Some reports have suggested that it can 
be cured by performing local treatment with curative intent 
for distant metastasis (i.e., lung metastases from sarcoma, 

colorectal liver metastases, and extraregional lymph node 
metastases from cervical cancer) [2–4].

Stereotactic body radiotherapy (SBRT) with intensity-
modulated radiotherapy and image-guidance techniques has 
emerged as a new treatment option for spinal metastases 
(Fig. 1) [5]. Spine SBRT achieves a high local control (LC) 
rate (1 year: 90%) and has low toxicity (0.2% rate of neuro-
logic injury) [6]. For spinal oligometastases, high-precision 
radiotherapy is essential for curative dose administration 
because of the positional relationship between the spinal 
tumor and spinal cord. Several clinical guidelines have rec-
ommended SBRT for spinal oligometastases [6, 7], and the 
results of the SABR-COMET trial support these recommen-
dations [8]. The SABR-COMET trial is the first randomized 
study to clarify the survival benefit of SBRT for oligome-
tastases over standard of care (median survival time: 41 vs. 
28 months, p = 0.09). However, that trial had some limita-
tions: it was a phase 2 trial with insufficient sample size, 
while more patients with prostate cancer and less than 35% 
of spinal metastasis cases were included in the SBRT arm 
[8]. In addition, none of the multiple ongoing large-scale 
randomized controlled trials assessing SBRT for oligometas-
tases have reported such results (Table 1) [9–15]. Therefore, 
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the optimal patient population among those with spinal oli-
gometastases and the optimal methodology of spine SBRT 
remain unclear. The present review article considers two 
topics: patient selection and optimal methodology based on 
evidence.

Patient selection

When performing SBRT with curative intent among patients 
with oligometastases, it is important to select patients with 
particularly good prognosis and curability potential. Inap-
propriate patient selection for spine SBRT poses unneces-
sary toxicity risks to patients, such as vertebral compression 
fracture (VCF), esophagitis, myelopathy, and radiculopathy.

Good prognosis

Several studies have reported on the prognostic factors after 
SBRT. Chao et al. generated a prognostic index based on 
the recursive partitioning analysis for patients treated with 

spine SBRT (not limited to oligometastases) [16]. Classi-
fied into three groups according to the time from primary 
diagnosis, Karnofsky performance status (PS), and age, the 
group with the best prognosis (time from primary diagno-
sis > 30 months and Karnofsky PS > 70) had a median sur-
vival time of 21.1 months. This result seems inadequate as 
a prognostic index.

Jensen et al. proposed the Prognostic Index for Spine 
Metastases, which was developed using data from prospec-
tive single institution trials on stereotactic spine radiosur-
gery [17]. The score accounts for sex, PS, previous therapy 
at the intended treatment site, number of organs involved, 
time elapsed between diagnosis and metastasis, and num-
ber of spine metastases. The scoring system categorizes 
patients into four groups, with a 5-year overall survival rate 
of 50–66% in the group with the best prognosis.

Zeng et al. compared patients who died within 3 months 
after spine SBRT and those who lived for > 3 years [18]. 
Shorter survival time after spine SBRT was observed in 
patients with non-breast or prostate primaries, Eastern 
Cooperative Oncology Group PS ≥ 2, polymetastatic disease, 

Fig. 1  Images of a 33-year-old 
woman with metastatic T-6 
breast cancer. A Axial and B 
sagittal computed tomography 
images with dose distribution 
of stereotactic body radiation 
therapy

Table 1  Large-scale randomized 
controlled trials assessing SBRT 
for oligometastases

SBRT stereotactic body radiotherapy, OS overall survival, PFS progression-free survival, y year

Trial N Primary site Number of 
metastases

Primary endpoint

NRG BR-002 [9] 402 Breast cancer  ≤ 4 8-y OS
NRG LU-002 [10] 300 Lung cancer  ≤ 3 3-y OS
SARON [12] 340 Lung cancer  ≤ 3 3-y OS
CORE [12] 245 Breast, lung, and pros-

tate cancer
 ≤ 3 5-y PFS

SABR-COMET 3 [13] 297 Any  ≤ 3 OS
SABR-COMET 10 [14] 159 Any 4–10 OS
STEREO-STEIN [15] 280 Breast cancer  ≤ 5 3-y PFS
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painful lesions, and paraspinal disease on multivariate 
analysis.

Although the prognostic factors of long-term survival 
after SBRT or surgery varied in previous studies, the identi-
fied prognostic factors tended to be related to four major 
overarching criteria: young age (< 65 or < 70 years), patient 
fitness (Karnofsky PS ≥ 70), slow-growing disease (i.e., a 
long disease-free interval prior to metastasis), and low dis-
ease burden (i.e., a smaller number of metastases or single-
organ oligometastases) [19]. The director of the SABR-
COMET trial termed these powerful prognostic factors 
for patients with oligometastatic disease as the “four aces” 
[19]. Indeed, the SABR-COMET included many patients 
with these characteristics (Eastern Cooperative Oncology 
Group PS 0–1; slow-growing disease, including prostate and 
breast cancer; long time from diagnosis of primary tumor 
to randomization; and one or two metastases), which may 
have been the reason for obtaining satisfactory outcomes [8].

A phase 2 trial that included 175 patients with oligome-
tastases treated with SBRT analyzed good prognostic fac-
tors using diagnostic images [20]. They compared 5-year 
polymetastatic-free survival in three groups: (1) patients 
with a combination of < 14.8 mL oligometastatic tumor 
volume and a fluorodeoxyglucose (FDG) positron emission 
tomography (PET)-computed tomography (CT) maximum 
standardized uptake value  (SUVmax) < 6.5; (2) patients with 
a combination of < 14.8 mL oligometastatic tumor volume 
and an FDG-PET/CT  SUVmax ≥ 6.5; (3) patients with an 
oligometastatic tumor volume ≥ 14.8 mL regardless of the 
 SUVmax. The 5-year polymetastatic-free survival rates were 
89%, 58% (p = 0.02), and 17% (p < 0.001) in Groups 1, 2, 
and 3, respectively. These findings suggest that the total 
gross tumor volume (GTV) of the oligometastases and the 
 SUVmax are useful in determining whether the patients have 
a potential risk of polymetastases.

Use of advanced diagnostic images

Advanced diagnostic imaging modalities are effective in 
accurately diagnosing a small number of metastases and 
excluding polymetastases. FDG-PET/CT and diffusion-
weighted whole-body imaging with background signal sup-
pression (DWIBS) magnetic resonance imaging are useful 
for diagnosing oligometastases because they are capable of 
whole-body evaluation and have the spatial resolution nec-
essary to identify targets for SBRT [21]. In addition, these 
tests have higher sensitivity and specificity than bone scin-
tigraphy [22]. Although PET-CT has the advantage of eas-
ily identifying lesions in the acquired images, its limitation 
lies in radionuclide accumulation in regions of high glucose 
metabolism, such as areas with non-specific inflammation 
and physiological changes other than tumors. For osteoblas-
tic metastases, PET is less suitable than bone scintigraphy, 

and confirmation of osteosclerosis on CT is desirable [22]. 
DWIBS reflects the motion restriction of water molecules 
in areas of high cell density and is another tool for detect-
ing metastasis [23]. The main advantage of DWIBS is that 
it is less invasive, as there is no exposure to radiation and 
images can be acquired without the use of contrast media 
[24]. However, lesions in bones with high signal intensity 
on T2-weighted images, such as hemangiomas or red bone 
marrow in patients with anemia, can be judged as abnormal 
signals. Such images require great skill for accurate interpre-
tation [25, 26]. Previous reports assessing the use of PET-
CT and DWIBS to detect bone metastases have shown that 
they have similar sensitivities; however, the specificity of 
DWIBS may be lower than that of PET-CT [27–29]. In addi-
tion, prostate-specific membrane antigen-PET is suitable for 
assessing bone metastasis in prostate cancer if the above 
tests do not provide satisfactory results [30].

Optimal methodology

The purposes of spine SBRT are as follows: complete 
control of oligometastasis, relief of painful lesions, and 
improvement of neurologic function for patients with epi-
dural spinal cord compression [31]. Among these, SBRT for 
oligometastases must be an extremely aggressive treatment 
strategy and achieve a high LC rate because of its curative 
intent.

A previous report suggested the importance of SBRT 
methodologies for oligometastases. A phase 3 randomized 
trial comparing SBRT doses for oligometastases (more than 
90% of patients had bone metastases) showed that high-dose 
SBRT (24 Gy) in a single fraction had a significantly lower 
local failure rate than medium-dose SBRT (27 Gy) in three 
fractions [32]. Notably, the cumulative incidence of distant 
metastatic progression was also significantly lower in the 
high-dose SBRT group (3 years: 5.3% vs. 22.5%, p = 0.01). 
Therefore, appropriate local treatment for the initial metasta-
ses may prevent progression to systemic disease. Herein, we 
suggested countermeasures to improve LC in patients with 
spinal oligometastatic disease receiving SBRT.

Delineation of the target

In the early days of spine SBRT, no clinical target volume 
(CTV) margin was popular [33–35]. However, a retrospec-
tive study showed that contouring the whole vertebral body 
tended to improve LC compared to contouring part of the 
vertebral body [36]. In addition, the International Spine 
Radiosurgery Consortium recommends CTV expansion 
based on the GTV location, wherein the spine is divided 
into six sectors (the vertebra, both pedicle, both transverse 
process, and spinous process) and the CTV includes the 
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sectors where the GTV is located and the sectors adjacent 
to the GTV for subclinical tumor spread in the marrow space 
[37]. This standard setting should be enforced to achieve a 
high LC rate.

Dose fraction schedule

Various dose fractionations are used depending on the facil-
ity, and there is no broad consensus on the optimal dose 
fractionation in SBRT for spinal oligometastases [38]. A 
meta-analysis comparing the prescribed dose of spine SBRT 
showed that a higher cumulative dose led to a higher 2-year 
LC rate in patients receiving 1–5 fractions [39]. Dose frac-
tion schedules should be selected from those used in the ran-
domized controlled trials of the SABR-COMET trial and the 
dose comparison trial conducted by Zelefsky et al. (Table 2) 
[8, 32]. If the treatment goal is a 2-year LC rate > 80%, 
appropriate dose fractionations are 18 Gy/1 Fr, 20 Gy/1 Fr, 
24 Gy/1 Fr, 30 Gy/3 Fr, and 35 Gy/5 Fr. The regimen with 
the highest LC rate is 24 Gy in a single fraction (estimated 
2-year LC of 96%) [39].

In cases wherein the tumor is adjacent to the spinal cord 
[minimum distance between the GTV and planning organ-
at-risk volume (PRV) of the cord < 3 mm [40]], we may have 
to increase the number of the fraction size of SBRT. A dose 
constraint of the spinal cord for the radiation-naive region 
is 12.4 Gy in a single fraction [41], resulting in a deliv-
ery of 27.78 Gy [biological equivalent dose with α/β = 10 
(BED10)] to the epidural tumor in contact with the spinal 
cord. In a regimen involving five fractions, as the spinal cord 
dose constraint would be 25.3 Gy [41], 38.10 Gy (BED10) 
can be administered to the epidural tumors. By increasing 
fractionation, it is possible to escalate the minimum dose 
delivered to a gross tumor, which would contribute toward 
achieving LC [42–44]. However, the benefit of increasing 
fractionation may be limited or none in cancer types with 
low α/β such as breast and prostate cancers. It is noted that 
for high-grade epidural spinal cord compression, surgical 

intervention should precede SBRT to deliver a sufficiently 
high tumoricidal dose [45].

VCF is a relatively common adverse effect of spine SBRT. 
Several studies have identified that high dose per fraction 
is a risk factor for VCF development [38, 46]. A multi-
institutional retrospective study showed that the cumulative 
incidence of VCF at 1 year was 39% with ≥ 24 Gy/fraction, 
19% with 20–23 Gy/fraction, and 10% with ≤ 19 Gy/frac-
tion [46]. Although increasing the number of fractions and 
reducing the dose per fraction are effective in avoiding VCF, 
it should be recognized that VCF is an adverse effect that is 
painless in most cases [47] and does not directly correlate 
with survival.

From the aforementioned studies, the recommended 
doses are 20 or 24 Gy in a single fraction for spinal oligo-
metastases and 35 Gy in five fractions for lesions close to 
the spinal cord (minimum distance between GTV and PRV 
of the cord < 3 mm).

Optimizing dose distribution for the target

The prescribed dose is generally delivered up to 90–95% 
of the planning target volume (PTV) [8, 48]. In addition, 
the isodose prescription is used to sharply reduce the dose 
outside the PTV while administering a high dose within the 
PTV. Several dosimetric analyses have shown a positive cor-
relation between LC and the marginal dose to the GTV but 
not the dose to the PTV [42–44]. Retrospective data from 
the MD Anderson Cancer Center showed that patients with 
a minimum dose to the GTV ≥ 14 Gy in a single fraction had 
a significantly higher LC rate than those with a minimum 
dose < 14 Gy [42]. In addition, retrospective data from the 
Memorial Sloan-Kettering Cancer Center suggested that 
the thresholds of local failure were a minimum dose to the 
GTV of < 15 Gy [43] and a dose that covered 95% of the 
GTV ≤ 18.3 Gy in a single fraction [44]. Therefore, the 
isodose prescription, which produces a steep dose gradient 
and a hotspot in the target, is valid concerning dose reduc-
tion to the organs at risk and excellent LC.

Optimizing the treatment plan increases the target dose 
coverage and reduces the inter- and intra-planner variabil-
ity [41]. If the GTV is not located near the spinal cord, the 
GTV dose can be increased by setting a large limit on the 
maximum dose in the target compared to the prescribed dose 
(e.g., the protocol of CCTG SC.24/TROG 17.06 allows a 
maximum dose of + 50% in the PTV [47]). If the GTV is in 
contact with the spinal cord, the minimum GTV dose should 
be as close as possible to the spinal cord dose constraint (pri-
oritize the dose constraint). The target dose coverage should 
be optimized based on past clinical trial protocols [48], with 
the goal of achieving at least 90–95% coverage of the PTV 
by the prescribed dose. The created dose distribution should 
be visually checked for a steep dose gradient around the 

Table 2  Local control rate and 
dose fraction schedules used in 
randomized trials [39]

LC local control, y year, Fr frac-
tion

Dose fractionation 2-y LC 
rate 
(%)

16 Gy/1 Fr [8] 72
27 Gy/3 Fr [32] 78
18 Gy/1 Fr [8] 82
35 Gy/5 Fr [8] 83
30 Gy/3 Fr [32] 85
20 Gy/1 Fr [8] 90
24 Gy/1 Fr [32] 96
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spinal cord, considering that the maximum photon dose fall-
off gradient is approximately 10–13% per millimeter [40].

Alleviation of the dose constraint for the spinal cord

Table 3 summarizes the representative dose constraints for 
the spinal cord in de novo SBRT [49–54]. There are three 
dose constraints of 12.4, 14, and 16 Gy in a single fraction 
at the maximum point dose (with point defined as ≤ 0.035 cc 
[50]). Several studies examining SBRT for de novo spinal 
metastases using the strictest constraint (maximum point 
dose of 17 Gy in two fractions for thecal sac or the PRV 
of the cord [49]) have not observed radiation myelopathy 
[55–57]. Reports that calculated dose constraint of 14 Gy 
have adopted the spinal cord itself (without PRV margin) as 
the structure of interest [50–53] (Table 3). Some reports that 
used this setting have not confirmed radiation myelopathy 
in the long-term follow-up examination [48, 58]. Alleviat-
ing the dose constraint of the spinal cord is an option for 
increasing the minimum dose delivered to an epidural tumor. 
However, radiation oncologists should use the 16 Gy dose 
constraint with caution in clinical practice because of the 
small sample size of this phase 1 trial [54].

Conclusion

Although SBRT can cure some patients with oligometas-
tases, the optimal patient population and methodology for 
spine SBRT remain unknown. Patients with young age, good 
fitness, slow-growing disease, low disease burden, and mild 
FDG accumulation in PET are suitable for spine SBRT with 
curative intent. In addition, the use of appropriate diagnostic 
imaging can exclude the possibility of false oligometastases. 
Regarding the optimal methodology, we proposed four coun-
termeasures to improve LC. We believe that this informa-
tion will be useful when selecting patients and performing 
appropriate spine SBRT in daily clinical practice.
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