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Abstract: As the size of components mounted on printed circuit boards (PCBs) decreases, defect
detection becomes more important. The first step in an inspection involves recognizing and inspecting
characters printed on parts attached to the PCB. In addition, since industrial fields that produce
PCBs can change very rapidly, the style of the collected data may vary between collection sites and
collection periods. Therefore, flexible learning data that can respond to all fields and time periods
are needed. In this paper, large amounts of character data on PCB components were obtained and
analyzed in depth. In addition, we proposed a method of recognizing characters by constructing
a dataset that was robust with various fonts and environmental changes using a large amount of
data. Moreover, a coreset capable of evaluating an effective deep learning model and a base set
using n-pick sampling capable of responding to a continuously increasing dataset were proposed.
Existing original data and the EfficientNet B0 model showed an accuracy of 97.741%. However, the
accuracy of our proposed model was increased to 98.274% for the coreset of 8000 images per class. In
particular, the accuracy was 98.921% for the base set with only 1900 images per class.

Keywords: PCB inspection; optical character recognition (OCR); deep learning; coreset

1. Introduction

The traditional method of classifying printed characters on components attached to a
printed circuit board (PCB) in the past is using machine learning method such as pattern
matching. It is still difficult to completely process these characters automatically without
human assistance. However, the PCB inspection field is expected to benefit from deep
learning because the problem of a low classification accuracy can be solved by converting
algorithms from traditional machine learning to deep learning in various fields related to
the classification using images.

Deep learning requires enough data for model learning. That data must satisfy both
at the same time quantity and diversity requirements. Even when a good deep learning
model is trained with a large dataset, there are many differences in performance and
accuracy according to the quality of the dataset used for training [1–4]. When applying
deep learning, which can yield high accuracy in general classification problems, it can
show good results through collecting, preprocessing, and learning on a large amount of
data. However, this is only possible if it is easy to collect data and the collected data is of
high quality.

Figure 1 shows an example of a component attached to a PCB, with letters printed on
the tops of the components. These components may be visually indistinguishable because
each one varies in size, errors that occur when printing and attaching other components,
therefore, the inspection can be carried out using images acquired with high-resolution
magnifying cameras [3–5].
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Figure 1. Examples of components attached to PCBs.

In the past, a pattern matching method of an operator machine was used, which when
performing an inspection can save a pattern in advance and compare it with an image.
However, this method often results in undetected and misclassified data because many
different types of fonts are printed on components, and similar component types often
use different fonts. In addition, since each font has a different thickness, during image
acquisition, a thin font may be obscured due to a lighting problem.

Applying deep learning for PCB inspection has several problems as follows:

• Data collection: It is not easy to acquire data during the inspection process because
delays in the data collection process can cause decrease the in productivity.

• Data privacy: Many PCB manufacturers do not allow data collection due to confiden-
tiality issue.

• Unique problems with the data: Because each PCB production plant uses has different
types of PCBs and components used, data collected by one plant can not represent
data from all production plants.

In this paper, a representative dataset called a coreset [6] was generated in a manner
that could solve unique problems associated with obtaining character data from PCB
components. Since actual inspection equipment consists of a limited amount of hardware,
deep learning models that can balance measurement time and performance should be
utilized. The best EfficientNet model can be selected using the proposed coreset.

Our work contributes to several things in the process of examining printed characters
on parts during PCB testing. The main contributions of this paper are as follows.

• We propose a data augmentation method that could generate representative datasets
for learning with just data collected from a few factories so that it could be applied to
multiple factories for examining printed characters on the top of parts. This method
takes color, shape, size, and font shape into account.

• PCB tester production companies can simultaneously batch-process the learning and
distribution and upgrade the deep learning model for multiple factories instead of
generating respective models for individual factories.

• Types of PCB parts continue to grow. Thus, a lot of time is needed to accumulate and
learn all collected data. In this work, we used an n-pick grid sampling to include suffi-
cient features while minimizing existing accumulated data, leading to a continuous
learning with a quite simple method.

This paper is organized as follows. In Section 2, related studies on deep learning for
PCB inspection are discussed and an overview of deep learning models used in this work
is given.

We provide a detailed analysis of the datasets we collected and explain how to reduce
and augment the data in Section 3. In Section 4, the most computationally efficient model
is selected using the coreset, and a scheme is proposed for constructing a sustainable base
set. In Section 5, an experiment that can be considered as a field test is performed; Results
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of this test can increase the applicability of the proposed method. Finally, we discuss the
conclusions of the study and provide future research directions in Section 6.

2. Related Work
2.1. PCB-Related Optical Character Recognition (OCR) Research and Component Defect Inspection

Regions of the world that are most interested in PCB defect inspection are Southeast
Asia, China, and Korea, because industrial production is a major national industry in these
regions. By the mid-2010s, deep learning was already actively being used in other research
areas, but not in the PCB field [7–12]. However, in the past three years deep learning
has been actively used in PCB inspection. Such a late adoption of deep learning for PCB
inspection was due to various limiting characteristics in this field; for example, database
acquisition is difficult and relevant companies are often reluctant to release data. Thus,
research papers are often written by companies with PCB production lines [13–21].

For OCR work on PCB, the existing industry uses commercial software which uses
rotation invariant features or pattern matching for character classification. However, such
methods cannot reach a satisfactory level of accuracy In addition, the high license price of
the software makes the installed testers less competitive [7–11].

The main purpose of the present study is to use deep learning to classify characters
printed on components. Most prior studies have focused on classification of compo-
nents or application of deep learning for attachment defects of components or defects
in PCB circuits [12–14] No research has been conducted yet with sufficiently large and
diverse databases.

Since each PCB production plant produces different types of PCBs, it is difficult to de-
velop flexible models that can be applied simultaneously to several factories. Consequently,
this area of research is still relatively new and has not reached the application phase. Thus,
it may take a long time for advancements to be applied in the field.

Although it is difficult to obtain data in the field of PCB defect inspection, Deep-
PCB [15] might be able to solve some of these problems. DeepPCB is a database of
1500 images, including short and pin-hole defects of PCBs.

Silva et al. [16] have proposed a defect detection method using the DeepPCB database.
They showed results were better for shallow models than for deep models. There was no
need to use deep models because the DeepPCB images used in their study were binary with
simple textures. Accordingly, inherent characteristics of PCB data exist. Thus, it cannot be
concluded that a deep learning model with a generally good performance in a study will
have the same good performance in the field.

Huang et al. [17] have suggested the use of HRIPCB, a PCB dataset without assembled
components, to address the dearth of available data. Indeed, the disclosure of large
volumes of data has greatly contributed to the field of study by providing public data that
has become a new standard because of an increased accessibility that it provides. While it
is true that published datasets can increase the accessibility of research, whether such data
are quantitatively satisfactory or representative remains unclear.

PCB production is a very high-speed and precise industry with each factory producing
different items. Thus, the representativeness of the dataset must be considered. It is
necessary to produce data that can be used as learning data for deep learning models that
can then be distributed simultaneously to various production fields. Due to hardware
limitations of an inspection equipment used for PCB inspection, online learning techniques
are currently not facile.

Such online techniques aim to collect data from separate factories using inspection
machines at the same time and then use the data for training individual deep learning
models. Thus, it is necessary to propose a method that ensures that even a small amount of
data collected by only a few factories in a short period of time is sufficiently representative.
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2.2. EfficientNet

EfficientNet [22] was proposed in 2019. It is thought to have sufficient computational
speed and accuracy for our application, despite its disadvantage of a slightly slower
learning speed compared to ResNet [23].

Generally, model extensions are performed to increase the performance of a con-
volutional neural network. Also, the deeper the network, the better the performance.
If necessary, efficient models can be created by increasing or decreasing the number of
nodes. However, making such changes requires a manual input. and a better CNN can be
constructed using hyper-parameters after several experiments.

Tan and Le [22] have proposed the best combination of the extension method, using
three techniques: (1) increasing the network depth, (2) increasing the channel width, and
(3) increasing the resolution of input images.

In the previous study [22], eight models (models B0 to B7) demonstrated superior
performance with few parameters when considering optimal combinations within a limited
resource range. Figure 2 [24,25] shows the structure of an EfficientNetB0.

Figure 2. The structure of an EfficientNetB0 model with the internal structure of MBConv1 and MBConv6. Compared to
MBConv1, MBConv6 has three layers at the top. The number of feature maps as the output is 6.

3. Data Collection and Processing
3.1. Data Collection

Images used in this paper were automatically collected from inspection machines
currently used for assembly and inspection lines. The software used during the inspection
process was capable of separating and labeling characters from strings printed on faces of
components.

However, the software could not separate each character because the distance between
characters was noticeably short. Moreover, when labeling separated character images,
there was an error of specifying a different label. Figure 3 shows a problem that cannot be
properly divided because of the short distance between characters [3–5].
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Figure 3. Examples of images with errors.

All data were automatically labeled using a pattern matching software that was
previously used for PCB inspection during the collection process. If the software were
100% accurate, our research would be unnecessary.

Even if the labeling process of the software is simply a substitute for some extremely
hard work by humans, there are many errors because they are not accurate. Therefore,
we performed re-labeling by manually checking. This meant that both learning data and
testing data were manually validated by our researchers.

3.2. Class Definition

Collected data is defined by a total of 52 classes in this research. There were originally
a total of 62 classes corresponding to different characters on faces of PCB components,
consisting of 10 digits (0–9), 26 uppercase letters (A–Z), and 26 lowercase letters (a–z).
However, a total of 20 labels of the same shape but different sizes were combined and
reduced to 10 labels (i.e., C and c, K and k, O and o, P and p, S and s, U and u, V and v,
W and w, X and x, and Z and z). Therefore, in this study, there were a total of 52 classes,
comprising 10 numbers and 42 letters.

3.3. Analysis of Data Imbalance Issues

Data were collected for learning and testing purposes in consultation with the com-
pany that manufactured the inspection equipment. A large set of segmented text images
consisting of a total of 5,368,069 massive images was acquired from some lines of over
five assembly plants, because PCB production and processing occurred amazingly quickly.
However, there were large differences in the collected number and style of fonts in each
class because not all components used the same font.

When deep learning models learn with a dataset, the model will certainly show good
results in the factory where the dataset is collected. However, it is unreasonable to expect
good results for factories that use components with different fonts on printed surface. It not
only takes a long time to collect data and train models if different models need to be applied
to different PCB inspection sites, but this also becomes practically impossible because each
site must then employ deep learning experts who understand unique characteristics of
various datasets.

To address these problems, a company that manufactures the inspection equipment
must apply a deep learning model to the equipment with a long-term data collection plan.
Maintenance also needs to be considered. Figure 4 shows the distribution of data for a
total of 52 classes. In this distribution, the amount of data acquired per class was highly
imbalanced. No data had been collected for classes that were not frequently used for com-
ponents. For example, the total number of numeric classes from 0 to 9 was approximately
360,000, which accounted for almost 70% of the overall total.

The most used class, 0, accounted for about 13% of all data. If most classes had so
much data, we could use the same method of down-sampling for all classes. However,
classes such as X, Z, and e deserved attention.

Classes with a small amount of data can simply generate as much additional data as
possible through up-sampling. However, this process can cause overfitting because some
classes only contain roughly the same image as the cloned image.
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Figure 4. Data distribution by collected character class.

Figure 5 shows examples of image types for several classes. For 0 and A, six examples
are shown because there are many different image styles. For i, O, e, X, Y, and Z, all image
types in each class are shown. All 1551 images in the i class have the same style. The same
is true for all 815 images in the O class.

Figure 5. Examples of image types in each class.

3.4. Enhancement and Augmentation of Character Data

In this section, data are augmented and enhanced in five aspects to overcome limita-
tions of having a small amount of data that is highly redundant. These methods available
in this case are up-sampling, accomplished by transforming existing data and generating
unpredictable new data from existing data.

Diversity in illumination, rotation, size, noise, and contamination (occlusion) damage
could be addressed through variations in collected data. In addition, new data can be
created in response to unknown data styles (i.e., new color and new font types) by con-
sidering both font shape and colors of the foreground and background. The method of
augmentation of existing data cannot be applied to a few classes (classes with only one
kind of image or no data). Existing data augmentation methods could create new data by
interpolating existing data, or simply add noise, rotate, and invert. However, since there
was no letter in the shape of a flipped ‘e’ and since flipped ‘d’ becomes ‘b’, it is difficult to
use a method of flip the letter to train a model.

That is, the flip method to augment dataset could make the meaning of a letter become
completely different from that of the original letter. In addition, since completely new data
created were not included in collected data from factories, it was difficult to overcome the
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bias with an augmentation method that could slightly transform pixels of existing data.
For that reason, a large portion of this study is focused on generating new data.

3.4.1. Illumination Variance

Text data obtained from PCB components are expected to mostly consist of similar
colors. However, a given color could differ slightly depending on the color of the compo-
nent or the environment in which it was acquired. Some types of characters are obtained
only from certain components, which might vary depending on the factory from which
data were acquired. This could result in a foreseeable character recognition problem due
to, rotation, illumination, noise error, and new font shapes.

Figure 6a shows data of various colors. Figure 6b illustrates the process of reversing
colors in each image. This result was obtained by subtracting the maximum color of each
RGB channel and then setting it to an absolute value. The data set was constructed such
that the deep learning model could learn as many types of distributions as possible. A
few images exhibiting variance in illumination were mixed into the coreset because it
was relatively unlikely that data with colors shown in Figure 6b would exist without
such intervention.
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Figure 6. (a) Data in various colors, (b) Result of color reversal.

Figure 7 briefly illustrates the distribution of data in several classes. Although the
i class had only one image type, the distribution was somewhat widely spread due to
differences in the number of pixels in different images caused by; the large amount of data
in that class. On the other hand, for the e class, there were 512 data points. The distribution
was very narrow.

Figure 7. V channel distribution: showing the mean number of pixels and standard deviation for
classes 0, e, and i.

3.4.2. Rotation Variance

Some of the collected data might have been rotated slightly by attached components.
The font might have also been rotated. The angle of the rotation was never more than +5
degrees or less than −5 degrees as rotation by more than a certain angle would result in an
attachment error.

Consequently, considering the environment in which the learned model was to be
applied, some collected data were randomly rotated at an angle between +5 and−5 degrees,
as shown in Figure 8.
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Figure 8. Random rotation of data at an angle within ±5 degrees.

3.4.3. Size Variance

Because the sizes of components vary, the size of the collected data was also different
for each image. Some components were exceedingly small. Thus, characters written on
them could be small enough to cause problems for learning models. In most images used
in this study, outer edges of characters were removed. A square size was changed to
32 × 32 pixels for deep learning training. Sizes of original images varied widely, with a
few being more than 100 pixels in width or length, while some being less than 32 pixels in
length. If the image was enlarged to 64 × 64, which was four times the size of 32 × 32, this
was not a meaningful process because pixels were simply duplicated to the enlarged part
during the interpolation process Thus, the images on which the model was trained were
32 × 32 pixels in size, as in the CIFAR-100 dataset.

3.4.4. Noise and Contamination (Occlusion) Variance

In this study, data were augmented using random Gaussian noise, a common compo-
nent of the augmentation process. To address damaged data, data were augmented for the
purpose of responding to it as shown in Figure 9a. In the process of acquiring data, various
types of damage could occur. For example, data might be partially cut off or damage could
be caused by printing and heat treatment of fonts on the surface of the component. We
replaced instances of degradation with partial noise, as shown in Figure 9b. In addition,
most of damaged data were collected separately from the process described in the previous
section (Section 3.1), and the data imbalance problem was solved by adding collected data
to the coreset.
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3.4.5. Font Shapes Within Class Variance

The data augmentation process mentioned in the previous section did not completely
resolve the data imbalance problem because it required up-sampling with a finite image.
As shown in Figure 4, some fonts were not collected at all. In the opinion of inspection
equipment developers and industry experts, such classes cannot be excluded from model
learning because they might be used for printing component faces in the future.

Data augmentation methods such as generative adversarial networks (GAN) [26] have
been widely used in recent years. They can be used to create new data by fully learning the
information from existing collected data.

For some cases, none of their data was collected from whole factories (i.e., for lowercase
f, m in Figure 4). Thus, even with methods such as GAN, we could not generate labeled
data [27,28].

To solve this problem, a total of 35 free font images were used to generate new font
images as shown in Figure 10. This method was since letters printed on parts attached to
the PCB were from the font installed on a computer [29].
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Figure 10. Creation of font data for colors appearing on PCB components in the real world.

The method of doing so involved the following steps:

(a) Fonts installed on the computer (35 types of fonts in this study) was used to generate
52 classes. It meant that 52 characters’ images were generated for 35 types of fonts,
resulting in a total number of 1820 images. The foreground of the image was made
black and the background was made white.

(b) This was repeated for a total of 52 times (from 0 to Z) and 35 font styles were ran-
domly selected.

(c) The RGB channel of the image was converted to hue, saturation, value (HSV) chan-
nel [29].

(d) When R, G, and B values of a pixel were 0, it was a foreground (i.e., a character). H, S,
and V values of a pixel were randomly set to satisfy the following ranges: 0 ≤ H < 30,
100 ≤ S < 256, and 100 ≤ S < 256.

(e) Conversely, if R, G, and B values of a pixel were 255, it was a background. H, S, and
V values of the pixel were randomly set to satisfy the following ranges: 0 ≤ H < 30,
100 ≤ S < 256, and 0 ≤ S < 150.

(f) Processes (4) and (5) were repeated by checking all pixels in the image. In addition,
ranges for H, S, and V in processes (4) and (5) were just examples. They were
empirically set as color frequently found in PCBs.

(g) The HSV channel image was converted to RGB and saved.
(h) Random noise was performed for half of processes from (2) to (7) and mixed into

the image.
(i) The operation from processes (2) to (8) was repeated as many times as set by the user.

In this work, this method was utilized to create 8000 images per class.

We created HSV range conditions for the background and foreground of processes
(3) and (4) in several empirical ways, allowing us to randomly select data when generating
them to produce as many different images as possible. To ensure that created images
were similar to images extracted from real PCBs, unnecessary borders were cut out of
final images.

RGB channels of the image can be converted to HSV channels by Equation (1) [29],
where pixels R, G, and B have values between 0 and 255.

V = max(R, G, B)

S =


V−min(R,G,B)

V i f V 6= 0

0 i f V 6= 0

H


60(G−B)

V−min(R,G,B) i f V = R

120 + 60(B−R)
V−min(R,G,B)

240 + 60(R−G)
V−min(R,G,B)

i f H < 0, H = H + 360

(1)
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3.5. Data Sampling and Grid Algorithm
3.5.1. Overfitting and Underfitting

Overfitting means over-learning the data. It means when the deep learning model is
fit too tightly for the learning data. It occurs when data have an excessive bias. In general,
learning data are a subset of real data. Thus, errors decrease for learning data but increase
for real data. Learning data are a subset of real data because it is impossible to collect all
real data. On the other hand, underfitting is a state in which the deep learning model does
not fully reflect characteristics of the learning data. It can occur when learning time is too
short or when the expressiveness of deep learning models is lower than the level required
to represent the data.

Data collected in this study were too dense for certain shapes and forms before
augmentation. Although some data we collected had an exceptionally large number, they
were highly biased and imbalanced. Another class had no data at all or the number of data
was exceedingly small.

Learning data is a subset of data that can occur in an environment where deep learning
is applied. It is exceedingly difficult to learn data from a small number of factories and
apply it to most factories. Because characteristics of each class are completely different,
it is difficult to learn to predict data that the model has never learned before no matter
how good the deep learning model is. If we learn a deep learning model by using our
data as it is, it can be overfitted for certain factories. However, the model is not fitted for
other factories.

Figure 11 [30] illustrates underfitting, overfitting, and optimal fitting. In Figure 11,
the yellow line, red points, and blue line represent the original curve, data sampled from
the curve, and curve fit to red points, respectively. From the perspective of the data, in
general, large amounts of data can prevent overfitting. However, even if there are a lot of
data like our data, data with a narrow distribution and extremely poor quality could not
prevent overfitting. Therefore, a model fitted to the poor quality sample may not fit well
to the population. In other words, problems can arise because the diversity of collected
samples is less than the data diversity of the actual environment in which our learning
model is applied.

Figure 11. Underfitting, overfitting, and optimal fitting.

Although some data used in this study were exceptionally large, the distribution of
data tended to be dense for some classes, while there were no data at all or only a few types
for data in other classes. Consequently, overfitting and underfitting could occur for each
class. To solve the parameter fitness problem of the deep learning model, various types of
data were created in the process of augmentation and reinforcement as discussed in the
previous section. To balance the amount of data in each class, it is necessary to perform
appropriate up-sampling or down-sampling. However, it was difficult to apply the same
sampling method to all classes because data collected from PCB had imbalances within
and between classes, as explained previously [30,31].

The SMOTE [32] algorithm is a commonly used oversampling technique that can
generate synthetic data. It can solve the problem of overfitting by sampling several classes
and interpolating a few samples to synthesize a new instance. However, this method does
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not fit for some data that we need to address. For example, for the worst class in our set (i.e.,
‘X’), up-sampling is virtually meaningless. This was because only a small change in pixel
values was made from the original data that was repeatedly collected, although additional
data were created through data augmentation. Therefore, we need to augment our data for
new and unfamiliar data predictions and reduce the amount of data by selecting images
that are as different in style as possible [6,30–35].

3.5.2. Grid Sampling

The easiest way to know that each image has a different style is to analyze pixels
in the image. We have proposed a grid sampling method of pixel analysis in previous
studies [3–5]. This method can be called restrictive random sampling as it limits the
sampling location. The left side of Figure 12 shows the distribution of the original and
augmented data for class ‘0′ and, the right side of the figure shows results after scaling of
the data using the n-pick (n = 3) method of the grid algorithm. After applying the grid
algorithm, the distribution was no longer concentrated in certain spots. Instead, it was
much more even.

Figure 12. Data reduction using the grid algorithm. The left part of the figure is a mixture of both original data 1, 2, and
augmented data in class 0. The right part of the figure shows the result after applying the n-pick sampling algorithm.

In the graph, each point represents an image. The x-axis is determined by obtaining m
in Equation (2) while the y-axis is determined by obtaining σ in Equation (2). At this time,
V is the brightness channel of the image obtained from Equation (1), w is the width of the
image, and h is the height of the image:

m =
∑w×h

i Vi
w× h

, σ =

√
∑w×h

i (Vi−m)2

w× h
(2)

The data to be handled is an image in which the background and foreground are
clearly separated. The average of pixels may vary depending on the shape of the font.
For example, even for multiple images having same ‘0’ shape of font, the foreground will
occupy a larger proportion if a thick font is used.

Also, if the foreground or background color is different, the deviation will be different.
The distribution shown in Figure 12 sufficiently takes the style of the image into account.

The grid is created by dividing the x-axis and y-axis by 5. Since images distributed in
one grid have similar lightness distributions, the font type and color tone will be similar.
Therefore, if there are little data in one grid, all data will be included in the down-sampled
data. In contrast, if there are too much data in the grid, overfitting can be avoided by taking
only a few data points.

Algorithm 1 is the pseudocode of the grid algorithm proposed in [3] and [4] and the
n-pick algorithm additionally proposed in this study. Data can be extracted by specifying
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the number per class (e.g., 8000 images) or by specifying the number of n in one grid
according to the n-pick condition.

Algorithm 1: Grid and n-pick sampling algorithm

imgNum = number of images
n = Number of n for n-Pick sampling
m = Number of grid sampling that extracts a total of m sheets from the original dataset
imageList = Data list of Total images (image path)
randomPickupImg = random sampling algorithm
graph_w = 255, graph_h = 150, cut_num = 5
grid_w = int(graph_w/cut_num), grid_h = int(graph_h/cut_num)

/* Check the number of data in each grid */
for i to imgNum:

for x to grid_w:
for y to grid_h:

if mean[i] >= x*cut_num and mean[i] < (x + 1)*cut_num:
if std[i] >= y*cut_num and std[i] < (y + 1)*cut_num:

countNumberOfImgInGrid[x,y] + = + 1
/* Calculate the percentage of data occupied by each grid */
imgRatioInGrid[x,y] = (countNumberOfImgInGrid[x,y]/imgNum)

/* N-pick sampling of one grid */
if nPick grid sampling:

for x to grid_w:
for y to grid_h:

if countNumberOfImgInGrid[x,y] > 0:
finalSampledDataList = randomPickupImg (imageList in grid [x. y]) until n

/* Grid sampling for a total of m sheets */
else:

for x to grid_w:
for y to grid_h:

if countNumberOfImgInGrid[x,y] > 0:
if (m * imgRatioInGrid[x,y]) > 1:

z = (int) (m * imgRatioInGrid[x,y])
else if (m * imgRatioInGrid[x,y]) < 1:

z = 1
finalSampledDataList = randomPickupImg (imageList in grid [x. y]) until z

if Number of finalSampledDataList > m:
randomPickupImg (finalSampledDataList) until m

/* Save image in sampling folder */
Save(finalSampledDataList into sampling folder)

At this time, data can be sampled in two ways: typical grid sampling considering
how many will be extracted from the original images when extracting data (i.e., variable
‘m’ in Algorithm 1) or n-pick sampling. For example, if there were 1000 original images,
users could decide whether to extract 100 or 10 images. In other words, it is a method of
reducing data while keeping data density of each grid before and after sampling.

Assume that the total number of original images is 10,000 and that we want to reduce
the amount of data to 1000 images by using the grid algorithm. In this case, if the number
of images in a one grid before sampling is 1000 images and 10% from the total amount of
original images, the percentage of images after grid sampling is also 10% from the total
amount of sampled images. That is, 100 images will be in that grid after sampling.

The n-pick sampling does not consider the number of final sampled images at all.
It only considers n numbers in one grid. This method allows the sampled image to be
evenly distributed throughout the graph. If a deep learning model is trained with the data
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extracted through n-pick sampling, the model can learn different types of images as much
as possible.

4. Proposed Method
4.1. Process of the Proposed Method

In this work, data augmentation was performed with sufficient consideration of the
properties of data in databases with severe imbalances. Assuming that a deep learning
model should be learned and applied to multiple environments using augmented data,
the most effective model considering CPU and GPU should be selected, and the accuracy
of the model should be verified using a method in which a sustainable set of bases can
be constructed. Figure 13 shows the proposed process which has two steps: (1) The best
model is selected by verifying B0 to B7 models of EfficientNet learned with grid-sampled
data using 8000 images per class (called the coreset in this study) on the CPU and the GPU;
(2) The proposed n-pick(n = 3) base set in this study is verified with the selected model and
contrasted with the comparison target. Details are shown as follows.

Figure 13. The processes of the proposed method.

Each EfficientNet model from B0 to B7 was trained on 8000 images per class defined by
grid sampling. The accuracy and speed were measured during each test. While minimizing
defects is particularly important in the real world, replacing the inspection equipment
already in use on site with a computer equipped with a high-end graphics card is more
costly than the loss caused by the presence of defects.

In addition, it is impossible to replace all hardware at once. Therefore, the best models
that show an appropriate balance between performance and computational speed should
be applied on site. The verification should be carried out on both the CPU and the GPU.
The number of inspections and the production count per second should be estimated when
the deep learning model is applied in different hardware environments.

The base set can be verified using an effective model selected after the previous
step. Several targets are selected for comparison. Whether the base set could provide a
sustainable dataset proposed in this study was assessed. Targets for comparison were
(1) the result of 8000 images per class, and (2) 12,000 images per class.
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The n-pick (n = 3) base set was constructed by extracting three images per grid, as
shown in Figure 12 using the grid sampling method described in Section 3.5.2. Since
various combinations of databases have been performed in our previous work [3–5], we
only analyze the grid and n-pick algorithms in depth in this work.

We have identified several points in the previous study [3,4], and the learning data in
the previous study has been subdivided by case, and the test data is as shown in Table 1.

Table 1. Database description.

No Database Details

1 Dataset 1 Collected data from the 1st factory
2 Dataset 2 Collected data from the 2nd factory

3 Dataset 3 - Augmented images from datasets 1, 2
- Generated font data

4 Test dataset

- Collected data from the 1st factory, 2nd factory, and other factories (over
five factories)
- Amount of data from the 1st factory, 2nd factory: 10% of the total amount
- Amount of other factories data: 90% of the total amount
- Collect at a different period

• Models learned using sample data from few factories cannot be represented by models
for all factories.

• As a result of experimenting with combinations of all cases, the accuracy is higher
when mixing newly generated data using fonts than existing data augmentation.

• When using grid sampling algorithms, the higher the number of sampled data, the
better the learning accuracy. However, considering the learning speed, about 8000 pcs
are effective.

• Previous studies did not mention the n-pick algorithm.

4.2. Configuration of the Coreset

Data were organized as shown in Table 1. Data collected from two plants were
classified into datasets 1 and 2. Generated font data was named dataset 3. The test dataset
consisted of a mix of data collected from plants 1 and 2 at different time points and much
more data collected from other plants. In general, a deep learning model evaluates the
performance with 20% of the data after separating the collected data into learning data
(80% of total data) and testing data (20% of total data).

In our experiment, the most important goal was to produce a model applicable to
other production lines even if it is formed on a limited amount of data from a small number
of production lines.

Thus, the collection period and location of the test dataset in our study were different
from those of the learning dataset. We believe that this process is well worthwhile as a
field test before the model is applied to the real world. Although a true field test would
involve testing by an actual inspector, our experimental design was more effective than
performance evaluation in a limited laboratory environment.

The basic combined dataset is based on data collected from two production plants. In
other words, data collected from two factories were mixed for each class, and 8000 images
for each class were extracted. When there was no or insufficient data for a given class, the
number of images was increased by forcibly up-sampling the data with noise. For classes
without data at all, all final images originated from dataset 3. Therefore, after combining
necessary data from dataset 3 into the data from datasets 1 and 2, 8000 sheets per class
were extracted by grid sampling. In addition, 12,000 sheets per class were extracted and
organized in the same manner. In the n-pick (n = 3) dataset, n images were extracted per
grid, which could be configured to minimize redundancy.

Table 2 shows the number of images used in each process. Since there were 8000 sheets
per class, the total was divided at a ratio of 8:2 to form learning and validation sets. In the
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n-pick (n = 3) dataset, the amount of data per class was, approximately 1900 images on
average. The number of data images per class differed slightly because it was based on the
distribution of the grid.

Table 2. Database description.

No Images Per Class Number of Learning Data Number of Validation Data Number of Test Data

1 8000 332,800 83,200
367,5102 12,000 499,200 124,800

3 3 images per grid 79,395 19,848

5. Implementation and Experimental Results

Experimental learning was conducted in a multi-GPU environment. We compared
results produced with a CPU and a single GPU and evaluated the performance of each of
teight EfficientNet models. The experimental environment had an Intel® Core™ i7-6700K
@ 4.00 GHz 4.01 GHz CPU, 64 GB RAM, Multi GPU graphics card (two GeForce GTX
TITAN X), and Tensorflow 1.13.1 backend Keras 2.2.4-tf.

To assess the general situation before the experiment, results of each model were
checked without sampling the actual data. The use of unsampled data meant that all col-
lected data could be put into training without considering data imbalance between classes.

We trained three models (ResNet 56 layers, EfficientNet B0, and EfficientNet B7) and
confirmed the prediction results. Input data had 32 × 32 pixels in size. Model training
occurred for a total of 50 epochs. Results are shown in Table 3.

Table 3. Experimental accuracy (%) on dataset 1.

Experiments ResNet 56 Layers EfficientNet B0 EfficientNet B7

Original dataset1 79.917 97.741 97.887

In this experiment, the model was trained using dataset1 (see Table 2). All collected
data were inserted without considering the data imbalance between classes. This experi-
ment revealed class-specific and intra-class data imbalances. It was possible to see results
of learning with unsampled and highly biased data. Thus, only dataset 1 at plant 1 were
selected on a trial basis without dataset 2 at plant 2. This experiment did not use dataset3
because its data were augmented data.

As shown in Table 3, results of the recently proposed EfficientNet model are partic-
ularly good, although there is still room for improvement. The ResNet results made it
difficult to say that this learned model was worth using as it was. Its results were poor
compared to those of EfficientNet. Results of the B0 and B7 EfficientNet models were not
much different from each other. This meant that there was no significant difference in the
performance between B0 and B7 models when learning was done with an unmodified set
of collected data. These findings enabled us to evaluate the performance improvement that
was possible by using the coreset defined in our experiment.

5.1. Selection of Models with High Accuracy and Good Computation Speed

Prior to training the model for field applications, we allowed the 56-layer ResNet model to
learn for comparison purposes and checked the results, which are shown in Table 4. Compared
to Table 3, results shown in Table 4 were quite different, despite the difference between
whether sampling was performed, and several data augmented methods were used. In
particular, the ResNet56 model showed an accuracy of 97.763% (Table 4) in a model trained
with augmented data and sampled data, although its performance was poorer than that of
the EffcientNet model.
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Table 4. ResNet 56 experiment: top 1 and top 5 accuracy (%) results with 8000 images per class.

Experiments ResNet 56 Layers Top1 ResNet 56 Layers Top5

8000 images per class 97.763 99.9

Table 3 shows results of training with the ResNet 56 model using more quantitative but
unsampled data (original dataset1). Table 4 shows results of learning using data extracted
from 8000 images per class by grid sampling after combining original datasets (No.1 and
No. 2) and augmented data generated. The test dataset for checking the accuracy was
the same.

The augmented dataset was more efficient than the original dataset as illustrated by the
fact that analyzing the data based on the distribution with the V channel was meaningful.

In this experiment, the top five most accurate results were combined because some
characters were confusing from a visual perspective as shown in Figure 14. For such cases,
there might be errors even if a person was manually performing the classification. When
applied to an industrial site in the future, results can be calculated by integrating these
ambiguous classes into a single class after computation.

Figure 14. Examples of ambiguity between classes.

In other words, this problem cannot be completely controlled by humans. In the end,
the use of standardized fonts in the PCB industry is required. However, it is difficult to
elicit consultations between various production companies in each country.

Fortunately, the PCB assembly has a design document. Letters printed on the part
can also be known because it can be known which parts are plugged into which location
in advance.

Thus, after deep learning operations, labels such as 0 and O, B and 8 are reported as
simple programming methods (if-elseif, etc.) and combined to confirm them. For example,
if the third character printed on that part is ‘B’, the model prediction result after deep
learning will be ‘8’ as the first choice with ‘B’ as the second choice. This can be processed
as the correct answer.

To put it simply, it can be considered that when training a pre-deep learning model, it
is possible to extract the result by combining two classes into the same class (i.e., ‘B’ and ‘8’
into the same class). However, a problem can occur because shapes of some characters such
as ‘B’ and ‘8’ are similar for only a few font types. For other font types, such characters are
completely different. Therefore, classes were separated to prevent confusion in learning
considering various situations.

Table 5 shows a comparison between the CPU and the GPU speed. PCB assembly and
inspection equipment might have GPUs (embedded graphics cards) that do not support
deep learning frameworks or have no GPU at all.

Table 5. CPU vs. GPU computational speed (Sec.) per image for each model in ResNet.

Category CPU GPU

ResNet 56 0.00606 0.00028

By comparing the computational time needed for two types of equipment, it is possible
to assess the applicability of deep learning to PCB defect inspection in the real world. The
accuracy of a deep learning model performed in a CPU environment may be higher than
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that of a machine learning method such as pattern matching. The speed may also increase.
Therefore, it is necessary to judge whether the number of PCB production per day decreases
due to the calculation speed instead of increasing the accuracy. If the inspection speed is
slightly lowered but manual process by humans is decreased by a high accuracy, then the
number of PCBs produced will be approximately the same.

All eight EfficientNet models were trained and their results were compared. Since
the model used a small image (32 × 32 pixels) as the input data, a model that was too
deep such as B7 could be considered inefficient. In addition, the feature map extracted by
the deep neural network from a small image might be redundant. However, EfficientNet
extracted feature maps very effectively, with B7 showing the best result.

Table 6 shows results with each EfficientNet model. EfficientNet model B3 with
the lowest accuracy outperformed ResNet which had an accuracy of 97.763%. Notably,
although EfficientNet models, which already showed good performance, demonstrated
significant increases in accuracy (an increase of 0.533%pt from 97.741% to 98.274% for B0
and 1.174%pt from 97.887% to 99.065% for B7). Since differences between models B0 to B7
were insignificant, it could be said that the influence of the coreset especially important.
Even a difference in accuracy of only 1%pt represents 3675 images in a total dataset of
367,510 images. In the real field where many PCBs are produced and inspected in a short
time, a 1%pt difference in performance has a large influence on productivity.

Table 6. EfficientNet Experiment showing top 1 and top 5 accuracies with 8000 images per class (%).

No. Experiments EfficientNet Top1 EfficientNet Top5

1 B0 98.274 99.881
2 B1 99.003 99.965
3 B2 98.869 99.955
4 B3 98.135 99.900
5 B4 98.643 99.955
6 B5 98.395 99.942
7 B6 98.965 99.940
8 B7 99.065 99.965

Table 7 shows the CPU and the GPU speeds for each EfficientNet model. As the
56-layer ResNet model had a speed of 0.00606 s, we expected to observe improvements in
both accuracy and speed when using an EfficientNet model below B5. As shown in Table 7,
models from B0 to B5 had speeds faster than 0.00606 sec, the speed of ResNet 56 layer in
CPU. In Table 6, Model B1 showed the highest accuracy of 99.003%.

Table 7. Average calculation rate for EfficientNet experiments (s).

Category EfficientNet Models
B0 B1 B2 B3 B4 B5 B6 B7

CPU 0.00120 0.00170 0.00183 0.00235 0.00326 0.00479 0.00644 0.00883
GPU 0.00027 0.00036 0.00037 0.00043 0.00055 0.00071 0.00083 0.00113

Therefore, the application capability may vary depending on the situation at the site
or the judgment of a professional worker. According to results shown in Tables 6 and 7, B1
model had the best result based on top one and top five accuracies.

5.2. A Continuously Available Base Set for Future Learning

This experiment was performed using datasets that were constantly changing due
to factors such as an upgrade of the inspection equipment. Our proposed base set can
prevent the distribution of data from being crowded on either side when performing new
learning. Since the number of components was constantly increasing, training and model
application ware not one-time tasks. Instead, tasks had to be repeated continuously.
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Two things should be considered in continuous learning. First, performing prior
experimental procedures only on newly collected data will create the problem of missing
information from existing data. Second, experimenting with a combination of both existing
and newly collected data can result in continuous data growth and increased the processing
time. Thus, using the n-pick dataset proposed in this study is a proven way of mixing data
directly into continuously collected datasets.

Using more data generally produces better results. Thus, we conducted tests using
12,000 images per class and compared results to those produced using the n-pick dataset
proposed in this study. Results are shown in Table 8.

Table 8. Average calculation rate for EfficientNet experiments (s).

No. Experiments EfficientNet B0 Top1 EfficientNet B1 Top1

1 12,000 images per class 99.829 99.851
2 n-pick(n = 3) dataset 98.921 99.275

When 12,000 images were used per class, the learning data were overwhelmingly
large. Thus, the experiment (on 499,200 total images) produced the highest accuracy. Most
importantly, although the n-pick dataset was only about one-sixth as large, results are
also highly accurate. With 8000 images per class, the B1 model resulted in an accuracy
of 99.003%. The accuracy of the B1 n-pick (n = 3) experiment was 99.275%, showing
an improvement of 0.272%pt. This is amazingly effective in terms of learning time and
accuracy because the use of only about a quarter of the data can produce better results.

N-pick sampling creates a slight imbalance in the number of images between classes.
However, as shown in Figure 15, the use of n-pick sampling can flatten data distribution
because the method extracts data of as many different shapes as possible within the class.
Thus, it is possible to include new information while retaining existing information with
the proposed n-pick data sampling process.

Figure 15. Visualization of distribution for all classes of the n-Pick (n = 3) dataset and an example of
sampled data of class 0.

5.3. Analysis of Results and Failure Factors

In this section, precision, recall, and f1-score were analyzed in detail for experiments
using 8000 images per class in order to analyze the B7 model, which showed the best
result among EfficientNet models. Based on results of the analysis, a class that may be
problematic is selected and future measures are considered.

As can be seen in Table 9, each performance indicator showed a good overall perfor-
mance. However, the macro average did not show a good performance. The micro average
was the average of all classes. The macro average was the average of the average per class.
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A low score of a macro average means that some classes have a problem below dropping
the average value.

Table 9. Results of EfficientNet B7 with 8000 images per class.

Category Precision Recall F1-score Support

micro avg 0.9904 0.9904 0.9904 367,510
macro avg 0.7067 0.7339 0.7158 367,510

weighted avg 0.9922 0.9904 0.9912 367,510

Figure 16 shows actual error cases and identifies problems expected in the previous
section. Some mistakes are easy for a human to make. There is a similarity between several
“A” and “R” characters. Several truncated or damaged characters warrant attention in the
future. New data augmentation methods should be considered.

Figure 16. EfficientNet B7 error cases with 8000 images per class.

6. Conclusions

In this work, we addressed dataset generation learning and application for classifica-
tion of characters printed on top of real PCB components. We collected large datasets and
we made suggestions for data augmentation methods to be referenced in future studies
with more detailed analysis of the data. Moreover, we proposed a combination of various
datasets to select a coreset that could be used in the field and a base set that could be used
continuously in the future.

In our method, the B7 model using 8000 images per class had an accuracy of 99.065.
When combining similar classes into the same class, the top five accuracy was 99.965%,
showing an increase of 1.178%pt in accuracy compared to the case when the model learned
on data collected from a single factory. Considering the amount of test data, this model
was very efficient in terms of productivity because it predicted about 4400 more images
correctly. Furthermore, we presented a measure to ensure that existing information is not
forgotten when an ever-increasing amount of learning data were added, as shown by the
accuracy result of 99.275% for the B1 model with only about 1900 base sets per class.
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In the future, it is necessary to consider methods that can deal with damaged datasets
and similarities among different fonts. To correct for truncated characters, we intend
to expand upon this research by focusing on a deep learning model such as GAN that
generates data.
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