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Abstract

In this paper we evaluate the three main methods for correcting the susceptibility-induced

artefact in diffusion-weighted magnetic-resonance (DW-MR) data, and assess how correc-

tion is affected by the susceptibility field’s interaction with motion. The susceptibility artefact

adversely impacts analysis performed on the data and is typically corrected in post-proces-

sing. Correction strategies involve either registration to a structural image, the application of

an acquired field-map or the use of additional images acquired with different phase-encod-

ing. Unfortunately, the choice of which method to use is made difficult by the absence of any

systematic comparisons of them. In this work we quantitatively evaluate these methods, by

extending and employing a recently proposed framework that allows for the simulation of

realistic DW-MR datasets with artefacts. Our analysis separately evaluates the ability for

methods to correct for geometric distortions and to recover lost information in regions of sig-

nal compression. In terms of geometric distortions, we find that registration-based methods

offer the poorest correction. Field-mapping techniques are better, but are influenced by

noise and partial volume effects, whilst multiple phase-encode methods performed best.

We use our simulations to validate a popular surrogate metric of correction quality, the com-

parison of corrected data acquired with AP and LR phase-encoding, and apply this surro-

gate to real datasets. Furthermore, we demonstrate that failing to account for the interaction

of the susceptibility field with head movement leads to increased errors when analysing

DW-MR data. None of the commonly used post-processing methods account for this inter-

action, and we suggest this may be a valuable area for future methods development.

Introduction

Diffusion-weighted magnetic resonance (DW-MR) imaging is a powerful technique that

enables us to non-invasively probe tissue microstructure. It has proved an invaluable tool for

the study of white matter [1] and, more recently, is being applied to the study of grey matter

[2, 3]. Recent advances in acquisition—such as simultaneous multi-slice (SMS) imaging—are
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providing diffusion datasets of unprecedented quality [4], enabling the increasingly rich char-

acterisation of tissue microstructure.

Unfortunately analysis of DW-MR data is confounded by the presence of the susceptibility

artefact, caused by an off-resonance field induced by differences in magnetic susceptibility at

the air-tissue interface. When images are acquired with the spin-echo (SE) echo-planar ima-

ging (EPI) sequence typically used in DW-MRI [5] this field causes geometric distortions in

the data. If the subject remains static during acquisition these geometric distortions will be the

same for each volume, resulting in diffusion datasets that are internally consistent (every

volume contains the same distortions) but not anatomically faithful (the volumes do not

match the subject’s true anatomy). This has been shown to preclude accurate alignment to ana-

tomically faithful structural data [6], a step that is often necessary for localising fine structures

in the diffusion data, and to also introduce bias into results obtained from tractography [7–9].

We refer to this situation as the static susceptibility case. If the subject moves during acquisi-

tion the susceptibility field itself changes [10], altering the geometric distortions in the data,

meaning that even after rigid realignment to correct for motion the diffusion datasets are both

geometrically distorted and internally inconsistent (DW-MR volumes are misaligned relative

to each other). In this case even analysis of the data that is not dependent on anatomical faith-

fulness, such as voxelwise fits to the data, will suffer from increased variability. We refer to this

movement-induced change to the susceptibility field as the dynamic portion of the susceptibil-

ity artefact.

Recent trends in DW-MR are making it increasingly important that we have robust, well

validated techniques for correcting this artefact. In the recent past, it has been common to

reduce the impact of the susceptibility artefact at scan-time, by using in-plane parallel imaging

techniques to reduce the number of phase-encoding (PE) steps. However, recently a number

of high-profile studies such as the Human Connectome Project (HCP), HCP lifespan and the

UK Biobank have chosen to forego the use of these techniques in favour of SMS methods [11,

12], citing instabilities in reconstruction when the two are employed together [13, 14]. As

these acquisition choices filter down to more ‘everyday’ studies there will be a concurrent

increase in the severity of the susceptibility artefact. Furthermore, there is a trend, partly facili-

tated by the ability to image faster, towards acquiring datasets in more ‘difficult’ populations

such as in the developing HCP [15]. These populations tend to move more in the scanner,

further exacerbating problems caused by the interaction between susceptibility and motion.

There are a number of techniques available for correcting the susceptibility artefact. Correc-

tion is usually undertaken using post-processing strategies that may require the collection of

some additional data. Broadly, these techniques can be divided into three types. The first

involves registration of the data to a geometrically correct structural image [16–23]. The sec-

ond type estimates a map of the B0 inhomogeneities from acquired gradient-echo scans, and

uses this along with some information about the diffusion acquisition protocol to correct for

the distortions [24–28]. The third estimates the underlying distortions using additional EPI

data that is acquired with different phase-encoding (PE) and thus contains different distortions

[29–35]. This last class of techniques offer the additional opportunity to accurately recover lost

signal information if the full dataset has been acquired with reversed phase-encoding.

There are two classes of correction technique that rely on specialised pulse sequences not

currently available on most scanners. Multi-reference approaches [36–38] are similar to field-

map-based methods in that they involve the acquisition of additional reference scans to mea-

sure the geometric distortions in the data and correct in post-processing. Scan-time correction

schemes estimate the fieldmap in real-time and correct it using gradient shims [39, 40]. These

techniques are less commonly used and not examined in this paper.
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The majority of post-processing techniques assume a single susceptibility-induced field for

the diffusion data and it is difficult to assess the impact of this assumption on the analysis of

diffusion data. The problem has been investigated in the context of fMRI [6, 24], and a number

of post-processing techniques suggested for its correction [41, 42] but they cannot be used to

correct DW-MR data. This is because these methods either assume the off-resonance field can

be measured from the phase [42], which is not true for diffusion data where the weighting can

alter the phase, or because they assume all undistorted images in a time-series should have the

same shape [41], which is not true if the images have different diffusion-weighting, which can

alter the apparent location of the brain’s outer surface.

It is important that we have available careful comparisons of susceptibility correction strate-

gies, so that we are able to select the best for our processing pipelines. It is also vital that we are

aware of the impact that their inability to correct for the dynamic portion of the artefact has on

data analysis. To date, there are no systematic comparisons of existing methods for susceptibil-

ity correction and their limitations. A key reason for this is the difficulty in evaluating correc-

tion techniques. When validating on real data, the lack of any ground truth means evaluations

are typically indirect [18, 34, 43] or qualitative [24, 31, 32]. Furthermore evaluations are often

confounded by features in the data that are not of interest, such as other artefacts. Simulation

can provide a ground-truth that enables direct, quantitative evaluation, and further allows for

the careful design of experiments that enable the direct testing of the artefact of interest, with-

out confounds.

In this work, we use simulation to undertake a comparison of the three classes of technique

used for correction of the susceptibility artefact, and further characterise the impact of their

inability to correct for the dynamic portion of the artefact. We extend the POSSUM MR simu-

lator [44, 45], and combine it with an existing diffusion framework [46], in order to produce

realistic DW-MR datasets with many of the artefacts typically seen in real data. Our analysis

directly measures the important outcomes for correction strategies: the ability to correctly esti-

mate the underlying displacement field for correction, and the ability to recover information

lost from regions of signal compression. We also use the simulation framework to evaluate one

of the most commonly used surrogate metrics for assessing susceptibility correction, the com-

parison of corrected datasets acquired with AP and LR phase-encoding, and use this surrogate

to extend our comparison to real data. Finally, we quantify the increased variability in diffu-

sion metrics caused by the dynamic susceptibility artefact. We hope that this work will enable

researchers to make more carefully informed choices when designing their acquisition and

processing pipelines. We further hope that it will raise awareness of the dynamic susceptibility

artefact and encourage development of techniques for dealing with it, and to this end we make

the code and datasets used in this work available at https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

POSSUM.

Methods

We first describe how we simulate DW-MR datasets with realistic susceptibility artefacts, suita-

ble for assessing methods for their correction. We then describe both the experiment design

and data simulated for these assessments.

Simulation of DW-MR datasets

A simulation-based evaluation of correction methods requires realistic simulated DW-MR

datasets with artefacts, along with a suitable ground truth. We chose to use POSSUM [44, 45]

for our simulations because it is a highly realistic simulator that solves Bloch’s and Maxwell’s

equations to generate complex data in k-space, ensuring that the images and their artefacts
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capture the key features of their real-world counterparts. A significant advantage of POSSUM

in this context is its ability to model the interaction between the susceptibility artefact and

motion which, to our knowledge, no other simulator is currently capable of. POSSUM is pri-

marily an fMRI simulator, and so two modifications were made to enable the production of

DW-MR datasets: the implementation of the spin-echo (SE) pulse sequence, and the incor-

poration into a recently proposed framework that enables the simulation of diffusion-weighted

data [47]. Both of these modifications are described in S1 Appendix. Taken together, they

enable a comprehensive framework, able to produce realistic DW-MR datasets with many of

the artefacts typically seen in real data, including: susceptibility, eddy-currents, motion both

between and during acquisitions of volumes, signal dropout, Gibbs ringing, chemical shift,

ghosting, spiking and T1 history effects.

Fig 1 shows the full simulation framework. In addition to DW-MR data, the framework

outputs a displacement field, describing the geometric mapping of data distorted by artefacts

(e.g. motion, eddy-currents and susceptibility) to a ground-truth space. This can be used to

directly and quantitatively evaluate correction methods, by comparing their estimated displa-

cement fields with the simulator ground truth.

Fig 1 shows that the framework requires a number of inputs. In this work the input object

was created from a full-brain segmentation of the T1- and T2-weighted images from a single

subject from the WU-Minn HCP dataset [48], using FSL’s FAST [49]. The representation

of diffusion weighting was achieved using a voxel-wise spherical harmonic (SH) fit to the

b = 1000 s/mm2 shell of the subject’s diffusion data [50] using order n = 8. In order to produce

Fig 1. The pipeline for simulating DWIs.

https://doi.org/10.1371/journal.pone.0185647.g001
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data with distortions similar to those seen in real data, the susceptibility-induced off-resonance

field was obtained from a GRE field-mapping scan of the same subject, using the following

steps (as recommended in the commonly used fsl_prepare_fieldmap script): 1) the magnitude

GRE scan was masked; 2) the mask was eroded using a 5 mm box kernel 3) the fieldmap was

estimated for all voxels within the mask using FSL’s fsl_prepare_fieldmap script; 4) the resul-

tant fieldmap was smoothed using a 3D Gaussian with sigma equal to 5mm to remove noise

and extrapolated to vary smoothly outside the domain of the eroded mask.

Assessment of susceptibility correction

The aim of this work is to assess the performance and limitations of existing methods for cor-

recting the susceptibility artefact. Not only does the susceptibility-induced field produce geo-

metric distortions in the data, but when the head rotates around an axis non-parallel to that of

the main B0 field, the susceptibility-induced field is altered and the artefact cannot be fully cor-

rected using a field estimated before the head moved [10]. Whilst work has characterised [6]

and attempted to correct [41, 42] this effect in fMRI, we are not aware of any available post-

processing methods that address the issue in DW-MR. As a result we divide out analysis into

three parts: in the first two, we compare existing methods for susceptibility correction on data

with the susceptibility artefact but no head movement, using both simulated and real data. In

the third, we characterise the impact of neglecting the movement-susceptibility interaction on

the analysis on DW-MR data, using simulated data. In the following we describe the experi-

ment design for each component of the assessment.

Assessment of existing techniques using simulated data. In this section we describe the

comparison of existing methods for susceptibility correction on data with the susceptibility

artefact but no head movement. In DW-MR the susceptibility artefact leads to geometric dis-

tortions of the data along the PE direction. The non-linear nature of these distortions mean

they can cause redistribution of the signal which appears as either a compression or stretch. In

regions of compression some information is lost, and additional information is required in

order to recover the true signal. An ideal susceptibility correction method will both correctly

estimate the underlying geometric distortions and the true original signal.

There are three main classes of post-processing technique used for correcting the suscept-

ibility artefact. Registration based (RB) techniques non-linearly register the distorted data to a

non-distorted structural target, often a T2-weighted image due to its similar contrast to the

b = 0 volume. Fieldmap based (FMB) estimate the off-resonance field from a series of images

with different echo times, and then use this field to predict the underlying displacement field

needed to correct for geometric distortions. Both RB and FMB techniques provide only a first-

order correction of the signal changes, achieved by modulating the corrected image by the

Jacobian of the local displacement field. Multiple phase-encoding based techniques (MPB) use

multiple images acquired with different phase-encoding directions, and thus with different

distortions, in order to estimate the underlying field needed to correct the data. If only a single

DWI is acquired with multiple PE directions, the technique enables just the estimation of the

field used to correct the dataset and employs the same first-order correction of signal intensity

that is possible using RB and FMB techniques. If the full dataset is additionally acquired with

multiple PE, these methods offer the added potential to recover the information lost from

regions of signal compression, because these regions will instead be expanded in the reversed

PE dataset. We refer to this special case of the MPB technique as full multiple phase-encoding

based (MPB/F).

In order to assess these techniques, we simulated DW-MR datasets with susceptibility dis-

tortions, along with a T2-weighted structural image, field-mapping scans, and an additional
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DW-MR dataset with a reversed PE direction to enable application of the RB, FMB and MPB

techniques, respectively. We designed the DW-MR datasets to contain levels of distortion

similar to that found in recent high-end studies, such as the HCP [48] and UK Biobank, which

forego the use of in-plane acceleration techniques (IPAT) in favour of SMS techniques, in

order to characterise the ability of these techniques to correct data in the ‘worst case’ scenario.

The DW-MR data, shown in Fig 2, was simulated with 32 volumes b = 1000 s/mm2 and 4 b = 0

volumes. We used a matrix size of 90×106, which was chosen along with the image voxel size

(2 mm isotropic) and number of slices (68) to strike a balance between minimising computa-

tion time and ensuring full-brain coverage. The echo spacing was 1 ms, and no IPAT was

used, leading to a PE bandwidth per pixel of 9.5 Hz, similar to values for data from the HCP

project (9) and the HCP lifespan data acquired on a 3T Prisma scaner (10.4). Partial fourier

was not used as POSSUM is currently unable to simulate it—this does not affect the level of

susceptibility distortion in the data [51], but meant our TE of 109 ms is slightly higher than

typical. K-space was apodized using a Hamming window, and no zero-filling was performed.

Data was acquired with both posterior-anterior (PA) and anterior-posterior (AP) PE direc-

tions. Gaussian noise was added to the real and complex channels of the k-space data at two

Fig 2. Simulated DWIs. Pairs of coloured arrows point to corresponding pairs of compression and expansion

in the blip-up and blip-down images. The ‘streaking’ visible in the fieldmap is caused by the linear

extrapolation to ensure a continuous field at the edge of the brain. The bounding box visible around the

fieldmap is caused by its resampling into the space of POSSUM’s input object; this is not a problem for the

simulation as the fieldmap is smooth and defined over all brain voxels in input object. Some Gibbs ringing is

visible in the sagittal views of the distorted data—this is induced by sharp boundaries in regions of signal pile-

up.

https://doi.org/10.1371/journal.pone.0185647.g002
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different levels, to produce datasets containing Rician noise with an average whole-brain SNRs

of 40 and 20, as determined on the b = 0 volume—these represent the upper and lower bounds

of SNR that we expect on modern scanners. Five realisations of each noise level were simu-

lated, as well as a noise-free dataset. No other artefacts (e.g. eddy-currents, motion and conco-

mitant fields) were included in the simulations. We also simulated a ground-truth set of

DWIs, acquired with the same acquisition parameters but no input susceptibility field. The

structural T2 was simulated with 1 mm isotropic resolution, dimensions 180×212×136 using a

conventional spin-echo sequence with TE = 110 ms, TR = 2200 ms and a flip-angle of 90˚. The

field-mapping acquisition emulated the standard field-mapping scan found on a Siemens

scanner, and involved the simulation of two gradient-echo images with the same voxel dimen-

sion and matrix size as the DW-MR scans, using a TR = 700 ms, flip-angle of 60˚ and TE values

of 4.92 ms and 7.38 ms. Noise was added to these scans using the same standard deviation

used in the DW-MR data, to simulate the same level of thermal noise in all datasets.

In this paper we tested a representative correction technique from each of the three classes.

For the RB method we used the reg_f3d command from NiftyReg (Git commit bf926) [52],

which uses a cubic b-spline deformation model. The first b = 0 volume was registered to the

T2-weighted structural, and the estimated transform applied to each DWI. We used default

settings for the registration but constrained the deformation field along the PE axis, emulating

standard practice for susceptibility correction [16, 18, 53], and after experimentation set the

bending energy term to 0.01. For the FMB methods we used the following steps: 1) mask the

first magnitude GE image; 2) erode the mask by one voxel; 3) estimate the fieldmap for all vox-

els inside the mask using FSL’s PRELUDE (version 5.0.9) [54]; 4) apply the fieldmap to each

DWI using FUGUE [55], smoothing the fieldmap using a 3D Gaussian kernel with sigma

equal to 1 voxel (2 mm) as recommended in [6] and applying Jacobian modulation. For the

MPB and MPB/F methods we used FSL’s TOPUP (version 5.0.9) [31], using the default sup-

plied configuration file. For the MPB/F case we changed the resampling from least-squares

resampling (LSR) to Jacobian, after noticing that LSR introduced some slight ‘ringing’ artefacts

into our corrected data. TOPUP combines each PE pair by averaging them after Jacobian

modulation. After correction each dataset was transformed into the same space by rigidly

registering its b = 0 image to the noise-free, ground truth b = 0 image using a 6 degrees-of-free-

dom (DOF) transform with NiftyReg’s reg_aladin tool and then applying the estimated trans-

form to each volume in the dataset.

The evaluation strategy is divided into three parts. Firstly, we assess the ability of each

method to recover the correct underlying displacement field, and thus produce anatomically

faithful data, by comparing each method’s estimated field to the ground truth field obtained

using Eq 4 in S1 Appendix. Secondly, we assess the ability of each method to recover the cor-

rect intensity at each voxel by computing difference maps between the corrected and ground

truth images. Finally we investigate the impact of correction quality on subsequent analysis by

comparing diffusion tensor (DT) fits in both corrected datasets and ‘ground truth’ datasets,

simulated free of artefacts.

In addition to the experiments described, we investigated a surrogate metric for correction

quality that is often used to assess performance on real data: the comparison of corrected data-

sets that have been acquired with both AP and LR phase-encoding [18, 34]. The expectation is

that the greater the correction quality, the greater the similarity between the corrected datasets.

We aimed to evaluate whether this is a suitable surrogate for the most direct measure of cor-

rection quality, i.e. the displacement field error. To enable this experiment we simulated addi-

tional DW-MR data with LR and RL phase-encoding. These datasets were correcting using the

same methods described above, and then compared to the corrected datasets acquired with AP

and PA phase-encoding.
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Assessment of existing techniques using real data. In this section we extend our evalua-

tion of existing techniques to real data. To enable this evaluation we used the surrogate metric

described in the previous section, the comparison of corrected datasets with both AP and LR

phase-encoding. We used ten subjects from the developing HCP project [56]. We selected this

dataset because it provides DW-MR data acquired with four PE directions: AP, PA, LR and

RL, fieldmaps and structural data, enabling correction using all the methods used in this paper

and evaluation using the surrogate metric. The data was acquired on a 3T Philips Achieva,

consisting of a spherically optimized set of directions on 4 shells (b0: 20, b400: 64, b1000: 88,

b2600: 128) split into four PE subsets. It was acquired using an acceleration of MB 4, SENSE

factor 1.2 and partial fourier 0.86, TR/TE 3800/ 90 ms. The acquired resolution is 1.5x1.5 mm,

3 mm slices with 1.5 mm overlap, reconstructed to give data of resolution 1.17x1.17x1.5 mm.

The T2-weighted image had TR/TE 12000/156 ms with a reconstructed resolution of 0.8 mm3.

AP and LR datasets were corrected separately using the correction methods as described pre-

viously. Corrected b = 0 images were rigidly registered to a T2-weighted image using a 6

degrees-of-freedom (DOF) transform with NiftyReg’s reg_aladin tool and the similarity

between AP and LR corrected images assessed.

Assessment of the susceptibility-movement interaction. In this section we describe the

experiments performed to characterise the impact of the interaction between the susceptibility

field and head motion. This is an effect that none of the commonly used post-processing cor-

rection strategies currently account for in DW-MR. To investigate the impact of this on analy-

sis of data, we compare state-of-the-art correction on datasets simulated with and without a

dynamic susceptibility field.

DW-MR data was simulated with the same parameters as in the previous section, using a

full AP and PA acquisition totalling 72 volumes. A key difference to the previous section’s

simulations is that here we calculated the field from an air-tissue segmentation of POSSUM’s

input object using a perturbation method as described in [57]. This method is physically moti-

vated, providing realistic fields, and provides a set of basis-functions that enable POSSUM to

calculate how the susceptibility-induced field changes as the head moves. Movement was

simulated during the data acquisition, using motion parameters measured from a healthy

patient during an MRI exam, to emulate a scan with a normal level of motion. Movement was

simulated to occur between the acquisition of volumes. A second dataset was simulated with

the same set of parameters but the level of motion scaled up by a factor of three, to emulate a

situation where a patient moves a lot. For all the simulations, the translation parameters were

set to 0 as, on the assumption that the main field is entirely uniform, translations do not contri-

bute to the dynamic susceptibility effect and their inclusion would require the imaging FOV to

be increased, which would increase computation time. We also create an additional set of

simulations to control for the effects of image interpolation on our correction. These control

datasets were simulated assuming the static case where the susceptibility field remains

unchanged as the head moves—this situation matches the assumptions of existing susceptibil-

ity correction techniques. All datasets were simulated without noise.

Each dataset was corrected to mimic ‘state-of-the-art’ correction, in which motion and the

static portion of the susceptibility field are corrected for. Ground truth displacement fields for

each volume were created from the motion parameters and the static portion of the field, both

of which are known inputs to the simulation, and applied. Two sets of correction were per-

formed: in the first, only the AP dataset was corrected, and in the second, joint correction of

the AP and PA dataset was carried out to enable correction in regions of compression. The

impact of residual distortions caused by the dynamic portion of the susceptibility field was

demonstrated using errors in displacement fields, and the impact of the dynamic field on
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subsequent analysis was measured by characterising the errors in estimated FA values in cor-

rected data.

Results

Assessment of techniques with simulated data

Fig 3 shows the errors in the displacement fields estimated by the three methods across a repre-

sentative slice of the brain (the MPB and MPB/F methods use the same displacement field,

estimated from just the b = 0 images with reversed PE). Full results for the five noise realisa-

tions are shown in Table 1. It is immediately clear that the RB method is unable to accurately

estimate the underlying displacement field, whilst the FMB and MPB methods show better

performance. The FMB method shows some errors in brain voxels that contain partial volume

with air, around the edges of the brain, and these errors are introduced into brain voxels when

the estimated fieldmap is smoothed. When the edge voxels are excluded using an eroded brain

mask, the mean absolute errors per voxel reduce more for the FMB method than other meth-

ods (Table 2). The FMB’s difficulty estimating the field in edge voxels is exacerbated as the

noise level increases, whilst the MPB method is relatively unaffected by noise.

Fig 3. Displacement field errors. Error in displacement fields estimated by the three methods, assessed by

subtraction from the ground truth field. One axial slice shown.

https://doi.org/10.1371/journal.pone.0185647.g003

Table 1. Mean of absolute errors in displacement field across the brain. Values shown are the mean across the five noise realisations, and errors are the

standard deviation of the mean value for each noise realisation. Note that the multiple phase-encode results cover both MPB and MPB/F methods.

Registration Fieldmap Multiple PE

SNR1 0.24 0.051 0.032

SNR 40 0.263 ± 0.011 0.071 ± 0.003 0.032 ± 0.000

SNR 20 0.272 ± 0.013 0.087 ± 0.002 0.036 ± 0.000

https://doi.org/10.1371/journal.pone.0185647.t001
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The impact that the displacement field estimation has on the corrected data is demonstrated

in Fig 4, which shows the b = 0 images after correction, along with error maps obtained by sub-

traction from the ground truth images. These results are shown in full in Table 3. The effects

of the RB method’s poor estimation are clear in these results. The effect of the FMB method’s

poor displacement field estimates in edge voxels is apparent here. Both the MPB and MPB/F

methods show better results. The figure demonstrates a region of higher error in the FMB and

MPB methods, due to their inability to recover the correct signal from a region of compres-

sion, where the MPB/F does better, due to its ability to resample from the corresponding

expanded region in the reversed PE image. There is some slight ringing noticeable in the error

maps, particularly for the MPB and MPB/F methods. This is Gibbs ringing present in the

ground-truth b = 0 images, caused by the strong CSF rim. The corrected images have much

reduced ringing because they have been smoothed by interpolation, so the ringing is visible

upon subtraction. The ringing appears less visible for RB and FMB methods because it is

obscured by larger errors caused by poorer correction.

Table 3 demonstrates an additional advantage of the MPB/F method: the SNR boost

obtained for each corrected image by resampling from two images, in effect averaging over the

noise. It causes the mean errors for the DW volumes to be lower than the errors in the noisy

ground-truth images. The results entangle two effects: the ability to recover information from

regions of compression, and an SNR boost from having twice as much data. These can be dis-

entangled by examining the SNR infinite case in Table 3, where the improvements from the

MPB/F are solely due to improved signal recovery in regions of compression.

Fig 5 show FA maps estimated from the corrected datasets for one slice of the brain, as well

as their errors, with full results for FA, MD and the principle diffusion direction (V1) shown in

Table 4. The downstream effect of information loss from areas of compression is appreciable

in both the FMB and MPB maps, as is the ability of the MPB/F method to mitigate these errors.

The SNR boost provided by the MPB/F method is visible in the figure, which shows some

regions have lower error than the noisy ground truth maps, and also clear from the tabulated

results. The results in Table 4 also demonstrate that the amount of smoothing introduced by a

method can affect results. For noisy data the errors for corrected datasets are sometimes smal-

ler than the error for the ‘ground truth + noise’ datasets, which reflects the noise-reducing

effects of the local smoothing introduced upon correction. This effect is particularly strong for

the FMB method, likely due to the smoothing of the estimated fieldmap during processing,

causing it to produce smaller average errors for FA and V1 than the MPB method, despite

MPB estimating the underlying displacement field more accurately. Dividing the errors

according to the size of the underlying distortion (S1 Table) confirms that it is the smoothing

that causes this; FMB tends to outperform MPB in areas of low distortion where errors are

mostly controlled by the amount of noise, whilst MPB outperforms FMB in regions of large

distortion where estimation of the correct underlying displacement field is important.

To investigate the suitability of AP-LR differences as a surrogate metric we plot the cor-

rected AP and LR b = 0 images, and their differences, for a representative slice in Fig 6. The

whole-brain mean of the intensity difference for b = 0 volumes was computed for every

Table 2. The same metrics in Table 1 but calculated over an eroded brain mask. Values shown are the mean across the five noise realisations, and errors

are the standard deviation of the mean value for each noise realisation.

Registration Fieldmap Multiple PE

SNR1 0.24 0.024 0.029

SNR 40 0.249 ± 0.010 0.035 ± 0.001 0.029 ± 0.000

SNR 20 0.251 ± 0.012 0.048 ± 0.002 0.033 ± 0.000

https://doi.org/10.1371/journal.pone.0185647.t002
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Fig 4. Errors in image intensity. b = 0 images after correction by each method, along with the ground truth

images shown both with and without noise. Intensity images shown for the infinite SNR case. Error maps are

obtained by subtraction from the noise-free ground truth image. Units are arbitrary signal units. Red arrows

highlight a region of signal compression that can only be corrected by the MPB/F method. Note the MPB/F

method uses twice as much data as the other methods, increasing its effective SNR.

https://doi.org/10.1371/journal.pone.0185647.g004
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correction method, for each of the five noise realisations at each SNR—results are shown in

Table 5. The results show the largest errors for the RB method with MPB and MPB/F perform-

ing the best, consistent with previous results. A two-sample t-test without assuming equal var-

iance was performed between these values for each pair of correction methods; all differences

were significant at the p<0.001 level. These results demonstrate that the surrogate metric

shows the same ordering of correction ability as more direct metrics, such as error in displace-

ment field, indicating that it can be a useful metric. However, it should be noted that the metric

does not give the same contrast between methods as displacement field error. Errors in displa-

cement fields show large differences between the RB and FMB methods, and a much smaller

difference between FMB and MPB methods. The surrogate metric loses this contrast, indicat-

ing a roughly similar improvement going from RB and FMB methods as FMB to MPB meth-

ods. This is because there is not a simple relationship between displacement field error and

intensity error; the size of intensity error depends on both the size and the location of the dis-

placement error.

Assessment of techniques with real data

Fig 7 shows the differences between AP and LR correction for real data. These results resemble

findings in simulated data, indicating that RB methods perform the worst and MPB/F best.

Table 6 reports the whole-brain mean of the intensity difference for b = 0 volumes. A paired t-

test was performed between these intensity differences for each method, all differences were

significant to p<0.001.

Interaction between susceptibility and movement

Fig 8a shows the rotation parameters used for the simulations. Fig 8b shows the residual errors

in the first four DWIs after correction for motion and static susceptibility. We found that a 5˚

rotation about the y-axis caused changes in the susceptibility field of up to 30 Hz, correspond-

ing to distortions of up to 6 mm for the acquisition protocol used. This is slightly smaller than

the field changes measured in real data—[10] found changes of 50 Hz for similar rotations at

3T—indicating our dynamic distortions are in a realistic range but may slightly underestimate

the true size of the effect. Our simulations show a left-right asymmetry in dynamic displace-

ment fields for rotations around y (Fig 8b, Volume 5) and left-right symmetry for rotations

around x (Fig 8b, Volume 4) that matches observations made in real data [41].

Fig 9 shows the errors in FA for corrected data across an example slice. Comparing data

simulated with static and dynamic susceptibility fields, we see increased errors in the data with

dynamic effects. The differences in static and dynamic errors across the full brain are shown in

Fig 10. It is worth noting that the errors for the data with static susceptibility fields are non-

zero, despite the data being noise free and corrected with the ground truth fields. These errors

Table 3. Absolute errors in image intensity, averaged across the brain for all b = 0 and DWI volumes. Values shown are the mean across the five noise

realisations, and errors are the standard deviation of the mean value for each noise realisation. Units are arbitrary signal units.

GT + noise RB FMB MPB MPB/F

SNR1 b = 0 0.00 2.41 1.36 0.73 0.59

DWI 0.00 0.70 0.20 0.13 0.09

SNR 40 b = 0 0.23 ± 0.00 2.55 ± 0.04 1.71 ± 0.04 0.78 ± 0.00 0.62 ± 0.00

DWI 0.23 ± 0.00 0.75 ± 0.01 0.35 ± 0.01 0.27 ± 0.00 0.19 ± 0.00

SNR 20 b = 0 0.70 ± 0.00 2.81 ± 0.03 2.09 ± 0.02 1.05 ± 0.00 0.80 ± 0.00

DWI 0.70 ± 0.00 1.00 ± 0.00 0.69 ± 0.00 0.68 ± 0.00 0.49 ± 0.00

https://doi.org/10.1371/journal.pone.0185647.t003
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Fig 5. Errors in FA metrics. FA maps estimated from corrected and ground truth images, along with error

maps obtained by subtraction from the noise-free ground truth estimate. FA map shown for SNR infinite case.

Red arrows show regions of high error caused by signal pileup that could not be corrected by the RB and MPB

methods, despite estimation of the correct displacement field. The MPB/F method is able to reduce errors in

these regions. Note the MPB/F method uses twice as much data as the other methods, increasing its effective

SNR.

https://doi.org/10.1371/journal.pone.0185647.g005
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are introduced by interpolation effects, and introduce similar levels of error into both static

and dynamic data, so it is the difference in error between these two sets of data that reveals the

errors introduced by the dynamic susceptibility fields alone. The results show that the dynamic

field increases FA errors especially for the case of the subject with larger motion. The effect of

the dynamic field was slightly smaller for data corrected using both AP and PA volumes than

data corrected using only the AP set.

Discussion

In this paper we assessed the three main classes of technique used for correcting the suscept-

ibility artefact, and investigated the impact of their inability to correct for the dynamic portion

of the artefact. This work is particularly timely given that recent trends in acquisitions could

lead to increased severity of the artefact, increasing the importance that the community has

access to careful evaluations of the correction techniques available to them and their limita-

tions. To enable our assessment, we extended an existing MR simulator and incorporated it

into a framework that simulates realistic DW-MR datasets. This enabled us to directly and

quantitatively assess the desired features of a susceptibility correction approach: the ability to

both correct geometric distortions and recover the signal distribution lost in regions of com-

pression. It further enabled us to carefully examine the impact that neglecting the dynamic sus-

ceptibility field has on analysis of diffusion data.

Our results showed that registration of distorted data to a structural T2-weighted volume

was insufficient for fully correcting geometric distortions in the data. However, it offers

improvement over performing no correction at all, and has the advantage that a structural

volume is often acquired in a scan, making it suitable for retrospective studies where data

required for FMB or MPB methods is not available (contrast inversion techniques may mean

similar results can be obtained with a T1-weighted volume [23, 43]). FMB and MPB techni-

ques performed better, though the FMB method demonstrated sensitivity to partial volume

with air, particularly as the noise level increased. This occurred despite following standard

practice of only estimating the field for voxels within an eroded mask, to exclude voxels with

significant partial volume, and smoothly extrapolating the estimated field outside the domain

of the mask. It has been reported that fitting a set of 3D discrete cosine transformations can

lead to improvement [6], but to our knowledge this is not implemented in any available soft-

ware packages. In addition to providing better correction than the FMB technique, the MPB

method has the additional advantage [30] of being able to correct for concomitant fields which

cause translations of slices far from the isocentre along the PE direction [58]. Concomitant

Table 4. Errors in diffusion metrics (FA, MD and the principle diffusion direction V1), averaged across the brain. Values shown are the mean across

the five noise realisations. V1 errors were only calculated in voxels with a ground-truth FA >0.2. Errors (calculated as the standard deviation of the mean value

for each noise realisation) not shown as they were all 0 to 3 decimal places.

GT + noise RB FMB MPB MPB/F

SNR1 FA 0.000 0.017 0.014 0.010 0.008

MD / 10-3 mm2 s−1 0.000 0.077 0.073 0.048 0.040

V1 / degrees 0.000 3.602 1.693 1.008 0.687

SNR 40 FA 0.016 0.027 0.021 0.020 0.014

MD / 10-3 mm2 s−1 0.022 0.087 0.090 0.055 0.046

V1 / degrees 3.787 6.418 3.773 3.825 2.704

SNR 20 FA 0.051 0.053 0.044 0.049 0.033

MD / 10-3 mm2 s−1 0.078 0.134 0.122 0.096 0.078

V1 / degrees 11.580 11.775 9.872 10.931 7.744

https://doi.org/10.1371/journal.pone.0185647.t004
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fields cannot be measured by field-mapping scans and thus are not corrected by them. How-

ever, it should be noted that this sensitivity to concomitant fields is less of an issue for modern

scanners with field strengths of 3T or above, as the effects of the fields scale with the inverse of

the main magnetic field strength, and in a well-tuned system they are corrected for on the

scanner itself [59].

Fig 6. AP-LR comparison on simulated data. Figure shows corrected AP and LR b = 0 images, and the

intensity difference between them. SNR = 40 dataset shown.

https://doi.org/10.1371/journal.pone.0185647.g006
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Table 5. Surrogate metrics for simulated data. Table shows whole-brain-mean intensity differences between AP and LR corrected datasets (units are arbi-

trary signal units). Errors are the standard deviation of the means over the five noise realisations. Metrics show statistically significant differences between all

methods at the p<0.001 level.

RB FMB MPB MPB/F

SNR 40 3.791 ± 0.044 2.818 ± 0.047 1.904 ± 0.100 1.498 ± 0.025

SNR 20 3.976 ± 0.026 3.230 ± 0.041 1.989 ± 0.022 1.688 ± 0.069

https://doi.org/10.1371/journal.pone.0185647.t005

Fig 7. AP-LR comparison on real data. Figure shows corrected AP and LR b = 0 images, and the intensity

difference between them.

https://doi.org/10.1371/journal.pone.0185647.g007
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Whilst FMB and MPB techniques were both able to estimate the underlying displacement

field well, neither of them are able to provide the correct signal distribution in areas that have

been compressed by the susceptibility artefact. This is an inherent limitation, which our results

showed can be addressed using MPB/F. The downside of MPB/F is that each DWI needs to be

acquired twice, doubling the acquisition time. Whether this is an acceptable trade-off is likely

to be influenced by several factors such as the available acquisition time, desired analysis meth-

ods (e.g. compartment modelling, tractography), and the brain regions to be studied. It is

worth noting that the MPB/F method increases SNR in the corrected images, so does not pro-

vide any time penalty if repeats are already being acquired to boost SNR through averaging.

Surrogate metrics are often used to evaluate correction quality on real data. Such metrics

can sometimes be misleading; for example visual inspection of registration results, or use of

similarity metrics, can be misleading because differences between source and reference images

can appear small despite the underlying displacement field having been poorly estimated. In

order to extend our analysis to real data, we used the simulation framework to validate one of

the most promising surrogate metrics for correction quality, the difference between AP and

LR corrected datasets. Our simulations demonstrate the metric can be a useful surrogate for

the statistic of real interest—error in the ground truth displacement field. However, the results

showed that the metric does not necessarily give the same contrast between methods as errors

in displacement field, and it is possible to conceive of a situation where the metric gives a dif-

ferent ordering of correction quality than displacement field error (for example, a small displa-

cement field error in a region with high intensity-contrast). We suggest that any surrogate

metric must be interpreted cautiously, and ideally should be accompanied with supporting evi-

dence from simulated data where a ground-truth is available.

Our findings are in agreement with the existing literature, which largely made use of real

data. [18] used real data to compare RB and FMB methods. They found FMB methods outper-

formed RB methods in all regions affected by susceptibility artefacts. Interestingly, they found

RB methods outperformed FMB in the superior few slices of the brain. This is likely because

the data was acquired at 1.5T and thus suffered from measurable concomitant field-induced

shifts in these slices, which FMB methods cannot correct for. [60] also used surrogate metrics

on real data and found that FMB outperformed RB methods. [32] used real data to compare

FMB and MPB/F techniques, finding MPB/F methods to be superior. [61] used simulations to

compare RB, FMB and MPB/F (but not MPB) techniques. Whilst they used simpler simula-

tions and less direct metrics to assess correction efficiency, they observed the same ordering of

the technique’s effectiveness as we did. We are not aware of any published comparisons of

FMB and MPB methods, likely the most relevant comparison for most researchers as they

offer the potential for good correction of geometric distortions with only slightly increased

acquisition times.

We also investigated the impact of failing to correct for the dynamic portion of the suscept-

ibility field on the analysis of diffusion data. Our results highlight that even if a subject moves a

little the dynamic field increases the errors in estimated diffusion metrics, but that the problem

becomes much worse for subjects that move ‘a lot’. This result is important in the context of

population studies, where a group that moves a lot (due to e.g. age, disease) is compared to a

Table 6. Surrogate metrics for real data. Table shows whole-brain-mean intensity differences between AP and LR corrected datasets (units are arbitrary

signal units). Errors are the standard deviation of the means over the ten subjects. Metrics show statistically significant differences between all methods at the

p<0.001 level.

RB FMB MPB MPB/F

6.463 ± 1.282 5.277 ± 1.278 3.579 ± 0.885 3.078 ± 0.965

https://doi.org/10.1371/journal.pone.0185647.t006
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Fig 8. Susceptibility-movement interaction. A. The x- and y- rotation parameters used for the simulation of the

first 36 volumes (z-rotations not shown because they do not contribute to the dynamic susceptibility effect,

translations were all 0). The coloured vertical lines highlight the motion of the volumes depicted in plot B. B. Top two

rows show the errors in displacement field caused by the dynamic portion of the susceptibility artefact, for volumes

2-5 of the acquisition—the motion these volumes experienced is highlighted with colour in plot A. Bottom two rows

show the error in intensity of these volumes after they are corrected for motion and the static portion of the

susceptibility field, obtained by subtraction from ground truth images.

https://doi.org/10.1371/journal.pone.0185647.g008

Assessing the susceptibility artefact in diffusion MRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0185647 October 2, 2017 18 / 25

https://doi.org/10.1371/journal.pone.0185647.g008
https://doi.org/10.1371/journal.pone.0185647


healthy control group that is likely to move less. Interestingly, we found correcting data using

both AP and PA acquisitions did not further increase the errors introduced by dynamic sus-

ceptibility, and in fact marginally reduced them. We hypothesised an increase in error would

occur because each corrected volume was created by combining information from two differ-

entially distorted volumes, thus creating corrected data that was even more ‘wrong’ than data

obtained simply resampling all the PA volumes. A potential explanation for the result is that

the motion trace we used is characterised by small rotations for most volumes and occasional

spikes of larger motion for some. Thus, for each PA (or AP) image with a large dynamic sus-

ceptibility component caused by large motion, its corresponding AP (or PA) volume is likely

to be much less distorted, and so producing a corrected volume from the two leads to an aver-

aging effect that serves to reduce the total amount of distortion in the corrected data.

To our knowledge, none of the commonly used post-processing schemes correct for the

dynamic susceptibility artefact in DW-MR. There have been attempts to deal with the problem

using real-time auto-shimming [39, 40] but these require non-standard pulse sequences and

are only able to correct for the linear terms of the dynamic field. Acquisition of a field-map for

each volume is also possible, at the expense of increased scan-time [62]. Registration of every

DW-MR volume to an undistorted structural target has been suggested in the past [19], but is

inappropriate given the differences in contrast between diffusion-weighted and structural

volumes, especially for modern acquisitions which tend to make use of higher b-values with

even more different contrast. One potential method for mitigating the artefact, available to

users of the MPB/F method, would be to interleave the protocol such that the acquisition of

each blip-up volume is immediately followed by the acquisition of its blip-down counterpart.

The dynamic field could then be estimated for every pair of DWIs, on the assumption that

Fig 9. Errors introduced when failing to account for the susceptibility-movement interaction. Absolute errors in FA

shown over one slice, for datasets corrected for motion and static susceptibility. Data in the static columns were simulated

with only motion and static susceptibility artefacts, whilst the dynamic data contained motion and dynamic susceptibility.

‘One PE correction’ indicates only the AP data was used for correction, and ‘two PE correction’ indicates the AP and PA

data were both use—note these are different from MPB and MPB/F, which are methods for both estimating and applying a

displacement field, whilst in this case known ground-truth displacement fields have been applied.

https://doi.org/10.1371/journal.pone.0185647.g009
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there was negligible motion between the pair of DWIs. This would have the added benefit of

reducing the issue of combining volumes with opposite PE direction which have different

effective diffusion sensitisation, which happens when movement occurs between them. Our

simulation assumed inter-volume movement, but in reality movement will occur during the

acquisition of volumes. Intra-volume movement correction schemes do exist [63, 64], and

would ideally be integrated into any technique that corrected for the dynamic susceptibility

artefact.

There are some limitations to the work. The simulations used an off-resonance field esti-

mated from a field-map as the input, which could introduce some circularity that favours the

FMB method. It seems that this wasn’t an issue in this study, as FMB techniques were outper-

formed by MPB methods. The use of a real dataset to produce the input to the simulator

enables the production of more realistic datasets than seen in other simulators [46], but raises

the potential that the input may itself have residual artefacts in it that could affect the results,

or could even bias our experiments in favour of the methods originally used to preprocess the

input dataset.

We tested one available software implementation of each method; the large number avail-

able meant it was not practical to evaluate more. For FMB and MPB+MPB/F methods, we

used the implementations most commonly used by the research community. We note that

there are MPB methods [35] and MPB/F methods [34] that report better results than the

method used in this work, TOPUP, and a comparison of these promising techniques may be

the subject of future work. There are a number of available RB implementations, with no single

one of them being clearly more popular than the others, each with a large number of para-

meters and settings that can be optimised, but we do not believe the choice of specific

Fig 10. Error distribution. Histogram of the difference in absolute FA errors over the full brain, for datasets corrected for motion and static

susceptibility: |ΔFAstatic| − |ΔFAdynamic|, so the heavy tail for negative values indicate higher errors for the dynamic case.

https://doi.org/10.1371/journal.pone.0185647.g010
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implementation will change our conclusions. This is because other published work comparing

different RB methods to the one we tested [18, 61], support the conclusion that they are consis-

tently outperformed by FMB and MPB+MPB/F methods. We encourage researchers to use

our framework to benchmark the performance of their post-processing pipelines, and to this

end we make the code and datasets used in this work available at https://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/POSSUM.

Supporting information

S1 Appendix. Modifications to POSSUM to enable DW-MR simulation.

(PDF)

S1 Table. Errors in diffusion metrics. As in Table 4, errors for FA, MD and the principle dif-

fusion direction V1, but here divided into regions of interest based on the amount of distortion

in the data. Values shown are the mean across the five noise realisations. V1 errors were only

calculated in voxels with a ground-truth FA>0.2. Errors (calculated as the standard deviation

of the mean value for each noise realisation) not shown as they were all 0 to 3 decimal places.

(PDF)
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