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a b s t r a c t

The spread of breast cancer cells to bone and survival in this new metastatic environment is influenced
not only by the genetic signature of the cells, but also multiple host cells and soluble factors produced
locally (paracrine) or from distant sites (endocrine). Disrupting this metastatic process has been eval-
uated in clinical trials of the bone targeted agents bisphosphonates and denosumab and have shown that
these agents reduce the recurrence of breast cancer in postmenopausal women only, suggesting the
efficacy of the drugs are influenced by levels of reproductive endocrine hormones. The molecular me-
chanism driving this differential effect has not been definitively identified, however, there is evidence
that both reproductive hormones and bisphosphonates can affect similar paracrine factors and cellular
components of the bone metastatic niche. This review focuses on how the ovarian endocrine hormone,
inhibin, interacts with the paracrine factors activin and follistatin, abundant in the primary tumour and
bone microenvironment, with subsequent effects on tumour cell survival. Inhibin also affects the cellular
components of the bone microenvironment primarily the osteoblastic niche. Recent evidence has shown
that bisphosphonates also alter this niche, which may represent a common mechanism by which inhibin
and bisphosphonates interact to influence disease outcomes in early breast cancer. Further research is
needed to fully elucidate these molecular mechanisms to enable understanding and future development
of alternative bone targeted treatments with anti-tumour efficacy in premenopausal women.
& 2016 The Author. Published by Elsevier GmbH. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Breast cancer commonly spreads to bone in a process involving
migration of tumour cells through the stroma followed by in-
travasation, homing to and extravasation at distant sites such as
bone, and ultimately survival in this new metastatic environment.
The survival of tumour cells during this process is influenced by
their genetic signature and a plethora of host cells and soluble fac-
tors [1]. Disrupting the process of metastatic spread from primary
breast tumour to bone was evaluated using the osteoclast inhibitors,
bisphosphonates, in (neo)adjuvant clinical trials, with the hypothesis
that preventing osteolysis, and release of tumour promoting growth
factors from bone, may inhibit tumour cell survival. Bisphosphonates
were found to improve survival only in women who were naturally
or chemically postmenopausal when treatment was started [2]. The
molecular mechanism for this differential effect of bisphosphonates
according to menopausal status is currently unknown, but there is
evidence that female hormones, such as inhibin, can interact with
paracrine factors known to affect tumour cell growth in both the
breast primary tumour and the bone microenvironment.
GmbH. This is an open access artic
1.1. Menopause is associated with change in ovarian hormones af-
fecting bone

Menopause is characterised by a decrease in ovarian oestradiol
and inhibins with an increase in pituitary follicle stimulating
hormone (FSH). The decline in inhibins drives the increase in bone
turnover that occurs in early menopause and although inhibins are
not abundantly expressed in bone, radiolabelled inhibin A ad-
ministered intravenously in vivo accumulates rapidly in the bone
marrow indicating that it can distribute to bone (reviewed in
Wilson et al.) [3]. In a cross sectional study of women aged 21–85
(n¼188), endocrine hormones were correlated to changes in ser-
um markers of bone formation; bone specific alkaline phosphatase
(BSAP), and bone resorption; carboxyterminal telopeptide of type I
collagen (CTX). Inhibin A was shown to be the most accurate
predictor of changes in bone formation and resorption being ne-
gatively correlated with levels of BSAP and CTX [4], thus declining
inhibins in early menopause will lead to increased bone turnover.
The primary role of inhibins is to inhibit the secretion of FSH from
the anterior pituitary and thus the role of inhibins must be con-
sidered in the context of associated changes in FSH. In the cross
sectional study FSH correlated with bone resorption markers (CTX)
but not bone formation markers (BSAP) in perimenopausal
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. The endocrine changes in bone as a result of menopause. The menopause
induces changes in both endocrine and paracrine factors in the bone micro-
environment. Ovarian failure increases bone turnover due to a decline in ovarian
inhibins and oestradiol. As a result of increased bone turnover osteoclastic bone
resorption releases soluble factors that are stored in bone, i.e. activin and TGFβ.
These paracrine soluble factors can influence tumour cells in the bone micro-
environment (BMEV).
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women, and did not correlate with any bone turnover markers in
pre- or postmenopausal women [4]. In vitro, FSH increases os-
teoclast differentiation [5], and in vivo treatment of ovariectomised
14-week old mice with an antibody to β-subumit of FSH, blocking
its biological activity, prevents OVX-induced bone loss after
4 weeks of treatment. Dynamic histomorphometry showed in-
hibiting FSH increases all bone formation parameters and inhibits
bone resorption parameters [6]. In contrast, a prospective study of
changes in bone turnover in postmenopausal women (n¼46) with
inhibition of FSH, using GnRH agonists, showed a significant in-
crease in CTX and TRAP5b (serum markers of bone resorption)
with suppression of FSH, in addition to a significant increase in
P1NP (a marker of bone formation) [7]. These data suggest FSH
does not directly regulate bone resorption in postmenopausal
women, however lowering FSH levels may affect bone formation
either directly by affecting number or activity of the bone forming
cells; osteoblasts (Ob), or indirectly due to the coupling effect of
bone turnover following an increase in bone resorption.

1.2. Molecular interactions of endocrine and paracrine factors; im-
plications for tumour growth

Inhibins do not have an identified intracellular downstream
signaling pathway but bring about their effector functions by in-
hibiting ligand: receptor interaction of the soluble paracrine fac-
tors activin and TGFβ, abundant in both the primary tumour and
bone microenvironment [8]. Activin and TGFβ each bind to their
respective type II receptors, but both recruit the same type I re-
ceptor resulting in phosphorylation of the receptor associated
Smads 2/3 [9]. Activin is a tumour suppressor that is bound to a
single chain glycosylated peptide, follistatin, fromwhich it must be
cleaved to allow receptor ligand interaction. Thus, female hor-
mones such as inhibin may affect cancer cell survival through
modification of tumour paracrine factors (reviewed in Wilson et al.
[3]). Three key in vivo studies [10–12] have investigated the effect
of blocking the activin type IIA receptor (ActRIIA) on bone, either
with inhibin A or a soluble extracellular domain of ActRIIA fused to
a murine IgG2a-Fc. These studies have collectively demonstrated
that blocking this receptor increases bone density in mouse
models by increasing the activity and number of Ob. The sub-
sequent effect on tumour cell survival and growth in bone remains
to be established, but the bone microenvironment will differ ac-
cording to menopausal status not only at a cellular level but also in
terms of the soluble factors present. Activin is stored in the bone
matrix and produced locally in the bone marrow during osteoclast
mediated bone breakdown [13]. Bone activin levels would there-
fore be expected to be low in quiescent premenopausal bone due
to high inhibin levels and low bone turnover, with the converse
true in postmenopausal bone (Fig. 1).

1.3. Endocrine:paracrine influence in the breast primary tumour and
interaction with bisphosphonates

Activin is secreted by breast cancer cell lines in vitro and in-
hibits proliferation [14]. In clinical breast cancer samples loss of
expression of the activin type II receptor is associated with in-
creasing tumour grade [15], confirming the tumour suppressive
activity of activin in breast cancers. Breast tumour cells can impair
activin signaling with evidence that follistatin, secreted by tumour
cells, promotes tumour growth [16] and inhibin A promotes sto-
mal invasion and metastasis [17].

Hormone interaction with bisphosphonates; the bisphosphonate
zoledronic acid (ZA) has been shown to increase activin's biolo-
gical activity in breast cancer cells in vitro and in vivo, enhancing
its tumour suppressive effects [18]. Moreover, postmenopausal
breast cancer patients receiving ZAþneo-adjuvant chemotherapy
(CT) show a significant fall in serum follistatin levels compared to
CT alone, thus increasing activin's bioavailability in these patients
(an effect not seen in premenopausal patients) [19]. A meta-ana-
lysis of four clinical trials evaluating the addition of ZA to neo-
adjuvant CT (n¼553) found that postmenopausal women have
improved pathological complete response rates (pCR) in primary
breast tumours when treated with ZA plus CT vs CT alone (13.6% vs
7.8%, respectively) [20] indicating that low levels of endocrine
hormones enhance the response of primary tumours to
bisphosphonates.

1.4. Endocrine:paracrine influence on the homing of tumour cells to
bone and interaction with bisphosphonates

Disseminated tumour cells are detectable in the bone marrow
of a third of patients with early breast cancer without any clinical
manifestations of bone metastasis [21]. A meta-analysis of over
4000 bone marrow aspirates from breast cancer patients without
bone metastases found that premenopausal patients had a sig-
nificantly higher prevalence of bone marrow disseminated tumour
cells (DTCs) than postmenopausal women (32.7% vs 29.5%) [21],
suggesting premenopausal bone (with low activin levels due to
ovarian inhibin) may attract tumour cells. This is in contrast to
in vivo data showing that lowering activin levels with a soluble
activin receptor type IIA fusion protein prevents the formation of
bone metastases from MDA-MB-231 cells [10], thus the role of
activin and inhibin in modifying the bone microenvironment and
survival of tumour cells needs defining, and may differ in the
preclinical and clinical settings.

Hormone interaction with bisphosphonates; Clinical trials have
shown that bisphosphonates decrease the number of bone mar-
row DTCs in marrow aspirates from breast cancer patients [22–25].
Since DTCs have not developed autonomous growth, it is likely
that this effect is mediated through bisphosphonate-induced
changes in the bone microenvironment, rather than a direct anti-
tumour effect. The influence of hormones on the ability of bi-
sphosphonates to eliminate DTCs was not possible to assess in
these clinical trials since they were not large enough to show a
differential effect of bisphosphonates according to menopausal
status.
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1.5. Endocrine influence on the survival of tumour cells in bone and
interaction with bisphosphonates

50% of patients with detectable DTCs will relapse during 10
years post diagnosis [21], however some patients will never de-
velop bone metastases thus survival of tumour cells in the bone
depends on a conducive bone microenvironment. A study of in-
cidence of bone metastases in 47064 breast cancer patients
showed that younger patients were more likely to develop bone
metastases and in multivariate analysis the hazard ratio of de-
veloping bone metastases was highest in women who were aged
under 40 years at diagnosis (HR 0.47 95%CI 0.38–0.57) [26], sug-
gesting premenopausal bone may provide a more favorable en-
vironment for tumour cell survival and growth into clinically overt
bone metastases. Standard chemotherapy agents directly target
proliferating tumour cells, however, there is increasing evidence
that the bone microenvironment may be a potential sanctuary for
DTCs that are dormant and resistant to conventional systemic anti-
cancer therapies [27]. It is possible that DTCs may localise to the
haematopoetic stem cell (HSC) niche in bone and use the same
stromal adhesion and environmental signals to enable them to
survive. It has been shown that tumour cell lines with bone
homing properties express the receptor for annexin II that Ob use
to adhere to HSCs and knockdown of this receptor in prostate cells
prevented bone metastasis after intacardiac injection [28].

Hormone interaction with bisphosphonates; Disrupting the in-
teractions between DTCs and the bone stromal cells was evaluated
in phase III randomised clinical trials of adjuvant bisphosphonates,
and a large meta-analysis of these adjuvant bisphosphonate trials
involving 418,000 patients showed bisphosphonates prevented
breast cancer recurrence in bone (RR 0.72, 0.60–0.86; 2p¼0.0002),
at other distant sites (RR 0.82, 0.74–0.92; 2p¼0.0003) and im-
proved breast cancer mortality (RR 0.82, 0.73–0.93; 2p¼0.002) in
women who were postmenopausal when treatment started [2].
Recent data from the ABCSG-18 trial has shown that adjuvant
treatment with the RANK ligand inhibitor denosumab, which
prevents osteoclast activation, reduces the risk of disease recur-
rence in postmenopausal patients with early stage hormone re-
ceptor positive breast cancer [29], suggesting that osteoclast in-
hibition by an alternative molecular mechanism to bispho-
sphonates also improves outcomes in patients with low levels of
female hormones.
2. Discussion and outstanding questions

Reproductive endocrine hormones such as inhibin affect breast
cancer cell survival in the primary tumour and affect tumour
homing and survival in the bone microenvironment. The mole-
cular mechanism driving this effect of hormones in bone is likely
to be multifactorial by modification of both paracrine factors and
the cellular components of the bone metastatic niche. If the Ob
niche is key to the maintenance of dormancy and survival of tu-
mour cells then factors that affect the size of this niche can po-
tentially determine outcomes for breast cancer cells in this en-
vironment. There is evidence from in vivo models that expanding
the Ob niche with the use of parathyroid hormone, increased the
number of DTCs in bone from sub-cutaneous prostate tumours
[30]. Zoledronic acid has also been shown to have effects on the Ob
niche and a recent in vivo study evaluating the effects of a single
dose of zoledronic acid (100 μg/kg) showed that the drug sig-
nificantly reduced Ob number which influenced where in-
tracardiac injected MDA-MB-231 breast cancer cells home to, with
a preference demonstrated for Ob rich areas [31]. Both inhibin and
bisphosphonates differentially affect paracrine factors and cellular
components of the bone metastatic niche, in particular the Ob
niche, with potentially differential effects on the survival of DTCs
in bone. The specific molecular mechanisms driving this need
further elucidation to allow understanding and development of
alternative bone targeted treatments that are mechanistically
different to the osteoclast inhibitors and have anti-tumour efficacy
in premenopausal women.

2.1. Outstanding questions
� Which female hormone(s) affect the direct anti-tumour efficacy
of bisphosphonates in primary tumours and the indirect anti-
tumour efficacy of bisphosphonates in bone, in particular what
are the roles of activin and inhibin?

� What are the cellular/molecular drivers of tumour growth in the
pre- and postmenopausal bone microenvironments?

� Is the differential effect of menopause on the anti-tumour effi-
cacy of osteoclast inhibitors specific to breast cancer patients
only or does this apply to other tumours such as lung cancer?
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