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Numerous studies have demonstrated that visuospatial
attention is a requirement for successful working
memory encoding. It is unknown, however, whether this
established relationship manifests in consistent gaze
dynamics as people orient their visuospatial attention
toward an encoding target when searching for
information in naturalistic environments. To test this
hypothesis, participants’ eye movements were recorded
while they searched for and encoded objects in a virtual
apartment (Experiment 1). We decomposed gaze into 61
features that capture gaze dynamics and a trained
sliding window logistic regression model that has
potential for use in real-time systems to predict when
participants found target objects for working memory
encoding. A model trained on group data successfully
predicted when people oriented to a target for encoding
for the trained task (Experiment 1) and for a novel task
(Experiment 2), where a new set of participants found
objects and encoded an associated nonword in a
cluttered virtual kitchen. Six of these features were
predictive of target orienting for encoding, even during
the novel task, including decreased distances between
subsequent fixation/saccade events, increased fixation
probabilities, and slower saccade decelerations before
encoding. This suggests that as people orient toward a
target to encode new information at the end of search,
they decrease task-irrelevant, exploratory sampling
behaviors. This behavior was common across the two
studies. Together, this research demonstrates how gaze
dynamics can be used to capture target orienting for

working memory encoding and has implications for
real-world use in technology and special populations.

Introduction

We use our eyes for many purposes, including finding
things we want to use, inspecting objects, reading
information, and understanding people and their
intentions. For instance, we might fixate surfaces that
are likely to contain the objects that we search for
(Pereira & Castelhano, 2019), we might use regressive
saccades to reread complex text (Booth &Weger, 2013),
and we might fixate specific parts of people’s faces to
understand their emotions (Schurgin, Nelson, Iida,
Ohira, Chiao, & Franconeri, 2014). In fact, given the
tight coupling between gaze behaviors and our goals,
Yarbus (1967) and others have used gaze behavior to
understand an individual’s task, even while the visual
stimulus is held constant (Borji & Itti, 2014; Ellis &
Stark, 1981; Henderson, Shinkareva, Wang, Luke,
& Olejarczyk, 2013; Tatler, Wade, Kwan, Findlay, &
Velichkovsky, 2010; Yarbus, 1967). Furthermore, gaze
has also been used to detect future tasks and behaviors,
including inferring the possible future targets of visual
attention (Lengyel, Carlberg, Samad, & Jonker, 2021),
anticipating upcoming lane changes (Doshi & Trivedi,
2009; Liu, 2001), and predicting ingredient selection
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(David-John, Peacock, Zhang, Murdison, Benko, &
Jonker, 2021; Huang, Andrist, Sauppé, & Mutlu, 2015).

Although computational models of gaze dynamics
have been used to infer an individual’s goals in these
domains (David-John et al., 2021; Doshi & Trivedi,
2009; Huang et al., 2015; Lengyel et al., 2021; Liu,
2001), they have not been used to detect when people
find an object they want to encode into working
memory (WM). WM is an important cognitive state as
it critical for learning (Alloway, 2006; Titz & Karbach,
2014) and executive control (Gruber & Goschke,
2004; Poole & Kane, 2009; Titz & Karbach, 2014).
Developing a computational model of target orienting
for WM encoding would, therefore, be important,
because people often execute search processes to find
relevant information for WM encoding (e.g., searching
for a written phone number to encode into WM).
Furthermore, with such a model, a system could
provide adaptive assistance (e.g., automated photo
capture of an encoding target) to help people free up
their cognitive resources.

There is some precedent in the literature that
computational models composed of gaze-based features
could be used to successfully predict when people
transition from searching rich, complex information to
targeting their visuospatial attention toward a target for
WM encoding. For example, Malcolm and Henderson
(2009) introduced a three-stage model to visual search,
which described the onset of search (search initiation
stage), the search process until a target is located
(scanning stage), and the end of search after a target is
located and compared with the target template (target
verification stage) (Malcolm & Henderson, 2009). Here,
empirical studies demonstrate that saccade amplitudes
are longer and fixation durations are shorter during the
scanning stage relative to the target verification stage
(David, Beitner, & Võ, 2020), suggesting that there are
gaze dynamics that reflect the stages of search. Other
studies have found similar patterns of coarse-to-focal
gaze behaviors from the onset of search to the offset
of search irrespective of the three stages (Godwin,
Reichle, & Menneer, 2014; Over, Hooge, Vlaskamp, &
Erkelens, 2007) and during other scene viewing tasks (as
described by the ambient–focal phenomenon; Unema,
Pannasch, Joos, & Velichkovsky, 2005).

Although the differences in fixation durations
and saccade amplitudes during the scanning and
verification stages of visual search provide a compelling
demonstration that a computational model of target
orienting for WM encoding is feasible, it is unknown
whether gaze dynamics reflect the anticipation of
finding a search target for encoding. Specifically, gaze
dynamics might change from the start to the end of
scanning as people anticipate orienting to a target for
WM encoding. Furthermore, there may be a broader set
of gaze features beyond fixation durations and saccade
amplitudes that capture the transition from scanning to

target orienting for encoding. These features might also
have unique time courses during which they become
sensitive to the anticipation of a search target for
encoding. The present study aims to uncover a novel,
broader set of gaze features and the windows of time
in which these features are most sensitive to target
orienting for WM encoding.

The existing literature gives plausibility to this
idea that gaze dynamics are indeed sensitive to the
anticipation of task-relevant stimuli (McPeek, Han, &
Keller, 2006; McPeek et al., 2003; Milstein & Dorris,
2007; Wilimzig, Schneider, & Schöner, 2006; Wu
& Kowler, 2013). For example, people are faster to
execute saccades that precede fixations on targets versus
nontargets (Wu & Kowler, 2013), and they are faster to
execute saccades when the anticipated saccade landing
position might result in monetary reward versus not
(Milstein & Dorris, 2007). Furthermore, stimulation
studies provide causal evidence that, when the frontal
eye fields and the superior colliculus can anticipate
distractor information, saccades will curve away from
distractors and toward targets (McPeek, 2006; McPeek
et al., 2003). Together, these studies demonstrate that
gaze dynamics reflect the anticipation of fixation on an
important stimulus. Therefore, a reasonable extension
from these studies is that gaze dynamics might also be
sensitive to target orienting for WM encoding.

Although gaze dynamics reflect the anticipation
of task-relevant stimuli, it is unknown whether gaze
dynamics are related to successful WM encoding.
However, several experimental studies suggest that,
when visuospatial attention can anticipate (i.e., aligns
with) the location of encoding, WM encoding (and
subsequent memory retrieval) will be successful.
Specifically, WM encoding benefits when a to-be-
encoded object appears at cued locations associated
with encoding (Schmidt, Vogel, Woodman, & Luck,
2002; Woodman, Vecera, & Luck, 2003). Furthermore,
when an object is marked as a saccade target, its
features are more likely to be encoded into WM than
when an object is not a saccade target (Hanning,
Jonikaitis, Deubel, & Szinte, 2015). This body of
laboratory work suggests that, when visuospatial
attention is aligned to (or can anticipate) the location
of to-be-remembered information, encoding will likely
be successful; in contrast, when visuospatial attention
and gaze disengage from the location of encoding,
WM will likely fail. Given the established relationship
between visuospatial attention and WM encoding in
the laboratory, it is possible that, as people search
naturalistic environments, the spatial and temporal
expectation of a target of WM encoding mediates how
they move their eyes and that these gaze patterns are
indicative of intentional visuospatial attention orienting
for WM encoding.

Understanding whether gaze dynamics capture target
orienting for WM encoding would have both scientific
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and practical benefits. From a scientific perspective, by
exploring gaze before the onset of encoding, we can
gain insights into how gaze behaviors change from the
beginning to the end of search as people orient toward
a target they wish to encode in WM. From a practical
perspective, if a system could anticipate an encoding
target, then it could suggest applications that would
allow people to externalize their memory load, such as
a notepad app, a to-do list, an audio recorder, or even a
camera for photo capture. These types of interventions
would have usefulness for people in their everyday lives,
and even greater benefits for those who suffer fromWM
deficits or other cognitive impairments.

For practical applications of the link between gaze,
search processes, and WM encoding, it is critical to
understand gaze behaviors in visually rich, naturalistic
contexts that more closely represent the real world,
because this practice has more ecological validity than
laboratory studies that use simple stimulus arrays, such
as colored squares on a blank background (Hanning et
al., 2015; Schmidt et al., 2002; Woodman et al., 2003).
Thus, in the present work, the goal was to explore
whether gaze dynamics can capture target orienting
for WM encoding in rich, complex, naturalistic
environments in virtual reality (VR). The study was
conducted in VR rather than using a traditional eye
tracking setup with a monitor and fixed head position
because VR allows for (1) the enhanced naturalism
of scenes, (2) an expanded visual field with up to
360° for exploration, and (3) natural head motions
and natural eye–head coordination. Although there
are some limitations to using VR (e.g., the decreased
sampling frequency of commercial trackers relative
to research-grade trackers), the ability to deploy
naturalistic environments and to capture natural head
and eye movements was critical to understanding
whether there is a set of gaze dynamics that are sensitive
to target orienting for WM encoding in naturalistic
environments.

In sum, the goal of the present work was to
understand how temporal gaze dynamics unfold
as people orient toward a target for encoding in
complex, naturalistic settings that more closely emulate
real-world encoding contexts than prior studies. To
better understand the role of temporal gaze dynamics
and how they unfold as people orient to a target of
encoding, we used a computational model of gaze
dynamics. By using a computational model, we were
able to uncover novel gaze features and the unique time
courses of when these gaze features were most sensitive
to target orienting for encoding.

Present study

The primary goal of the present work was to explore
whether there is a common set of gaze dynamics that

are sensitive to target orienting for WM encoding in
naturalistic environments. We chose to model both
search target orienting and WM encoding anticipation
together (rather than understand the unique gaze
behaviors associated with each) because many
real-world encoding scenarios will involve searching
for information to encode (e.g., searching for a written
phone number to encode into WM; searching for and
encoding the size of a socket to see if it matches the size
of a socket wrench). By using tasks that approximate
real-world encoding scenarios (in which search precedes
encoding), we were able to (1) understand from an
ecologically valid perspective how gaze dynamics unfold
in anticipation of a target of encoding and (2) produce
a model that was more likely to generalize to new
contexts which is important for practical applications
where generalization is key. Furthermore, target finding
and WM encoding go hand in hand, because focused
visuospatial attention is required to orient to both visual
search targets (Woodman & Luck, 2004) and visual
WM encoding targets (Awh & Jonides, 2001; Gazzaley
& Nobre, 2012; Schmidt et al., 2002). Given the overlap
that exists between search target orienting and WM
encoding both in terms of their natural co-occurrence
in the world and the requirements of visuospatial
attention to orient to both search and encoding targets,
this study opted to analyze both processes in concert
(termed “target orienting for encoding”), because there
are likely gaze behaviors common to both.

Recently, we reported on an early exploration into
the development of a model of target orienting for
WM encoding using gaze data in naturalistic settings
(i.e., VR; Peacock, David-John, Zhang, Murdison,
Boring, Benko, & Jonker, 2021). We found that a model
trained using sliding windows of gaze features detected
when people oriented to a target for WM encoding
using a commercial eye tracker in an immersive virtual
apartment. This research provided a compelling
proof-of-life example of the use of gaze data to detect
target orienting for WM encoding in consumer settings.
However, these models were trained individually for
each participant, and they were only explored within a
single task. As such, it is unclear whether these models
captured stable and generalizable patterns of eye gaze
as people oriented to a target for encoding. Although it
was a compelling demonstration, it is possible that such
within-subject models captured task-specific variance
rather than a signal that was common to target orienting
for WM encoding. As such, the primary goal of the
present work was to uncover consistent gaze dynamics
that occur before WM encoding and are robust across a
range of people, tasks, and environments.

Therefore, this research addresses two hypotheses:

• H1: Gaze dynamics can be used to detect target
orienting for WM encoding across people.
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• H2: Gaze dynamics capture task- and environment-
general variance in target orienting for WM
encoding.

To address these hypotheses, eye tracking data were
collected during two tasks in VR. In the first task,
participants navigated and searched through a virtual
apartment for objects they needed to encode for later
recall (Experiment 1). In the second task, a new set
of participants encoded nonwords corresponding
to visual search target objects in a cluttered kitchen
(Experiment 2). Sliding window logistic regression
models were then trained to test whether gaze dynamics
reflect target orienting for encoding.

To address H1, we trained a group model to predict
target orienting for encoding and tested whether this
model generalized to individual participants within
the study, which allowed us to determine whether a
consistent set of gaze features occur in the moments
leading up to WM encoding.

From there, to address H2, we sought to explore
whether the detected gaze dynamics captured a general
set of orienting behaviors related to target orienting
for encoding across tasks, environments, encoded
stimuli, and people. To explore whether our gaze
model could generalize to a new task, environment,
stimulus set, and people, we applied the trained model
from Experiment 1 to unseen data from Experiment 2.
Finally, to deepen our understanding of how gaze
behaviors relate to target orienting for encoding, we
explored which specific gaze features generalized across
tasks. To address this question, we trained a group
model on each individual feature from Experiment 1
and tested it on data from Experiment 2, which would
allow us to develop novel scientific insights into the
specific features of gaze behavior that uniquely identify
as people orient to encoding targets across different
tasks.

Experiment 1

The goal of Experiment 1 was to determine whether
a group model of gaze features could detect target
orienting for encoding across individuals (H1). If,
indeed, people tend to orient in consistent ways to
search targets that they wish to encode, then natural
gaze behaviors might reflect this behavior and could be
used to predict and anticipate WM encoding.

Methods

Participants
Thirty-eight participants completed the study and

were compensated for their participation. Informed

consent was obtained and protocols were approved
by the Western Institutional Review Board. Six
participants were excluded from the dataset as they
failed to complete the study due to discomfort or noise
disruptions, resulting in a sample of 32 (mean age, 27.7
years; 16 females).

Apparatus and data collection
An HTC Vive headset with Tobii Pro binocular eye

tracking (120 Hz) was used to render the VR tasks and
collect eye tracking data. The HTC Vive controller
was used for navigation around the apartment.
At the beginning of the study, the built-in Tobii
5-point calibration protocol was used. Accuracy was
verified before the start of the task and there was no
recalibration throughout the task.

The experiment was implemented in Unity
2018.4.2f1, with the Tobii Pro Unity SDK (v1.4)
handling the logging and synchronization of the eye
tracking data. To synchronize the HTC Vive (90 Hz)
to the eye tracker (120 Hz), the eye tracker queued
timestamped data and the SDK retrieved the eye
tracking data from the queue on each software frame.

In complex virtual environments, frames might be
dropped; however, dropped frames did not affect the
gaze data because they were logged on the tracker
and the Unity refresh rate was dynamic to its load
(i.e., it was designed to minimize dropped frames).
Because dropped frames could still impact a user’s
view of the virtual environment, there could be an
approximate 10-ms decrease in the reaction times
recorded, particularly when participants move their
head to look at a different target or area (i.e., the frame
rate temporarily decreases to 45 Hz whenever 90 Hz
cannot be maintained).

Stimuli
A high-resolution rendering of two virtual

apartments were used as the experimental environments.
Each apartment contained a bedroom, patio, kitchen,
bathroom, and living room. The environments
contained low clutter. The encoded stimulus was the
semantic label corresponding to an object that was in
each room.

Procedures
Participants were first outfitted with a VR headset.

Participants completed a tutorial and practice trial in
VR before the main trial sequence. Here, participants
were seated and had free range of motion of their arms
and head and used teleportation to navigate. During
each trial, participants were spawned in a room of one
of two virtual apartments. They received a text prompt
to navigate to a specific room using point-and-teleport
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Figure 1. Example of an experiment 1 trial. During each trial, a text prompt was accompanied by a yellow arrow to guide navigation; a
blue arrow was used to indicate the object to be recalled. The blue arrow later disappeared once participants’ gaze intersected the
target object; after encoding five or nine objects, participants were asked to verbally recall all the objects.

navigation (Figure 1a); they also received an arrow to
indicate the room’s location, which was visible through
the walls to guide navigation. Upon arrival at the
specified room, the navigation arrow and text prompt
disappeared and participants were either prompted
to navigate to another room or to find an object. In
most cases, one of the objects in the room became
marked with a blue arrow (Figure 1, second pane),
and participants were to find the target object and
remember its identity. The blue arrow existed in the
room from the moment the participant arrived and,
therefore, entered the periphery naturally as with any
other object the participant viewed. After the initial
gaze intersection on the object, the blue arrow would
disappear and either (1) another object became marked
in the same room or (2) participants were prompted
to navigate to a new room. At the end of each trial,
participants verbally recalled the objects and were then
given an optional break. Participants first completed
a tutorial and practice trial. Then, they completed 30
trials. Fifteen trials asked participants to remember 5
objects and the other 15 trials asked participants to
remember 9 objects placed in various rooms in the
apartment for a total of 210 encoded objects. At the
end of each trial, they were then given the option of
taking a break, if needed. One trial sequence was used
for all participants.

Gaze feature preparation
Data segmentation: Encoding onsets were defined
as the fixation after the first gaze ray intersection
with either the arrow or object (whichever occurred
first). To compute whether target objects were fixated
or not, solid colliders were added to each target
object. Then, a 30-m gaze ray was cast and any
object currently intersected by the ray was reported
on a sample-by-sample basis. Velocity-based event
detection was also used on a sample-by-sample basis
to detect when fixations occurred. Whenever the gaze
ray intersected an object of interest while a fixation
occurred, this was a fixation on the object.

For each trial, the time series eye tracking data were
then segmented into clips, one for each encoded object.
Each clip began when the blue arrow appeared and
ended with the onset of encoding (i.e., fixation on
the object). Clips did not include navigation between
rooms.

Clips corresponding to forgotten items were
discarded (14.43% data loss) to remove any instances
of unsuccessful encoding (e.g., due to inattentiveness,
fatigue, or distraction). To account for eye tracker
error, which could result in an unparsed fixation on the
to-be-encoded object, we used a strict criterion: only
clips in which fixation occurred within 500 ms of the
first gaze intersection on the object were used (M =
17.40% data loss). On average, clips had durations of
10,347.42ms (median = 7,221.11 ms).

Gaze feature computation
To compute the gaze features to be used in our

modelling, the head orientation and normalized gaze
unit vectors that were recorded were first temporally
aligned using dplyr (version 1.0.5) in R (version 4.0.4).
The normalized gaze unit vectors (i.e., eye-in-head
coordinates) were then transformed by a rotation
matrix in Python (version 3.6.10) to correct for head
orientation, which transformed them into gaze-in-world
coordinates (Diaz, Cooper, Kit, & Hayhoe, 2013). Gaze
velocity was then computed as the angular distance
between the gaze-in-world coordinates divided by the
change in time. Numpy (version 1.18.2) and Pandas
(0.25.2) were used to manipulate and store the data.

Filtering
The gaze data were filtered to remove noise and

unwanted segments before event detection and feature
extraction. Data from the practice trials and breaks
were discarded before analysis, and we removed all
gaze samples where the gaze velocity exceeded 800°/s,
indicating unfeasibly fast eye movements (Dowiasch,
Marx, Einhäuser, & Bremmer, 2015). The removed
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values were then replaced through linear interpolation.
When the eye tracker lost signal (e.g., when blinks
occurred), the data output NaNs for the gaze-in-head
samples corresponding to those time stamps. We
linearly interpolated over these values to retain temporal
continuity in the eye tracking data. Finally, a median
filter with a width of seven samples was applied to the
gaze velocity signal to smooth the signal and account
for noise before event detection (Pekkanen & Lappi,
2017).

Event detection
The identification by velocity threshold was used

for event detection (Salvucci & Goldberg, 2000). The
identification by velocity threshold uses gaze velocity
thresholds to segment fixations and saccades. A saccade
was detected if the gaze velocity was greater than 70°/s
for 12 to 300 ms (Diaz et al., 2013; George & Routray,
2016). A fixation was detected if the gaze velocity
was less than 20°/s with a minimum fixation duration
cutoff of 50 ms and a maximum fixation duration
cutoff of 1500 ms (Diaz et al., 2013; Peacock et al.,
2019).

Because models that incorporate scene semantics or
knowledge of the environment might be impractical for
real-world use with current technology, consumer-grade
eye tracking does not track gaze locations with high
precision and accuracy for everyone, and because
systems identifying target objects at gaze coordinates
require high-power cameras and computationally
expensive computer vision models, the current model
was developed using features that did not depend
on gaze–environment interactions. Furthermore,
to identify a broader set of gaze features that were
sensitive to the offset of search (beyond fixation
durations and saccade amplitudes) and the anticipation
of WM encoding than what has been previously shown,
sixty-one gaze features were computed (Supplementary
Table S1 provides a full description of all 61 features
and Supplementary Table S3 provides basic eye
movement statistics related to these features). These
features included gaze velocity and dispersion, which
provided a continuous index of visual exploration,
the k-coefficient which described the transition from
ambient (i.e., short fixations, long saccades) to focal
viewing (i.e., long fixations, short saccades) (Krejtz,
Duchowski, Krejtz, Szarkowska, & Kopacz, 2016),
and 58 event-based features that represented various
statistics of fixation/saccade events (George & Routray,
2016).

Because features derived from fixations/saccades
have missing values at time points when no fixation
or saccade is occurring, linear interpolation was
applied to produce a complete sequence of data.
Each gaze feature except for the categorical features
(i.e., saccade detection, fixation detection) was then

z-scored within-participant to account for individual
differences in baseline gaze behavior. Because Sklearn’s
logistic regression applies L2 regularization by
default, gaze features with smaller magnitudes, which
require larger regression coefficients, would have
been unnecessarily penalized if z-scoring was not
performed.

Data augmentation
Because the percentage of true classes (i.e., target

orienting for WM encoding at the end of search)
relative to null classes (i.e., no target orienting for
encoding during early search) was very small (0.3% of
the total data), we augmented the number of true data
points to enhance true class signal by marking data
occurring 20 ms before the encoding onset as a true
class (i.e., blue band in Figure 2a). This increased the
proportion of true class instances three-fold.

Sliding window framework
To create input samples for model training, a sliding

window of N ms, which was determined through a
hyperparameter search described in the Modeling
section, was used for each feature (Figure 2a). As a
sliding window for each feature slid along the clip, its
class was determined by the class of the last sample
in the window (green band in Figure 2c). Thus, there
were both null classes (no encoding anticipation) and
true classes (encoding anticipation) in each clip. Null
classes averaged to the mean across the dataset because
there was no consistency in the end sample. Because
the data were z-scored, the variance of the null classes
was approximately 1 and the mean was approximately
0. Conversely, because true classes consistently ended
just before the encoding fixation, true classes differed
from the null classes whenever a feature was sensitive to
encoding.

To increase the computational efficiency and reduce
the collinearity of the model, we down sampled
by averaging every five samples (approximately 42
ms; Figure 2b). Downsampling did not change the
interpretation of the window size, because it only
changed how many beta values were added to the
model. For example, downsampling an 83-ms window
(approximately 10 samples) would average across time
so that only two samples would be input to the model
rather than all 10 (Figure 2b). The interpretation of
the data would, however, remain the same. If the true
classes were greater in value than the null classes when
there were 10 samples in an 83-ms window, then the
interpretation would not change when the data were
downsampled.
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Figure 2. Visualization of the sliding window framework. (a) A hypothetical eye movement feature (blue line) that increases just
before the onset of WM encoding. The predictive window for this feature slides along sample by sample to produce multiple windows
of data. (b) An example of how features were temporally downsampled. If feature 1 (or 2) contains 5 (or 10) samples in the optimal
predictive window, then these 5 (or 10) samples would be downsampled via averaging to generate 1 (or 2) beta parameter without
sacrificing accuracy. (c) An example of how the feature concatenation was performed. The class would be determined by the y value
of the last time stamp that was concatenated.
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Figure 3. The modeling framework. The gaze data was first
preprocessed (a–d) before modeling. Following the
pre-processing, we then modeled the data (e–g) and tested it
on a held-out test set (h).

Model

The modeling framework used sliding windows of
size N as input and used hyperparameter tuning to find
the optimal value for N. Feature selection was then
performed to find the most predictive gaze features
among the aforementioned 61 features. With these gaze
features and their optimal window sizes, a group model
was then trained and model performance was tested
using two different metrics (Figure 3).

Model description
Logistic regression models were trained to learn the

onset of WM encoding using Sklearn (version 0.24.2).
The logistic regression models were selected because
they were interpretable, lightweight, and they predict
binary data. Due to an imbalanced dataset, which had
99.1% null samples and 0.9% true class samples, the
class weights of the models were balanced by setting the
weights to be inversely proportional to the number of
samples for each class.

Evaluation metric
The area under the precision–recall curve (AUC-PR)

was used for model tuning and evaluation, which is
a better performance metric when data are heavily
imbalanced (Davis & Goadrich, 2006; Saito &
Rehmsmeier, 2015; Tatbul, Lee, Zdonik, Alam, &
Gottschlich, 2018). The baseline value of the AUC-PR
is derived from the chance rate of true examples, which
can vary based on each individual and the size of the
data window, making it difficult to compare model
performance. To create a standardized chance rate
for each individual, the null class was resampled for
each of the training and test sets to ensure a fixed
percentage of true classes (i.e., 0.9% was the average
true class percentage across individuals). Although
hyperparameter tuning and recursive feature selection

were conducted using AUC-PR, the area under the
receiver operator curve (AUC-ROC) is also reported
because this metric is more commonly used and
interpretable.

Generating stable hyperparameters and feature
estimates

Hyperparameter tuning and stability selection was
conducted using within-participant models to generate
input for the group model and to obtain estimates
for the stability selection procedure and to identify
the most critical gaze features for classification. Here,
within-participant models were used to ensure that
the most stable estimates across individuals were
selected, because prior research has found individual
differences in these estimates (Peacock et al., 2021).
To tune the model, each participant’s data were
split into 90% training and 10% test sets. Stratified
10-fold cross-validation with 3 repeats was used to
compute a reliable estimate of the AUC-PR while
preserving the percentage of samples for each class.
The mean AUC-PR was computed across folds within
participants to estimate the input to the group model.
The performance of the within-participant models on
the test set are not reported because these data were
reported previously in Peacock et al. (2021).

Hyperparameter tuning
Hyperparameter tuning was first conducted using

the training set to find the most stable and predictive
window size for each feature. Hyperparameters are
typically specified heuristically and then tuned for a
given machine learning problem. Tuning allows one to
build a model for each combination of hyperparameter
values and select the best hyperparameter value
based upon the one that provides the best
results.

In this study, window sizes ranging from 42 to
1,000 ms were explored because it was hypothesized
that 42 ms was the minimum amount of time people
could anticipate encoding due to constraints with
visual processing (Egeth & Yantis, 1997; Salthouse
& Ellis, 1980), whereas 1,000 ms was the maximum
amount of time it might take participants to identify
the target (Thorpe, Fize, & Marlot, 1996). The 3- ×
10-fold cross-validation was conducted independently
for each window size, feature, and participant to
select the optimal window size for each feature and
participant. The average value across folds was used
for each window size to determine the window size
in which the true and null classes differed the most
for each feature and participant. The mode (i.e., the
majority vote) window size was computed across all
participants as an index of the most stable window size
(Table 1), which was used as input for the group model.
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Feature name Window size (ms) Description
Fixation detection 1,000 An index of cognitive processing computed as a binary variable to describe if a fixation occurred (1) or not (0). If a

fixation was detected, then a participant’s eyes were stationary. If a fixation was not detected, then their eyes were
moving.

Gaze velocity 916 An index of gaze exploration that was computed as the angular distance between two gaze samples divided by the
change in time. Smaller gaze velocities indicated that the eyes were moving slower, whereas larger gaze velocities
indicated that the eyes were moving faster.

Angular displacement
between previous and
current saccade centroid

125 A measure of the distance between subsequent saccade centroids that was computed as the smallest angle needed to
rotate the centroid of a saccade (i.e., 3D gaze vector direction) overtop the previous saccade centroid. Saccade
centroids were defined as the center position of all samples in a saccade. Smaller angular displacements indicated
there were shorter distances between subsequent saccade centroids, whereas larger angular displacements
indicated that subsequent saccade centroids were farther apart.

Angular displacement
between previous and
current saccade landing
points

125 A measure of the distance between subsequent saccade landing points computed as the smallest angle needed to
rotate the landing point of a saccade (i.e., 3D gaze vector direction) on top of the previous saccade landing point.
Smaller angular displacements indicated that saccade landing points were closer together whereas larger angular
displacement indicates that saccade landing points were farther apart. This feature is likely correlated with the
angular displacement between saccade centroids when subsequent saccades are small because the centroids are
close to landing points. Therefore, the angular displacement between saccade landing points provides a unique
measure of the variance relative to the angular displacement between saccade centroids when one saccade was
large and the next one was small because there would be less distance between the end points than the centroids
of those saccades. Conversely, when one saccade was small and the next was large, there would be a greater
distance between the end points than the centroids.

Angular displacement
between previous and
current fixation centroid

83 A measure of the distance between fixation centroids. This was computed as the smallest angle needed to rotate the
centroid of a saccade (3D gaze vector direction) overtop the previous fixation centroid. Smaller angular
displacements indicated that fixation centroids were closer together whereas larger angular displacements
indicated that fixation centroids were further apart. The angular displacement between fixation centroids is a
unique event compared with the angular displacement between saccade centroid/landing points and, therefore,
the fixation centers would be in different locations than the saccade centroids/landing points.

Midlevel dispersion 916 An index of exploration that was defined as the maximum angular displacement of all the samples from the centroid of
a 1000 ms period/window. Increased dispersion indicated that subsequent gaze samples were further apart (i.e.,
more exploration), whereas decreased dispersion indicated that subsequent gaze samples were closer together
(i.e., less exploration).

Saccade velocity: standard
deviation

1,000 The standard deviation of saccade velocity. Increased standard deviations of saccade velocity indicated that there was
more variability in saccade velocities whereas decreased standard deviation in saccade velocity indicated that there
was less variability in saccade velocities.

Midlevel K-coefficient 1,000 A coefficient that described the ambient focal phenomenon 500 ms before the current sample. This measure was
derived by computing the z-score for each saccade amplitude and subtracting the z-score of fixation duration from
the fixation that proceeded it. The coefficient corresponded to the average value over all saccades and fixations in
the past 500 ms. Larger values resulted from large fixation durations with small saccade amplitudes (i.e., focal)
whereas small or negative values indicated shorter fixation durations and larger saccade amplitudes (i.e., ambient).

Saccade acceleration: skew 125 A measure of how skewed the saccade acceleration distribution was. This measure was described by computing the
skew of saccade acceleration samples. No skew indicated that the tails of the distribution were balanced, whereas
positive skew indicated that the tail was on the right (i.e., faster saccade accelerations) and negative skew indicated
that the tail was on the left (i.e., slower saccade accelerations). Skew in saccade accelerations typically occur when
saccade decelerations are slower than saccade accelerations (Abrams et al., 1989; Chen et al., 2002; Opstal & Van
Gisbergen, 1987).

Vertical component of
saccade acceleration:
skew

167 A measure of the skew of the vertical component of the saccade acceleration distribution. As the saccade acceleration
skew feature measures both the horizontal and vertical angles in tandem, the vertical component of saccade
acceleration skew only measured the vertical component of saccade acceleration. No skew indicated that the tails
of the distribution were balanced, whereas positive skew indicated that the tail was on the right (i.e., faster saccade
accelerations in the vertical component) and negative skew indicated that the tail was on the left (i.e., slower
saccade accelerations in the vertical component).

Fixation duration 83 An index of cognitive processing that was defined as the end time minus the start time of a fixation. Longer fixation
durations indicated increased cognitive processing whereas shorter fixation durations indicated decreased cognitive
processing.

Vertical component of
saccade velocity: mean

125 The mean of the vertical component of the saccade velocity. A larger mean indicated that saccades were directed more
in the vertical direction whereas a smaller mean indicated that saccades were directed less in the vertical direction.

Table 1. A description of the features and the window sizes for those features that were retained from recursive feature selection.

For example, if the data from multiple participant
models (i.e., the mode) agreed that a feature’s optimal
window size was 83 ms, then this feature would
be most sensitive to target orienting and encoding
anticipation within the 83 ms leading up to encoding.
Thus, the true classes (i.e., target/encoding anticipation)
would be the most different from the null classes (i.e.,
no target/encoding anticipation) within 83 ms of
encoding.

Stability selection

Stability selection was then applied to the training
set to identify the most stable gaze features across
participants and to control for any false discoveries
that might be made if the feature order was chosen
arbitrarily. Initially, feature orders were randomized
before stability selection for each participant. This step
was undertaken because adding a weaker feature to the
model could cause it to be selected erroneously over a
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Figure 4. Results of the stability selection and group feature selection processes. The top panel depicts the proportion of participants
that retained a given feature after the stability selection process. The bottom panel visualizes the features that were retained from
the group recursive feature selection process as features were iteratively added, from most retained to least retained. Each point
refers to the average AUC-PR from the cross-validation procedure and the error bars refer to 95% confidence intervals. Asterisks
correspond with features that increased the AUC-PR relative to the previous benchmark and were thus used in the group models.

stable feature that was added later. If, instead, a weak
feature was added to the model in a random order,
then, it could be weeded out by stronger features that
were added to the model before it. Similarly, if a strong
feature was added to the model in a random order, then
it could be used to explain the unique variance beyond
the other features, irrespective of the order it was added.
By adding features randomly to the model, only the
best features were selected during stability selection and
they were not selected on the premise of order. After
randomization, the 3- × 10-fold cross-validation was
performed for each feature that was added to the model
for each participant. Features were retained if they
increased the average AUC-PR across folds; otherwise,
they were dropped. All features were concatenated into

a single vector for input into the model, each using
its optimal window size. The features were then rank
ordered by the percentage of participants who retained
a given feature (Figure 4a). The resulting feature order
served as the input order for the group recursive feature
selection process to ensure that noise did not eliminate
a good feature.

Group model
The mode window size (Supplementary Table S2)

and rank-ordered features (Figure 4a) were then used
to build the group model. The group model was trained
on a random continuous sequence of 20% of each
participant’s data. To ensure that the model retained
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only useful features, recursive feature selection with
stratified 10-fold cross-validation using 3 repeats was
performed first. The mean AUC-PR was computed
across folds to obtain the final features. The ranked
features were input into a group recursive feature
selection process one by one, from the most retained to
the least retained (Figure 4). Features that increased
the AUC-PR on the group training set, based on the
average AUC-PR from the cross-validation procedure,
were included in the final model. The features that
decreased the AUC-PR were dropped from the final
model (Figure 4b; Table 1). The retained features were
then used to train the group model on the training set
only.

Final test data partitions

The within-participant models were trained on 90%
of the data with 10% of the data withheld for final
model evaluation. The group models were trained on
20% of the data with 80% of the data withheld for
final model evaluation. This resulted in no overlap
of train or test samples for the within-participant or
group models. To then analyze the performance of the
group model at the individual level (H1), we pulled
from the group model test data (80%). However, we
did not use the remaining 80%. Instead, for a fair
comparison of the group model performance against
the within-participant model performance, we wanted
to ensure that the samples in our test set for this analysis
met two conditions: (1) They were independent from
the model training and cross-validation for both the
within-participant models and the group models, and
(2) they occurred in both the within-participant model
test set and the group model test set. To this end, we
isolated the group model test samples that matched
the within-participant model test samples for each
participant and tested the model on that. This process
resulted in test samples that were independent from the
training sets. See Figure 5 for a visual depiction of the
train and test partitions.

Model testing
H1 sought to determine whether a group model

could detect target orienting for encoding across people.
If gaze dynamics could reflect as people orient to a
target of encoding beyond what is expected by chance,
then gaze dynamics alone would be sensitive to target
orienting for WM encoding across individuals.

To explore whether the model could exceed
chance performance, one-sample t-tests were used
to evaluate whether the AUC-PR and AUC-ROCs
were significantly greater than chance (0.009 and 0.5,
respectively). Cohen’s D (i.e., the difference between the
mean score and the chance rate divided by the standard

Figure 5. Partitioning of the train and test sets for an example
participant. The group model was trained on 20% of the data
(purple circle) with 80% of the data held out (green circle). The
within-participant model was trained on 90% of the data (grey
circle) with 10% of the data held out (yellow circle). Samples
that overlapped between the group and within-participant test
sets were then identified (red box) for the final model
evaluation. This process produced test samples that were
independent of both training sets.

deviation) (Cohen, 1969, 1992) was also computed for
each of the t-tests as a measure of effect size. Based on
the effect size measures, the loss from training to testing
was also computed (Supplementary Analysis 1).

Results

H1 addressed whether a group model could detect
target orienting for WM encoding across people. If gaze
dynamics can anticipate target orienting for encoding
beyond what is expected by chance, then this work
suggests that gaze dynamics alone are indeed sensitive
to target orienting for encoding across individuals.
To explore whether the model could exceed chance
performance, we evaluated whether the AUC-PR and
AUC-ROCs were significantly greater than chance
(0.009 and 0.5, respectively) via a one-sample t-test.

Overall, the results demonstrated that the group
model performed significantly better than chance,
M = 0.10, SD = 0.07, t(31) = 7.94, p < 0.001, d =
1.3, when considering the AUC-PR, suggesting that
gaze dynamics reflect target orienting for encoding
(Figure 6). The same outcome was found when
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Figure 6. The group model tested on individual participants. The gray bars represent the H1 results, and the white bars represent the
results corresponding to the filtered test data preceding fixations. The top panel represents the AUC-PR results, and the bottom panel
represents the AUC-ROC results. The red, dashed line represents chance performance.

AUC-ROC was used as the evaluation metric, M =
0.87, SD = 0.05, t(31) = 42.41, p < 0.001, d = 7.4. Note
that both effect sizes are large.

One potential reason for the chance performance
of the model could be that the model had simply
learned to detect the onset of fixations. Given that the
true class samples were epoched by determining the
onset of fixation on the target object, it is possible that
the model learned to detect all fixation onsets, which
occurred in every instance of the true class and only
occasionally in the null class set. For example, gaze
velocity decreases before all fixations so it could be the
case that our model was simply a fixation anticipator,
rather than an anticipator of a target object. To rule out
this possibility, all null class samples that immediately

preceded a fixation were identified. This subset matched
null classes with true classes by ensuring that all samples
immediately preceded the onset of a fixation. These
filtered test cases were then resampled to match the
standardized chance rate (0.009) (Figure 7).

If the model had learned to detect the onset of
fixations rather than encoding target onsets, it should
have confused these filtered null classes with true classes,
thereby resulting in chance performance. Overall, the
H1 model performed significantly above chance when
considering AUC-PR, M = 0.12, SD = 0.14; t(31) =
4.67, p < 0.001, d = 0.79, suggesting that the model
could discriminate encoding target onsets specifically
from other fixation onsets (Figure 6). The same result
was found for the AUC-ROC, M = 0.79, SD = 0.10;
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Figure 7. Fixation detector analysis description. The time series
of gaze velocity corresponds with the samples where saccades
(green) and fixations (brown) were detected. To test whether
the model was simply detecting fixations, the null class
windows that ended just before the onset of a fixation (blue)
were filtered. This temporally matched the filtered null classes
to the true classes which also ended in no fixation and were
followed by the onset of a fixation on the target object (red).

t(31) = 15.85, p < 0.001, d = 2.90. Both effect sizes are
again large.

Discussion

Overall, this experiment found that the model was
able to detect target orienting for encoding significantly
better than would be expected by chance. Although
the H1 results are a compelling demonstration of the
model’s ability to detect target orienting for encoding
using gaze, an outstanding issue is that the model has
only been tested on a single task in which participants
navigated through a single environment. Given that eye
movements are influenced by both task (Henderson et
al., 2013; Srivastava, Newn, & Velloso, 2018; Tatler et
al., 2010; Yarbus, 1967) and the environment (Antes,
1974; Henderson & Hayes, 2017; Loftus & Mackworth,
1978; Nuthmann, 2017; Nuthmann & Einhäuser,
2015; Peacock et al., 2019), it is unknown whether the
model trained on Experiment 1 generalizes to other

tasks or environments. Therefore, it is important to
evaluate whether the model captures general variance in
detecting target orienting for encoding.

Experiment 2

A model of WM encoding is only useful if it can
detect target orienting for encoding across a range of
participants, tasks, and stimuli. As such, it is important
to identify and understand the gaze dynamics that
capture task- and environment-general variance in
target orienting for encoding. To address this open
question, we tested the model from Experiment 1 on
an entirely novel task completed by a new group of
participants from Experiment 2 (Table 2). This task
was designed to be quite different in its visual features
and task demands; participants were to find previously
encoded objects in a cluttered room and encode an
associated nonword.

Experiment 2 was a strong test of whether a
gaze-based model of WM encoding can generalize to a
new set of participants, a new environment, a new task,
and new encoding stimuli.

If the model does indeed generalize, Experiment 2
will also allow us to gain insight into the specific gaze
features that reflect target orienting for WM encoding
in naturalistic environments. Specifically, we explored
a subset of models that were trained on individual
features on Experiment 1, and then applied these
models to Experiment 2, which allowed us to identify
eye tracking features that do indeed generalize across
tasks and environments.

Methods

Participants
Twenty-seven participants completed the study.

Informed consent was obtained, and the protocols were
approved by the Western Institutional Review Board.
Two participants were excluded due to excessive noise
that was observed in the eye movement data (only 1%

Features Experiment 1 Experiment 2

Participant set Unique group of participants Unique group of participants
Room type Bedroom, patio, kitchen, bathroom, living room Kitchen
Clutter Low High
Task Find cue and encode target object 5 or 9 times Find 1 or 3 target objects and encode 1 or 3 associated nonwords
Encoded stimulus Semantic label of target object Associated nonword
Memory test Verbal recall Nonword recognition

Table 2. Design Differences between Experiments 1 and 2.
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of fixations were detected; calibration issues) resulting
in a sample of 25 (mean age, 28.45 years; 7 females).

Apparatus and data collection
The same apparatus used in Experiment 1 was

used in Experiment 2; however, the experiment was
implemented in Unity 2017.1.1f1. Data synchronization
and dropped frames were handled in the same manner
as Experiment 1.

Stimuli
Instead of using a virtual apartment environment,

this experiment used a virtual kitchen that was
randomly cluttered with common objects. Some of
these objects had nonwords attached to them. The
encoded stimulus that would need to be remembered
was the nonword attached to the target object.

Procedure
Participants were first outfitted with a VR headset.

Participants then completed a tutorial and a practice
trial to familiarize themselves with the task. During the
task, participants were seated and had free range of
motion of their arms and head. They did not navigate
throughout the environment.

During each trial in the main trial sequence,
participants were first asked to maintain central fixation
and press the trigger on the HTC Vive hand controller
when they were ready to start the trial. At this point,
either one or three common objects (e.g., a soccer ball,
gold bar, milk carton) appeared at central fixation for
up to 8,000 ms with the option to terminate encoding
early to move on to the next phase, which was visual
search. Participants were asked to remember these
object(s) because they would have to find them in a
cluttered environment (Figure 8). Then, participants
were spawned into the doorway of a virtual kitchen,
which was randomly cluttered with numerous common
objects that spanned across 180° from their starting
position. The objects were cluttered randomly by

dropping them into the scene with several constraints
to prevent occlusion (e.g., an invisible triangle was
placed above the sink to reroute any falling objects to
the counter rather than into the sink).

Participants were to find the target objects and
remember the associated nonword. The nonword was
a four-letter pseudoword (e.g., oped, umms, tuds,
yoms). In each trial, 12 total objects had a randomly
assigned nonword, which provided several lures to make
search difficult (Figure 8). The trial timed out after 15
seconds if they were not able to complete the search.
Participants were given the option to terminate search
early if they had encoded the nonword before the 15-s
period ended.

Once the participants had found their items, they
pressed a key to begin nonword recognition. During
the memory test, the target object(s) were shown in
the middle of the array with 12 nonwords encircling
them (Figure 8). Participants used the HTC Vive
Controller to select the associated nonwords. In total,
there were 13 one-object trials and 13 three-object
trials, resulting in 52 nonwords encoded throughout the
entire experiment. Each participant was exposed to a
random and unique combination of memory objects
and nonwords.

Data preparation
Data segmentation: During Experiment 2, participants
may have scanned over target objects or located them
before trying to remember the associated nonwords.
As such, there may have been cases where there were
multiple gaze intersections with objects and nonwords
during a trial. Thus, encoding onsets were determined
using the fixation following the last gaze intersection
with each nonword. The timeseries for one trial was thus
segmented into one clip for each encoded nonword. The
onset of the first clip was the beginning of visual search
up until the last time the first encoded nonword was
fixated. The clips used for the second encoded object
started after encoding ended on the first nonword up
until the last fixation on the second nonword. The
clips used for the third encoded object started after

Figure 8. Trial sequence for Experiment 2. One or three to-be-remembered objects were presented on a gray background;
participants were to find these objects in a cluttered room and then remember the nonword that was located above the target
object. After all the objects were found, participants were asked to recall the associated nonwords from an array of target and
distractor nonwords.
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encoding ended on the second nonword up until the
last fixation on the third nonword. Consistent with the
data segmentation used in Experiment 1, clips where
the time between the gaze intersection and fixation was
longer than 500 ms were discarded (M = 5.31% data
loss). Clips corresponding to forgotten items were also
discarded (i.e., one-object condition M = 6.27% data
loss; three-object condition M = 17.00% data loss). If
one word was forgotten in a three-word trial, the clips
corresponding to the remembered objects were still
used. On average, the clip durations were 1,253.85 ms
(median = 1,131.70 ms; SD = 384.30 ms).

Model
To evaluate whether the group model generalized

to a different task and environment, the group model
trained on Experiment 1 was tested on the test data
from individual participants in Experiment 2.

Evaluation metric
Similar to Experiment 1, both the AUC-PR and

AUC-ROC were computed for Experiment 2. A
standardized chance rate of 0.9% was also used for
AUC-PR in Experiment 2.

Model testing
The group model from Experiment 1 was tested

on the gaze data corresponding to each participant
from Experiment 2. As per Experiment 1, one-sample
t-tests were used to evaluate whether the AUC-PR and
AUC-ROCs were significantly greater than chance
(0.009 and 0.5, respectively). Cohen’s D was also
computed for each of the t-tests as a measure of effect
size.

Results

Given that Experiment 2 was vastly different from
Experiment 1 in featural information, environment,
encoded stimulus, and task, it served as a strong test of
whether gaze reflects target orienting for encoding in
diverse settings (H2). Despite the differences between
Experiments 1 and 2 (Table 2), however, the model
from Experiment 1 performed significantly better than
chance in Experiment 2 with the AUC-PR, M = 0.06,
SD = 0.11; t(24) = 2.53, p = 0.02; d = 0.46, suggesting
that gaze dynamics do capture target orienting for
encoding, even when the settings are different. One
participant (14) was an outlier in performance,
performing significantly better than all others. However,
even when removing this superior performer, the results
were still significant, AUC-PR M = 0.05, SD = 0.06,
t(23) = 2.96, p = 0.007; d = 0.68 (Figure 9a). Similar

results were also found for the AUC-ROC, M = 0.70,
SD = 0.16; t(24) = 5.99, p < 0.001, d = 12.5 (Figure 9b).

We then conducted permutation testing to test
for how many subjects of Experiment 2 the model
performed significantly above the chance level. To
this end, we shuffled the y-labels for each participant
10,000 times and compared the true model predictions
with the shuffled predictions using p values computed
from the permutation. To compute these p values, we
computed the number of permutations with equal or
higher accuracy than the AUC for each participant and
divided this value by the number of permutations. If
the model had learned behaviors true to target orienting
for encoding, then the performance on shuffled
labels should be significantly lower than the model’s
performance on the true, nonshuffled labels. Using the p
values from the permutation (α = 0.05), we found that
the model performed better relative to the nonshuffled
labels for 14 of the 25 participants when considering
AUC-PR. When considering the AUC-ROC metric,
the model performed better on the nonshuffled
labels for 18 out the 25 participants (Supplementary
Analysis 2).

Individual feature analysis
To assess which features best generalized between

Experiments 1 and 2, we trained a group model on
Experiment 1 using each individual feature from
the selected features. The features were 12 that
were selected from the group-level recursive feature
selection procedure. We then tested how well each
feature detected target orienting for encoding on each
participant’s data from Experiment 2 and evaluated it
using one-sample t-tests to contrast the results against
chance. All p-values were corrected using the false
discovery rate correction (Benjamini & Hochberg,
1995) in Python using the statsmodels package (version
0.12.2). Overall, 6 of the 12 features were found to
significantly detect target orienting for encoding in
Experiment 2 (Figure 10; Table 3).

Fixation detection
The first feature that generalized across experiments

was fixation detection (Figure 11; see Supplementary
Figure S1 for visualizations of the features that did
not generalize). There was a higher fixation probability
as people oriented to a target for encoding at the end
of search (i.e., true classes) than during earlier search
(i.e., null classes). Given that prior work suggests
that attention and gaze must spatially align with an
encoding target for successful WM encoding (Hanning
et al., 2015; Schmidt et al., 2002; Woodman et al.,
2003), increased fixation probability before encoding
is consistent with a hypothesis that the oculomotor
system maintains fixation to detect and precisely orient
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Figure 9. Group model tested on individual participants from Experiment 2. The gray bars represent the AUC-PR (top panel) or
AUC-ROC (bottom panel) and the red, dashed line represents chance in Experiment 2.

to the encoding target in the periphery (Chen, Acharya,
Oulasvirta, & Howes, 2021; Schuetz, Murdison,
MacKenzie, & Zannoli, 2019). This, in turn, would
likely decrease any visual interference that might occur
if a saccade overshot the target.

Angular displacement features
Second, the analysis demonstrated that there was

decreased angular displacement between saccade
centroids, saccade landing points, and fixation centroids
as participants oriented to the target for encoding at
the end of search. A decrease in angular displacement
indicates that there was a decreased distance between
the centroid/landing point of the current event and
the centroid/landing point of the prior event, that

is, the fixations or saccades were shorter. Angular
displacement was computed as the smallest angle
needed to rotate the centroid/landing point of a
current event (i.e., 3D gaze vector direction) overtop
the previous centroid/landing point of the previous
event. Here, we observed that the angular displacement
decreased as people oriented to the target for encoding.
This finding is consistent with a hypothesis that the
oculomotor system executes long, orienting saccades
to the target of encoding and then produces small,
fine-tuning saccades to precisely orient to, and focus
on, the encoding target.

The angular displacement between saccade centroids
and saccade landing points are likely to be correlated
with one another because they are derived from
different locations from the same saccades. Given their
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Figure 10. Features ranked from the most generalizable to the least generalizable. The top panel visualizes the features ranked
based upon AUC-PR, which was the metric used to rank feature performance. The models were trained on the data collected during
Experiment 1 and tested on each participant’s data collected during Experiment 2. Each data point represents the mean AUC-PR. The
bottom panel represents the corresponding mean AUC-ROC for each ranked feature. Asterisks depict whether the false discovery
rate–corrected p value for each feature was significant (p < 0.05). The red, dashed lines represent chance. Error bars represent 95%
confidence intervals.

similarity, why, then, were both measures selected
during the recursive feature selection? Although the
angular displacement between saccade landing points
is correlated with the angular displacement between
saccade centroids when subsequent saccades are small
(because centroids would be close to landing points),
the angular displacement between saccade landing
points will provide unique variance relative to the

angular displacement between saccade centroids when
one saccade is large and the next one is small, because
there will be less distance between the end points than
the centroids of those saccades. Conversely, when
one saccade is small and the next is large, there will
be a greater distance between the end points than
the centroids. Because both measures were selected
from recursive feature selection and were smaller as
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Figure 11. Comparison of best-generalizing features in Experiments 1 and 2. This figure depicts the value of the features that
generalized relative to the encoding onset across Experiments 1 and 2 based on the AUC-PR results. The red line (solid line, square
dots) represents true classes, and the blue line (dotted line, circles) represents null classes. The error bars represent 95% confidence
intervals.

people oriented to the target, this finding suggests that
subsequent saccades were more variable in size during
early search periods than at the end of search as people
oriented to the target resulting in unique variance
explained by the landing point measure relative to the
centroid measure. Indeed, the standard deviation of
saccade amplitudes was significantly greater earlier in
search (Exp 1: M = 1.00, median = 1.00, SD = 0.01;
Exp 2: M = 0.99, median = 0.99, SD = 0.05) than
at the end of search as people oriented to the target
for encoding (Exp. 1: M = 0.91, median = 0.91, SD
= 0.28, W = 152.0, z = –2.09, p = 0.04; Exp. 2: M
= 0.84, median = 0.80, SD = 0.21, W = 73.0, z =
–2.79, p = 0.005) according to a Wilcoxon signed-rank
test that was performed in lieu of a t-test because the
distributions were not normally distributed. Together,
these results suggest that saccades were longer and
more variable in size during early search and were
smaller and more consistent in size at the end of search
as people oriented to the target.

Finally, fixation centroids were found to differ from
the saccade centroid/landing point measures, most
likely because they represent different events, and the
fixation centroids occur in different locations than the

saccade landing points and saccade centroids. Here,
the fixation centroids were closer together as people
oriented to the encoding target, which suggests that the
oculomotor system prioritized the region of encoding
for visual analysis.

Overall, the results from these angular displacement
features suggest that, at early stages of search,
participants made long orienting saccades as they
sampled the environment toward a target of interest
and then produced small fine-tuning saccades to
focus on the target of encoding. This result might
also be consistent with a hypothesis that at the end
of search, the visual system samples information
in the region of encoding to precisely orient to the
encoding target which reduces visual interference
from encoding-irrelevant regions. During early search,
however, it is more beneficial to sample information in
different regions to explore the environment.

Saccade acceleration
Finally, the results found negative skew in overall

saccade acceleration as people oriented to the target
for encoding. Saccade skew typically arises when
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Figure 12. Saccade deceleration versus acceleration in at the end of search when people oriented to the target (i.e., true classes) and
early during search (null classes). The saccade deceleration time (red) and acceleration time (blue) during null classes in Experiment 1
(a) and Experiment 2 (d). The saccade deceleration time (red) and acceleration time (blue) during true classes in Experiment 1 and (b)
Experiment 2 (e). The difference between deceleration and acceleration for the true classes (red) versus the null classes (blue) for (c)
Experiments 1 (c) and 2 (f).

saccade deceleration is slower than saccade acceleration
(Abrams, Meyer, & Kornblum, 1989; Chen, Lin,
Chen, Tsai, & Shee, 2002; Opstal & Van Gisbergen,
1987), suggesting that, at the end of search, people
gradually slow their saccades as they approached an
encoding target. To test whether this was the case
in our data, we computed saccade deceleration time
(i.e., time of saccade end minus time of saccade peak
velocity) and saccade acceleration time (i.e., time of
saccade peak velocity minus time of saccade start)
for the true and null classes (Figure 12). The saccade
deceleration time was then subtracted from the saccade
acceleration time, resulting in positive values, which
indicated slower deceleration and negative values, which
indicated slower acceleration. Decelerations were found
to be significantly slower as people oriented to the
encoding target late in search (M = 7.92, SD = 3.26)
compared with early in search (M = 3.90, SD = 1.59)
in Experiment 1, as evidenced by a paired-samples
t-test, t(31) = 8.12, p < 0.001. A similar pattern was
observed in Experiment 2, with slower decelerations
before encoding (M = 5.64, SD = 10.26) than baseline
(M = 3.63, SD = 2.82), although this difference was not
statistically significant, t(24) = 0.91, p = 0.37.

Saccades with higher amplitudes, durations, and
velocities (and therefore faster accelerations) have
been found to have greater standard deviations in
their saccadic end points (Abrams et al., 1989), which
suggests that faster saccades might be more likely to
undershoot or overshoot a target. Therefore, at the end

of search, participants might have slowed their saccade
decelerations to avoid overshooting task-relevant
encoding information. The negative skew in the vertical
component of saccade acceleration was also observed
as well, which suggests that as participants anticipated
encoding information below the arrow or above the
object, they avoided overshooting the target in the
vertical direction as well.

Overall, the results from the individual feature
analyses suggest that when people orient to an encoding
target, the oculomotor system reduces exploratory
sampling behaviors that might visually interfere and
focuses on precisely orienting to the target. Here, fewer,
smaller, and slower eye movements are executed to avoid
overshooting the target (Abrams et al., 1989; Chen et
al., 2021; Schuetz et al., 2019). This, in turn, might
result in reduced visual interference from task-irrelevant
information.

Discussion

Experiment 2 explored whether gaze dynamics
capture when people orient to a target for encoding
in a novel task, which would support the claim that
gaze dynamics capture task-general signatures of target
orienting for encoding. First, we tested whether the
model trained on Experiment 1 would generalize to a
new, unseen dataset that contained new participants, a
new task, a new virtual environment, and a new type of
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encoded stimuli. We hypothesized that our model had
learned task-general gaze dynamics, which would allow
it to perform above chance even on a task it had never
seen before. Indeed, we found that the model detected
when people orient to a target for encoding significantly
above chance, suggesting that gaze dynamics capture
task-general variance in target orienting for encoding.

Second, we explored which specific features
generalized to new tasks, participants, and
environments. Six of the 12 features were predictive
WM encoding onsets in Experiment 2. An examination
of the direction of the true classes relative to the null
classes suggested that as people orient toward a search
target for encoding, they change their oculomotor
behavior to avoid overshooting the target. This, in turn,
might decrease visual interference from task-irrelevant
information.

General discussion

The primary goal of this research was to explore
whether people produce characteristic gaze behaviors
as they orient toward a target for WM encoding.
In service of this goal, in two studies, participants
searched for target objects in virtual apartments to
encode (Experiment 1) or searched for target objects
and had to encode associated nonwords (Experiment 2)
into WM. We then explored whether gaze behavior
contained consistent patterns that could be used by
systems to anticipate users’ behavior and intentions
while searching for an encoding target. By training
sliding window logistic regression models that only used
gaze-based features, we found that these models could
detect when people oriented to a target for encoding
well above chance. Additionally, a follow-up analysis
confirmed that the model was detecting target orienting
for WM encoding rather than the onset of a fixation,
thereby supporting the conclusion that people produce
characteristic gaze dynamics as they orient toward a
search target for WM encoding. Last, when the model
that had been trained on Experiment 1 was tested
on the data from Experiment 2, which contained an
entirely different task, different stimuli, a novel virtual
environment, and new participants, the identified
gaze dynamics were generalizable. This methodology
provided a strong indication that the model was not
simply learning task-specific gaze behaviors.

Prior work has demonstrated that visuospatial
attention is required for successful WM encoding
(Schmidt et al., 2002; Woodman et al., 2003). That is,
to successfully encode novel information into WM, one
must orient their spatial attention to the location of
encoding. This prior work has demonstrated a temporal
relationship between visuospatial attention and WM
encoding, but the link has focused on WM processing

once people have already oriented their attention to the
relevant visuospatial location. To date, it has not yet
been explored how people orient their visual attention
when they search through naturalistic environments for
a target that they will need to remember. This research
demonstrated, for the first time, that people produce
consistent gaze dynamics as they orient to a target
for encoding in naturalistic settings. Furthermore,
our modeling framework unveiled several, novel gaze
features that were sensitive to the anticipation of
task-relevant target information.

Generalizability and the relationship between
gaze and target orienting

Beyond establishing that gaze dynamics can be used
to detect when people orient to targets for encoding in
rich naturalistic tasks, this research also demonstrated
that this phenomenon is generalizable across tasks.
This was an important exploration because, in prior
work, gaze has been found to be affected by both task
(Henderson et al., 2013; Srivastava et al., 2018; Tatler
et al., 2010; Yarbus, 1967) and the environment (Antes,
1974; Henderson & Hayes, 2017; Loftus & Mackworth,
1978; Nuthmann, 2017; Nuthmann & Einhäuser, 2015;
Peacock et al., 2019). Given that a task and environment
can substantially alter gaze patterns, it is possible that
any model built on gaze data within a single task is
in fact capturing task-specific gaze patterns. This is
indeed a critique that could be made for any neuro- or
bio-sensing device and model (for a similar argument,
see Boring, Ridgeway, Shvartsman, & Jonker, 2020).
For this reason, we applied our gaze-dynamics model
to a novel dataset to explore its generalizability and
found that gaze dynamics contain valuable markers of
task-general target orienting for encoding behaviors, a
finding that has both theoretical and practical value in
demonstrating that gaze dynamics can generally capture
target orienting for encoding in rich, naturalistic
settings.

The model likely generalized well because it was
grounded in a core set of gaze features that captured
consistent orienting behaviors across the two studies,
that is, fixation detection, the angular displacement
between the current and previous fixation centroid, the
angular displacement between the current and previous
saccade centroid, the angular displacement between the
current and previous saccade landing positions, vertical
component of saccade acceleration skew, and saccade
acceleration skew (Figure 11). When it comes to the
probability of fixation, there was a greater probability
of fixation as people oriented to a target of encoding,
suggesting that people fixate as they anticipate orienting
toward a target of encoding. This finding is consistent
with the hypothesis that the oculomotor system
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maintains fixation so that people can detect and
precisely orient themselves toward encoding targets
in their periphery (Chen et al., 2021; Schuetz et al.,
2019). Additionally, the angular displacement between
saccade centroids and saccade landing points was
smaller as people oriented to the memory target, which
suggests that gaze was focused in the region of the
encoding target at the end of search and was more
exploratory during early search periods. Furthermore,
saccades were more variable in size during early search,
which suggests that gaze patterns are more diverse
when people search without the intent to orient to a
target of encoding. Together, these findings suggest
that the oculomotor system executes long, orienting
saccades during early search and then executes small,
fine-tuning saccades as it anticipates precisely orienting
to, and encoding, a target (Chen et al., 2021; Schuetz et
al., 2019). The angular displacement between fixation
centroids was also smaller when people oriented to
an encoding target. This finding provides converging
evidence that the oculomotor system focused on
the general region of the encoding target for visual
analysis. Finally, a negative skew in the vertical and total
saccade acceleration of gaze samples was observed,
meaning that saccade decelerations were slower than
accelerations as people oriented to the target. Prior
work finds that saccades with faster accelerations have
greater standard deviations in their saccadic end points
(Abrams et al., 1989), thereby suggesting that faster
saccades might be subject to undershoot or overshoot
a target (Plamondon & Alimi, 1997). Therefore,
saccade decelerations might have been slower to avoid
overshooting or undershooting task-relevant target
information (Plamondon & Alimi, 1997). This result
provides converging evidence that, as people orient
toward a target of encoding, they limit exploratory
sampling behaviors. Here, they execute fewer, smaller,
and slower eye movements to avoid overshooting the
target of encoding.

Some of these gaze behaviors might capture
another strategy, beyond the precise targeting of a
to-be-encoded object. Additionally, some of these gaze
behaviors might in fact reflect attempts to decrease
visual interference from task-irrelevant information
as people focus their attention on encoding into
WM. This interpretation is consistent with previous
work examining the relationship between visuospatial
attention and WM encoding. Indeed, moving one’s
eye after objects are encoded into visual WM can
disrupt memory for those items (Cronin & Irwin,
2018; Tas, Luck, & Hollingworth, 2016). The same
has been demonstrated with the spatial allocation of
eye movements before encoding: if attention or gaze
do not spatially align with the encoding target, WM
encoding will fail (Hanning et al., 2015; Schmidt et
al., 2002; Woodman et al., 2003). As such, some of
the gaze behaviors observed in the present study are

also consistent with a strategy to decrease interference
before WM encoding. Specifically, fewer eye movements
were executed, eye movements were smaller, and
saccade decelerations were slower as people oriented to
the encoding target, which might suggest that people
restrict their oculomotor behavior to precisely fixate the
target (and therefore decrease visual interference) as
they anticipate encoding.

Ambient focal phenomenon

The ambient focal phenomenon defines the change
from exploratory analysis behaviors (i.e., large saccades
and short fixations) to focused viewing behaviors (i.e.,
small saccades and longer fixations) (Krejtz et al.,
2016; Unema et al., 2005). While saccade amplitudes,
fixation durations, and the k-coefficient (which are
core elements of the ambient focal hypothesis) did not
generalize in the present study, it could be the case that
our data-driven approach unveiled other features that
are relevant to the ambient-focal phenomenon than
have been previously documented. For example, there
was increased fixation probability and reduced distance
between saccade centroids as people oriented toward
the target at the end of search relative to early search.
Furthermore, given that features related to the ambient
focal phenomenon generalized despite our use of VR
and head-corrected gaze features (rather than gaze
features alone as is typical with traditional eye-tracking
studies), this suggests that even in complex settings, our
results are analogous to those found with traditional
eye tracking studies. Our results do not solely reflect
the ambient focal phenomenon, however, because
there were also features that generalized that were
inconsistent with ambient focal. For example, there was
greater skew in saccade acceleration at the end of search
when the target and encoding were anticipated than at
the beginning of search which, does not fit the ambient
focal hypothesis. This finding suggests that, although
there might be some ambient focal behaviors involved
in target orienting for encoding (which might be
consistent with the visual interference hypothesis noted
in the previous section), the ambient focal hypothesis
does not solely explain the present pattern of results.

Target orienting during search

Prior work in the visual search literature has
demonstrated that gaze dynamics differ between the
scanning and verification stages of search, with longer
saccade amplitudes and shorter fixation durations
during the scanning stage relative to the target
verification stage (David et al., 2020). It is, however,
unknown how gaze dynamics unfold throughout
scanning as people anticipate orienting to a target.
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The present work found changes in gaze dynamics
leading up to target acquisition, suggesting that gaze
dynamics reflect the anticipation of a target at the
end of scanning. Furthermore, because we used a
broader set of gaze features than those typically used
to study the search stages, this allowed us to glean
deeper insights regarding how the eyes move from the
start to the end of scanning. For example, the finding
that there was greater skew in saccade acceleration at
the end of scanning as people oriented to the target
than during early scanning suggests that not all saccade
targets are created equal during the scanning phase of
search.

Our computational modeling framework also allowed
us to determine the window size in which each feature
was most sensitive to the anticipation of a target. Here,
we found that these window sizes ranged from 83 to
1,000 ms, suggesting that gaze behaviors do not unfold
in a parallel fashion as a target is anticipated. Indeed,
within one second of target acquisition, the probability
of fixation decreases, which might be consistent with
prior work demonstrating that fixation durations
transition from short to long as search progresses
(Godwin et al., 2014; Over et al., 2007). However,
the angular displacement between saccade centroids
and landing points was most sensitive within 125 ms
of target acquisition. Although prior work typically
models changes in fixation and saccade dynamics
throughout the course of search and viewing in parallel
(David et al., 2020; Godwin et al., 2014; Krejtz et al.,
2016; Over et al., 2007; Unema et al., 2005), the present
study suggests that the time courses of these features
should be studied independently, because the gaze
behaviors related to these features might unfold in an
asynchronous manner.

Target orienting versus target orienting for
encoding

The primary goal of the present work was to explore
whether there is a common set of gaze dynamics that
are sensitive to target orienting for encoding. To this
end, we modeled both search target orienting and WM
encoding together, as these processes co-occur. By
better approximating real-world encoding scenarios in
which people orient to a search target for encoding, we
were able to (1) understand how gaze dynamics unfold
as people orient to a target for encoding in complex,
ecologically valid settings and (2) build a model that
was more likely to generalize to new contexts. In our
view, we were successful in both goals. Here, we found
that people produced consistent gaze dynamics as they
oriented to a target for memory retention across two
vastly different studies. Furthermore, our model learned
a novel set of task-general gaze behaviors as they relate

to how people naturally orient to a search target for
encoding.

Because encoding was coupled with search, the
model likely captured gaze features that were sensitive
to encoding anticipation (i.e., target orienting for
encoding) and search target orienting. Supplementary
Analysis 3 provided suggestive evidence that the model
was significantly more sensitive to encoding anticipation
than orienting to a search target, but the above chance
performance of the AUC-ROC metric suggests that
there are likely gaze behaviors that are common to
both processes. Indeed, focused visuospatial attention
is required to orient to a search target (Woodman &
Luck, 2004) and to successfully orient to and encode a
WM target (Awh & Jonides, 2001; Gazzaley & Nobre,
2012; Schmidt et al., 2002). Given the overlap that exists
between search target orienting and WM encoding
in terms of their co-occurrence in the world and the
requirements of visuospatial attention to orient to
both search and encoding targets, it will be important
for future work to disentangle which gaze features
are unique to each process while also having the
understanding that some gaze features may be common
to both.

The present modeling framework provides an
exciting opportunity to tease apart which temporal gaze
dynamics are common and unique to successful search
target orienting versus WM encoding anticipation.
Future work may wish to use the present framework
to train a model on a search task without the WM
encoding component and test which features generalize
to a search task that ends with WM retention.
From a theoretical perspective, this would allow for
more nuanced conclusions regarding the roles of
gaze dynamics to search target orienting and WM
encoding. From a practical perspective, if a model could
distinguish between successful search target orienting
versus WM encoding anticipation, this would allow for
different types of cognitive aids.

Implications for memory

In the present study, WM was operationalized as a
resource that encodes and maintains information for
later use. Here, we used a traditional WM paradigm
in which people encoded semantic information from
visual perception, retained that information, and later
recalled it. Our models were then trained to detect
when people orient to a target for encoding, providing
support for the hypothesis that gaze dynamics can
be used to detect when people orient to a target of
encoding. It is important to note, however, that there
are many definitions of WM (Baddeley, 2012; Cowan,
2017; Nee & Jonides, 2013) and, as such, it is unclear
which cognitive subprocesses the model has learned to
detect. For instance, the central executive model of WM
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proposes that WM is necessary for both maintaining
and manipulating information while performing a range
of tasks (Baddeley & Hitch, 1974). Our model was
trained to detect how people orient to targets of WM
encoding with regard to the retention of information,
but it is unclear which of the many possible cognitive
subprocesses are driving this effect, including encoding
for manipulation within the central executive, or other
possible cognitive processes.

It could also be the case that the nature of our tasks
indexed both WM and long-term memory. Indeed,
participants encoded five or nine objects at a time,
resulting in some items that were maintained for a
longer period than others. We posit a mechanism in
which items were initially encoded into WM and then
some were transferred to a longer term store depending
on various factors, such as duration of rehearsal
(Atkinson & Shiffrin, 1968; Hartshorne & Makovski,
2019). Although some items that were maintained
longer were likely transferred to a longer term store,
there is some evidence that our tasks also indexed WM
maintenance strategies. Indeed, participants likely
needed to actively rehearse the encoded target objects
and nonwords so they would not forget them, which is
consistent with a WM-based account (Cowan, 2008).
In addition, both tasks probed verbal WM, which has a
capacity limit of approximately seven plus or minus two
items (Cronin & Irwin, 2018; Miller, 1956). It could also
be the case that participants chunked related items as
the semantic relatedness of objects was not controlled
for. Although there is evidence for both WM and
long-term memory stores, a hybrid account could also
exist in which some items were maintained in a longer
term store and others were maintained in WM. Here, it
could be the case that some items were at the focus of
attention, whereas others may have been maintained
in a longer term store that was readily accessible by
attention. This finding would be consistent with the
tricentric account of WM (Nee & Jonides, 2013;
Oberauer, 2002).

People must first orient to and encode information
before they can maintain or manipulate it. Therefore,
it stands to reason that these gaze features would
reflect target orienting for encoding regardless of the
context, as it is necessary to ensure that information is
attended to and encoded correctly (with a high fidelity)
so that it can be operated on in cognition. Although
it is important to understand how various gaze
dynamics map onto distinct cognitive subprocesses,
this was beyond the scope of this article. This article
demonstrated that gaze dynamics carry signatures of
people’s intentions to orient to targets for encoding,
laying the groundwork for future research on specific
cognitive subprocesses, which would enable the
development of models that can provide more specific
predictions about people’s transitions between various
cognitive states in naturalistic environments.

Future directions

Although the present study chose a large set of
features to demonstrate that a model can be used to
detect target orienting for encoding, there might be
other features that are sensitive to target orienting
for encoding. Future work might investigate whether
people look at less cluttered regions before encoding to
reduce visual interference. It might also be interesting
to determine whether saccade landing positions
differ for encoded objects versus nonencoded objects.
Furthermore, given the top-down nature of the tasks
that were used, future work should evaluate whether
regressive saccades or relative saccade angles influence
encoding. Finally, although head direction was not
used as an independent feature in this study, it might
be the case that observers better encode objects
that require more effort because moving the head
is energetically expensive (Draschkow, Kallmayer,
& Nobre, 2020; Droll & Hayhoe, 2007; Solman &
Kingstone, 2014).

An additional outcome of the present research is that
the modeling approach and results provide a framework
to explore models of target orienting for encoding in
ecologically valid contexts. The results demonstrate that
simple models can capture changes in cognitive states
in naturalistic environments using only gaze dynamics.
This approach has the potential to be integrated within
real-time systems, which could be used to help people
with WM encoding by deploying adaptive interventions
to help decrease memory load. For example, these
real-time systems could suggest applications that would
allow people to externalize their memory load, such as
a notepad app or a camera. Such applications would
have implications for people in their everyday lives
and even greater benefits to those who suffer memory
impairments.

Conclusion

The sliding window logistic regression models
presented here allowed for an exploration into the
degree to which gaze behaviors can be used to anticipate
target orienting for WM encoding across a variety of
participants, encoding stimuli, virtual environments,
and tasks. Together, these findings provided theoretical
insights regarding the role of a broad set of temporal
gaze dynamics in target orienting for WM encoding and
provide important practical implications that should be
considered when using a model that can detect encoding
onsets in technology and special populations.

Keywords: working memory, intent prediction,
cognitive state, eye movements, decoding
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