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Abstract Isoniazid (INH) is highly effective for the management of tuberculosis. However, it can cause
liver injury and even liver failure. INH metabolism has been thought to be associated with INH-induced
liver injury. This review summarized the metabolic pathways of INH and discussed their associations with
INH-induced liver injury.
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1. Introduction

Tuberculosis (TB) is a global health issue1. The standard therapies
for TB include a combination treatment of isoniazid (INH),
rifampicin, pyrazinamide, and ethambutol2. INH can also be used
alone for TB prevention3. Despite the beneficial effects of INH,
severe adverse effects especially peripheral neuropathy and
hepatotoxicity are associated with INH therapies4–7. About 10%–

20% of patients consuming INH have a transient elevation of
serum alanine aminotransferase (ALT) level. Most of the patients
can adapt to it and their serum ALT levels return to normal
without discontinuation, while some patients (less than 1%–3%)
develop severe liver injury and even liver failure4,8–10. The most
current report from the Drug-Induced Liver Injury Network (DILI)
indicates that the true incidence of INH-induced liver injury is
largely under-reported in the United States, and it is the second-
ranking drug that causes liver injury in spite of under-reporting11.

Clinically, INH-associated treatments usually cause a
hepatocellular-type of liver injury, as characterized by a marked
elevation of ALT levels (410 times upper limit of normal [ULN])
but minimal increases in alkaline phosphatase (ALP) levels
(usually o2 times the ULN)6. Even though INH-induced liver
injury has been known and extensively studied, its underlying
mechanisms are still poorly understood4,6,8,9,10,12–15. Different
experimental animal models have been used to study the hepato-
toxicity of INH, including rats13,16-18, mice15,19–21, and rab-
bits15,22–24. Unfortunately, there is no validated animal model to
recapitulate the human patterns of INH-induced liver injury6. Even
though 6 doses of 100 mg/kg of INH given to rats hourly can
cause necrosis in rats that were pretreated with phenobarbital, the
injury and administration patterns in this study were different from
those in clinic where chronic administration was used and a late
onset of liver injury was observed13. In addition, recent studies
suggest that rat is not a good model to replicate the delayed type of
INH hepatotoxicity based on comparison of the formation of INH-
bound proteins in mice, rat, and human liver microsomes15,25.
Furthermore, INH was found to induce microvesicular steatosis in
different animal models, including mice20, rabbits22,26, and
rats15,23, but these phenotypes are usually not observed in patients
with INH-induced liver injury.

INH metabolism is thought to be associated with INH-induced
liver injury13–15,16–19,26–33. Acetylhydrazine (AcHz), hydrazine
(Hz), and acetylisoniazid (AcINH) are the major metabolites of
INH. Studies of INH hepatotoxicity in rats showed that AcINH
and AcHz can cause hepatic necrosis; however, treatment with
INH directly even at high dose and long term did not cause
toxicity9,15. These results suggested INH metabolites are respon-
sible for INH hepatotoxicity. Covalent binding of acetyl group to
liver proteins were observed after treating rats with
14C-acetyl-labeled AcINH but not with aromatic ring 14C labeled
AcINH, indicating that AcHz is responsible for INH hepatotoxicity
in rats13,16. Studies carried out in mice showed different results.
When Hz or AcHz was administrated at a dose of 300 mg/kg to
mice, Hz produced hepatic necrosis, macrovesicular degeneration,
and steatosis, whereas AcHz did not34, suggesting that Hz is
responsible for INH-induced liver injury in mice. In a rabbit model
of INH-induced liver injury, the plasma level of Hz is correlated
with the extent of INH-induced necrosis and steatosis, but plasma
levels of INH and AcHz are not26. In addition, Hz inhibits
mitochondrial complex II and affects the function of electron
transport chain and ATP production in mouse primary hepato-
cytes. Co-treatment with Hz and a complex I inhibitor can cause
hepatocyte death35. Recent studies also found INH itself can bind
to liver proteins and cause immune-mediated hepatotoxicity15,36.

In summary, despite extensive studies in INH metabolism and
its role in INH-induced liver injury, the observations and conclu-
sions are inconsistent and even controversial. This review sum-
marized and updated the pathways of INH metabolism. We also
discussed and provided novel insight into the association of INH
metabolism with INH-induced liver injury.
2. The metabolic map of INH

INH is a low-molecular weight and water-soluble compound that
can be rapidly absorbed from the gastrointestinal tract37. Pharma-
cokinetic properties of INH are affected by various patient-specific
factors, like genetic status, age, comorbidities, and the co-
administered food or drugs38–44. The peak plasma concentration
is achieved around 1–3 h after administration of the drug45,46.
Meals containing high fats can decrease absorption of INH as
revealed by the reduction of Cmax by 51% and the increasing of
Tmax to 2 times47,48. Hence it is recommended to consume INH on
an empty stomach. After absorption, INH diffuses into all tissues
and body fluids rapidly, including cerebrospinal fluid, saliva,
pleural and peritoneal exudates, bronchi and pulmonary
alveoli49–52. INH also can be excreted into breast milk53,54.

The major pathways of INH metabolism (Fig. 1) include:
(1) Acetylation to form AcINH through N-acetyltransferase
(NAT) 2; and (2) Hydrolysis to produce isonicotinic acid (INA)
and Hz through amidase. AcINH can also be hydrolyzed to form
INA and AcHz. In addition, Hz can be acetylated to AcHz and
diacetylhydrazine (DiAcHz)55. Hz and AcHz are thought to be
further oxidized to reactive metabolites and involved in INH
hepatotoxicity13,16,28,56,57, which was proposed to be mediated by
microsomal P450s, especially CYP2E56,58.

Besides these major metabolic pathways, INH can also con-
jugate with several endogenous metabolites59,60, including ketone
acids, vitamin B6 (pyridoxal and pyridoxal 5-phosphate), and
NADþ. In addition, INH was found to disturb the homeostasis of
endogenous metabolites, such as vitamin B6, bile acids, choles-
terol, and triglycerides21,61,62. The major metabolic pathways of
INH are enzymatic-dependent reactions, including acetylation and
hydrolysis of INH by NAT and acyl amidase, respectively6.
Catalase-peroxidase (KatG) of mycobacterium tuberculosis (Mtb)
and human neutrophil myeloperoxidase can catalyze the formation
of INH-NADþ adducts60,63. Nevertheless, conjugation of INH
with ketone acids and vitamin B6 are non-enzymatic reactions. We
illustrated these metabolic pathways of INH in details in the
following sections and discussed their associations with INH
hepatotoxicity.
3. Role of NATs in INH metabolism and hepatotoxicity

NATs (EC 2.3.1.5, N-acetyltransferase, arylamine N-acetyltrans-
ferases) are a class of enzymes that catalyze the acetylation of
arylamines from acetyl-CoA. It is widely found in different
species, both in eukaryotes and prokaryotes64–66. NATs are
responsible for acetylation of hydrazine drugs and carcinogenic
aromatic amines, as well as endogenous molecules, such as
serotonin67,68. NAT1 and NAT2 are the major NATs that are
involved in the biotransformation of xenobiotics. The NAT genes
are located in close vicinity in the genome and share high



Figure 1 A schematic representation of isoniazid (INH) metabolism and the enzymes involved in the metabolic pathways of INH. AcHz:
acetylhydrazine; AcINH, acetylisoniazid; DiAcHz: diacetylhydrazine; GST: glutathione S-transferases; Hz: Hydrazine; INA: isonicotinic acid;
MPO: myeloperoxidase; NAT2: N-acetyltransferase 2; P450: cytochrome P450; R.M.: reactive metabolite.
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sequence identity69, but their expression profiles have distinct
tissue distribution patterns and the enzymes have different
substrate preferences70,71. NAT1 is widely expressed in all tissues,
including endocrine tissues, blood cells, neural tissue, liver, and
the gastrointestinal tract, whereas NAT2 expression is limited to
the liver and gastrointestinal tract72. p-Aminobenzoate and p-
aminosalicylate, are prefer substrates of NAT1, whereas NAT2
preferentially metabolizes sulfamethazine, procainamide72.

NAT2 is the dominant enzyme that catalyzes the acetylation of
INH, Hz, and AcHz46,73,74. NAT2 is involved in three steps of
INH biotransformation, including deactivation (formation of
AcINH), bioactivation (formation of AcHz), and detoxification
(formation of DiAcHz)6,16,68. The role of NAT2 in INH hepato-
toxicity is complicated and still controversial13,75,76. NAT2 is
highly polymorphic and has been thought to be involved in INH
hepatotoxicity68,76–78. Rapid acetylators have been proposed to
have a higher risk of INH-induced liver injury than slow
acetylators, which is based on the proposition of an increased rate
of AcHz formation in rapid acetylators75. This proposition is
supported by early clinical observations13,75,79. In one study, 86%
of patients with probable and 60% with possible liver injury were
rapid acetylators75. In another study with 143 patients who
received INH-containing regimens for anti-TB therapies, 18
patients with abnormal elevated levels and 18 patients with normal
levels of serum aminotransferase were investigated. They found
out that 14 patients with abnormal serum aminotransferase were
rapid acetylators, while only 7 were rapid acetylators in patients
with a normal serum aminotransferase level79. These results
suggest that rapid acetylators have a higher risk of liver injury
with INH therapies.

However, the later clinical studies found that the presence of
slow acetylator alleles has a higher risk of INH hepatotoxi-
city77,80,81. In a study of 224 patients that received anti-TB
treatment, slow acetylators had a much higher risk of liver toxicity
than rapid acetylators (26.4% vs. 11.1%, P¼0.013)77. Another
study reported the risks of different acetylator status in INH
hepatotoxicity in Brazilian patients. The risk of developing
hepatitis was 22% for slow acetylators, while only 9.8% for
intermediate acetylators and 2.9% for rapid acetylators81. The
plasma levels of INH and AcHz are higher in slow acetylators than
those in rapid acetylators, which contradicts previous findings75.
Even though the acetylation rate of INH is slow in slow
acetylators, the acetylation of AcHz is also slow82, thus leading
to a higher accumulation of AcHz in slow acetylators37,46,83. The
clearance rate of INH is also slower in slow acetylators than in
rapid acetylators38, which also contributes to the accumulation of
INH in slow acetylators. A higher level of free INH might be the
cause of the high incidence of liver injury directly as INH can bind
to liver proteins and cause immune-mediated liver injury15.
Elevation of INH can also lead to an increase in Hz formation,
which is supported by an increased rate of hydrolysis process of
INH in slow acetylators than in rapid ones27,73,84. Furthermore,
decreasing the dose of INH in slow acetylators can reduce the
incidence of INH hepatotoxicity85. In a multicenter, paralleled,
randomized, and controlled clinical trial with Japanese patients,
treatment with a lower dose of INH (2.5 mg/kg) used for anti-TB
therapy in slow acetylators significantly decreased the incidence of
INH-induced liver injury than the standard treatment (5 mg/kg for
all patients)85. In addition, NAT2 status also plays an important
role in hepatotoxicity caused by INH and rifampicin combination
therapies78. In a study with 77 Japanese patients with INH þ
rifampicin treatment, the risk of liver injury was much higher in
slow acetylators than in intermediate and rapid acetylators78.

Even though these clinical reports showed that slow acetylators
have a higher risk of INH-induced liver injury with INH treatment
in different populations77,80,81,86, several other clinical observa-
tions showed modest or no significant difference of incidence of
INH hepatotoxicity between different acetylators status87–89. In
addition, the positive prediction value of the NAT2 genotypes for
identification of patients with risk of liver injury is low90.
Furthermore, the incidence of INH hepatotoxicity did not show
significant correlation with NAT2 status in different ethnic
populations4,91. The frequency of slow acetylators in the Asian
populations (10%–20%) is much lower than that in Caucasians and
Africans (more than 50%)77,92, but the incidence of INH hepato-
toxicity does not show such dramatic ethnic differences4,91.
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Overall, the causal role of NAT2 in INH hepatotoxicity remains
controversial and the detailed mechanism is still unknown6.
4. Role of amidase in INH metabolism and hepatotoxicity

Amidases (EC 3.5.1.4, acylamidases, acylases, or acylamide
amidohydrolases) are a class of enzymes that catalyze the
hydrolysis of amides and they usually have carboxylesterase
activities that can hydrolyze carboxylic esters93. Carboxylesterases
also can hydrolyze amides. Amidases and carboxylesterases have
similar catalytic mechanisms and share some substrates. Both
enzymes can add water to esters or amides and form the
corresponding acids and alcohols or amines, without any co-
factors. Amidases and carboxylesterases play important roles in
maintaining homeostasis of endobiotics. They are also of great
importance in hydrolysis of drugs and environmental toxicants94.
Several different types of amidases have been identified in
mammals, like trypsin-like acidic arginine amidases95, anandamide
amidases (fatty acid amide hydrolase)96, and N-acylethanolamine
hydrolyzing acid amidases97.

Amidases can directly hydrolyze INH to INA and Hz, and they
also can hydrolyze AcINH and AcHz6,58,98 (Fig. 1). Pretreatment
with an amidase inhibitor, bis-p-nitrophenyl phosphate (BNPP),
can inhibit both the hydrolysis of INH and AcINH and decrease
the formation of Hz and AcHz28,36. Both Hz and AcHz are
considered as hepatotoxic metabolites of INH13,16,28,36,56,57, thus a
higher level of amidase activity can lead to the increasing
formation of Hz and AcHz and result in a high incidence of
INH hepatotoxicity. Rabbits are more sensitive to INH-induced
liver injury as they have higher amidase activities. Around 40% of
INH is directly hydrolyzed to INA and Hz in rabbits99, while less
than 10% of INH is hydrolyzed in man46. The hydrolysis rate of
AcINH is also faster in rabbit than the rate in rats100. A higher
amidase activity in rabbit can also be reflected by the formation of
higher levels of acetyl-bound proteins than those in rat while
treating them with the same dose of AcINH23.

Even though amidases are responsible for the hydrolysis of
INH, AcINH, and AcHz, the specific form of amidases that
mediate these hydrolysis reactions is elusive. Besides, all previous
studies were performed in microsomes, primary hepatocytes, or in
animal models rather than in pure enzymatic systems. In addition,
BNPP is a non-specific amidase inhibitor and it inhibits both
amidases and esterases33, thus the involvement of esterase in INH
metabolism cannot be excluded. A recent study suggests that
genetic variations in a carboxylesterase gene (CES1) was possibly
associated with INH hepatotoxicity; however, the authors also
realized that the results are not conclusive and replication in a
larger size of population needs to be performed to confirm these
correlations101.
5. Role of P450s in INH metabolism and hepatotoxicity

Cytochrome P450 (P450) isoenzymes are a group of heme-
containing membrane proteins that are majorly expressed in the
endoplasmic reticulum102. In animal cells, P450s are also
expressed in the inner membrane of mitochondria103. P450s are
major drug metabolizing enzymes102. In addition, they also
metabolize endogenous molecules and play important roles in
hormone homeostasis (estrogen and testosterone), cholesterol
synthesis, and vitamin D metabolism102. CYP3A4, 1A2, 2C9,
2C19, 2D6, 2E1 are the major P450s that are involved in drug
metabolism and catalyze the oxidation of almost 90% of human
drugs104.

P450s were proposed to be involved in the oxidization of Hz
and AcHz to reactive metabolites16,56,58. Pretreating rats with
phenobarbital increased the covalent binding of AcHz to liver
proteins, whereas pretreatment with cobalt chloride plus pheno-
barbital decreased the formation of covalently bound proteins13,16.
Besides, P450s are also involved in the oxidation of Hz, as well as
its toxic effects. The cytotoxic effect of Hz is prevented by
1-aminobenzotriazole, a non-selective P450 inhibitor in rat hepa-
tocyte33. Pretreating rats with phenobarbital increases the extent of
hepatic necrosis caused by INH13, whereas pretreatment with
cimetidine decreases the toxic effects of INH105. In addition,
pretreatment with other P450 inducers, such 3-methylcholanthrene
and rifampicin, also increased the production of reactive metabo-
lites and hepatic necrosis in rats28,98. Furthermore, several studies
indicate that rifampicin, a well know human PXR agonist and
P450 inducer, can potentiate INH hepatotoxicity in man, especially
in slow acetylators106–108. However, it is still unclear which P450
is responsible for these reactions since rifampicin and phenobarbi-
tal are non-specific P450 inducers. Besides, cimetidine and 1-
aminobenzotriazole are non-specific P450 inhibitors.

CYP2E1 is well-known to be involved in the formation of
reactive oxidative species and other reactive metabolites of
hepatotoxins, like acetaminophen and carbon tetrachloride109–111.
Based on the important roles in the formation of reactive
metabolites, CYP2E1 was proposed to play important roles in
INH hepatotoxicity18,56,58,77. CYP2E1 is highly polymorphic, in
which the CYP2E1 c1/c1 genotype had a higher CYP2E1
activity112. Lots of studies investigated the roles of the CYP2E1
polymorphism in INH hepatotoxicity, but the results were incon-
sistent in different populations86,87,90,112,113. Some studies suggest
a higher CYP2E1 activity is associated with an increasing risk of
INH hepatotoxicity. Patients with homozygous wild genotype
CYP2E1 c1/c1 have a higher risk of INH hepatotoxicity (20.0%;
odds ratio [OR], 2.52) than those with mutant allele c2 (CYP2E1
c1/c2 or c2/c2, 9.0%, P¼0.009) in a Chinese population,
suggesting the CYP2E1 c1/c1 genotype is an independent risk
factor for INH hepatotoxicity after adjustment for acetylator status
and age112. Another study showed that the CYP2E1 polymorphism
is a useful tool to predict INH hepatotoxicity31. However, there are
some reports that showed different results. The CYP2E1 c1/c2
polymorphism did not show a significant association with hepa-
totoxicity in a study with 175 TB patients who were treated with
anti-TB drugs in Argentina86. Another study performed in Chinese
patients in the Xinjiang Uyghur autonomous region showed no
correlation between the CYP2E1 genotypes with anti-TB drug-
induced liver injury90. Involvement of CYP2E1 in INH hepato-
toxicity was proposed on the basis of the roles of CYP2E1 in the
formation of reactive metabolites, but there was no direct evidence
to support it6,114. Structures of the reactive metabolites are also
unclear. However, in animal studies using Cyp2e1 knockout mice
to study the roles of CYP2E1 in INH hepatotoxicity, the authors
point out that CYP2E1 might not be involved in INH-induced liver
injury21. Another study showed that the CYP2E1 inhibitor,
diallylsulfide, can potentiate INH-induced oxidative stress rather
than decrease the toxic effects in rat primary hepatocytes115.
Overall, roles of CYP2E1 in INH metabolism and hepatotoxicity
remain controversial and require further studies6.

Besides the oxidation of Hz and AcHz, P450s are also involved
in the activation of INH itself15. INH can bind to microsomal
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proteins in an NADPH-dependent manner, suggesting the key
roles of P450s in INH bioactivation, but which P450 is responsible
for that remains unclear. Another study carried out by the same
group showed the presence of anti-P450 antibodies (anti-
CYP2C19, 2E1, and 3A4) in the serum of patients with severe
liver injury caused by INH36, suggesting the interaction between
CYP2C19, 2E1, and 3A4 with INH. INH is also a mechanism-
based inhibitor of CYP1A2, 2A6, 2C19, and 3A4 in human liver
microsomes, which suggests that INH interacts with these
P450s102,116–118. Furthermore, cimetidine administration in man
did not decrease the oxidation of AcHz, suggesting that the role of
P450s in INH hepatotoxicity in man is different from that in
rats105.
6. Role of glutathione S-transferases (GSTs) in INH
metabolism and hepatotoxicity

Glutathione S-transferases (GSTs, E.C. 2.5.1.18) comprise a multi-
gene family of phase II metabolizing isozymes that are involved in
the detoxification of chemicals119. Most GSTs are soluble enzymes
and are located in cytosol; a small family of GSTs has been
identified in microsome120 and mitochondria121. There are four
main classes of mammalian soluble GSTs, alpha (A), mu (M), pi
(P), and theta (T)122. GSTs catalyze the conjugation of the reduced
form of glutathione (GSH) to electrophilic substrates, thus
decreasing their reactivity toward cellular macromolecules122.

In INH metabolism pathways, GSTs are proposed to detoxify
the reactive metabolites produced by oxidization of Hz and AcHz6,
although the detoxified metabolites by GSTs have not been
identified. GST polymorphisms, especially the genetic variants of
GSTM1 and GSTT1, have been extensively studied and are
reported to associate with INH hepatotoxicity in clinic123,124.
The GSTM1-null genotype in an Asian population and the
GSTT1-null genotype in Caucasians have higher risks of liver
injury caused by anti-TB drugs83,125–127. The null genotypes
reduce the catalytic activity of the GST enzymes and hence lead
to accumulation of the toxic metabolites that can attack the liver
macromolecules. However, studies carried out in Indian and
Chinese populations showed no or modest associations between
the GST polymorphisms and anti-TB drug induced liver
injury87,90,128. Hence further investigations are needed to deter-
mine the roles of these gene polymorphisms in INH hepatotoxicity
in different populations. Further studies are also required to
determine the mechanisms of GSTs in INH metabolism.
7. Other enzyme-dependent pathways in INH metabolism

Two minor oxidized metabolites, 2-oxo-1,2-dihydro-pyridine-4-
carbohydrazide and isoniazid N-oxide, have been identified in
human urine59 (Fig. 1). The enzymes responsible for these two
novel oxidized metabolites are still unknown. Formation of 2-oxo-
1,2-dihydro-pyridine-4-carbohydrazide was found to be NADPH-
independent, suggesting that it was not mediated by P450s.
Formation of isoniazid N-oxide is a NADPH-dependent reaction,
but it is not mediated by the major P450s, such as CYP1A2, 2A6,
2B6, 2C8, 2C9, 2C19, 2D6, 2E1, or 3A459. Further studies are
required to determine the enzymes responsible for the formation of
these oxidized metabolites and their roles in INH hepatotoxicity.

Besides these two oxidized metabolites of INH, a break-down
product of INH-NADþ was also found in the urine of both TB
patients and healthy mice treated with INH129. INH can react with
NADþ to form INH-NADþ through a neutrophil myeloperoxidase
(MPO)60. Oxidation of INH by MPO was proved via a carbon-
centered free radical in the presence of NADþ, while the AcINH,
Hz, and AcHz cannot go through similar pathways. Another study
showed that the interaction of INH with NADPþ and the formation
of INH-NADPþ adduct in human liver microsomes were con-
cluded to be mediated by P450s130. INH-NADþ is well known to
be responsible for the action of INH to kill the mycobacteria63,131,
but the role of formation of INH-NADþ in INH hepatotoxicity is
unknown. MPO is most abundantly expressed in neutrophils60.
Further studies are required to determine their roles in INH
hepatotoxicity.
8. Hydrazones and other adducts of INH

INH is known to interact with ketone acids, which leads to the
formation of hydrazones132,133. INH can condense with pyruvic and
α-ketoglutaric acid to form the corresponding hydrazones, isonicoti-
noylglycine, and 1-isonicotinoyl-2-acetylhydrazine, respectively, in
rat urine134. A recent study identified a series of INH-hydrazones in
human urine using a LC–MS-based metabolomic approach59. Five
novel hydrazones were identified as the condensation of isoniazid
with keto acids that are intermediates in the metabolism of leucine
and/or isoleucine, lysine, tyrosine, tryptophan, and phenylalanine.
The formation of these INH hydrazones is totally a chemical reaction,
without the requirement of any enzyme. The formation of these INH
hydrazones might affect the metabolism of amino acids, but their role
in INH hepatotoxicity still needs further investigation. INH was also
found to condense with pyridoxal to form pyridoxal isonicotinoyl
hydrazone in human urine59. This is also an enzyme-independent
reaction. Since pyridoxal isonicotinoyl hydrazone is a strong iron-
chelator135, it might affect iron homeostasis.
9. INH and endobiotic homeostasis

INH has been found to affect the metabolism of bile acids,
cholesterols, triglycerides, and free fatty acids in a chronic
treatment of INH21. Cheng et al.21 treated WT and Cyp2e1-null
mice with INH for 1 month. They found that serum fatty acids
were significantly decreased in WT mice, but not in Cyp2e1-null
mice. Besides, serum cholesterol and triglycerides, and hepatic bile
acids were increased in WT mice after INH treatment. These
results suggested INH can also interrupt homeostasis of choles-
terol, fatty acids, and bile acids in liver. Besides, conjugation of
INH with vitamin B6 (pyridoxal and pyridoxal 5-phosphate) leads
to the depletion of pyridoxal 5-phosphate in both humans and lab
animals61,136, INH has also been found to reduce the plasma
concentrations of calcium and phosphate ions. These reductions
are due to its inhibitory action on the active form of vitamin D137.
10. Conclusions

INH metabolism and its role in INH-induced liver injury have
been extensively studied. However, the available data are incon-
sistent and even controversial. We summarized and updated the
pathways of INH metabolism and discussed the association of INH
metabolism with INH-induced liver injury. NAT2 is the primary
enzyme that contributes to INH metabolism. NAT2 deficiency
increases the risk of INH-induced liver injury. However, the
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detailed mechanism, by which NAT2 deficiency leads to INH
hepatotoxicity, remains unknown. Amidases hydrolyze INH and
AcINH to produce Hz and AcHz, but the specific isoform of
amidases that is involved in this metabolic pathway remains
unclear. CYP2E1 and other P450s have been proposed to be
associated with INH and AcHz bioactivation. Nevertheless, the
products of P450-mediated bioactivation of INH and AcHz have
not been identified. GSTs have been proposed to detoxify products
of AcHz bioactivation, but the detoxified metabolites have not
been determined. In addition to these classical pathways of INH
metabolism, INH can form adducts with multiple endogenous
metabolites. The significance of the interactions between INH and
endobiotics in INH-induced liver injury is understudied. In
summary, further studies are needed to explore the field of INH
metabolism and hepatotoxicity.
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